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ABSTRACT
In this paper, we formalize the novel concept of Constrained Re-
verse k-Nearest Neighbor (CRkNN) search on mobile objects (clients)
performed at a central server. The CRkNN query computes for a
given query object q the set RkNN(q) of objects having q as one
of their k-nearest neighbors, iff the result set exceeds a specific
threshold m, i.e. Card(RkNN(q)) ≥ m. Otherwise, the query
reports an empty result. In our setting, the positions of the query
object and database objects are approximated by minimal bounding
rectangles that depend on the last reported location of the object, as
well as on the time that has been passed since the object reported
its recent exact location. We propose an approach that minimizes
the amount of communication between clients and central server
by using the approximation of the positions to identify true hits and
true drops. We present a multi-step filter/refinement framework that
uses a novel refinement heuristic to minimize the number of objects
that are required to provide their exact location. Our solution does
not assume any preprocessing steps which makes it applicable for
dynamic environments where updates of the database frequently
occur. Experiments show that our approach considerably reduces
the communication load compared to existing approaches designed
for traditional reverse nearest neighbor search in static data.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval—Query Processing

General Terms
Algorithms, Performance

Keywords
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1. INTRODUCTION
While the reverse k-nearest neighbor (RkNN) search problem,

i.e. finding all objects in a database that have a given query q among
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their corresponding k-nearest neighbors, has been studied exten-
sively in the past years, considerably less work has been done so
far to support RkNN queries on mobile objects that may not be
indexed by a point access method. The prevalence of inexpensive
and very small Global-Positioning-Devices (GPS) gives rise to new
spatio-temporal database applications. With these advances it is
e.g. possible to track pupils by equipping them with such a GPS-
device or even animals by attaching a GPS-device to their ear or
under their skin. However, such very small GPS-devices posses
only a very limited power supply, and the replacement of a power
supply of such a GPS-device can be very expensive. As an exam-
ple, think of a wildlife sanctuary, where many animals are equipped
with small GPS-devices to observe and protect them. The GPS sig-
nal of the animals can be used to alert the ranger, when a very rare
species is in immediate danger of being attacked by a predator, such
as a tiger. The ranger may then intervene by chasing off the tiger.
However, the act of attaching a GPS-device to an animal or replac-
ing its power source is very stressful and dangerous for both the
animal and the rangers. Usually, the animal has to be tranquilized
in order to allow the veterinary a safe approach. Thus, the power
of such miniature GPS-devices is a very precious resource. In or-
der to preserve this source, the miniature GPS-device should only
submit its exact position if necessary. As a consequence, in such
an application scenario, query processing must account for the fact
that any position poll necessary to answer the query is very costly,
or in other words, each single position poll that is saved is valuable.

Many applications also only require to know if the number of
RkNNs of a query object q exceeds a given threshold m. If q has
less RkNNs than m, no results need to be reported. Only if the
number of RkNNs of the query is at least m, all RkNNs need to
be known. This type of query is called Constrained Reverse k-
Nearest Neighbor (CRkNN) query. As an example application for
a CRkNN query, consider lions in a wildlife sanctuary. Since lions
generally hunt in packs, it is safe to assume that the query animal
(or a tourist) q is not in danger if less than m = 3 lions have q as
their nearest prey. If however the number of reverse nearest lions
of the query exceeds the threshold m = 3, then the lions need to
be chased off (or the tourist has to be warned).

To track and observe large numbers of continuously moving ob-
jects, their last submitted positions are stored in a database. The
conventional assumption, that data remains constant unless it is ex-
plicitly modified, no longer holds when considering mobile objects.
In our examples above, the position of an animal may be given
by an exact location at the time slot the animal submitted its cur-
rent position. After that, its position is conservatively approximated
by a minimal bounding box that contains all possible positions the
tiger may have reached since its last location update and that usu-
ally grows over time.
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Figure 1: R1NN examples.

We consider the computation of CRkNN queries in this setting
for both the mono-chromatic as well as the bi-chromatic case. The
difference of both cases is that in the mono-chromatic case we have
only one set of objects from which the query and the results are
drawn, whereas in the bi-chromatic case, we have two sets, a set
of potential query objects (that are not considered as results when
a query is processed) and a set from which the results are drawn.
Figure 1 illustrates the concept of CRkNN queries in both cases.
The mono-chromatic CR1NN query (cf. Figure 1(a)) for point q
returns point 1 and 4 if m ∈ {1, 2} or nothing if m ≥ 3. Points
2 and 3 are not returned for any choice of m, because they do not
find q as their 1-nearest neighbor. In the bi-chromatic case, two
object sets Dred (red objects) and Dblue (blue objects) are consid-
ered. The bi-chromatic CRkNN query returns all elements of Dred

that have the query point as on of their k-nearest neighbors if all
other red objects are ignored. Figure 1(b) shows the bi-chromatic
CR1NN query for a set of lions (red objects R1, R2, and R3) and
a set of potential prey (blue objects B1, B2, and q). The query
object q (from the blue object set) could be a young elephant that
is not yet able to defend itself. In this example, the bi-chromatic
CR1NN query yields no results for any value of m, because each
lion observes another animal as nearest neighbor.

A straightforward solution for computing CRkNN queries is to
check for each point, whether is has a given query point as one
of its k-nearest neighbors. If more than m objects do, the set is
outputted as result, otherwise the result is empty. However, this
approach lacks on a computational point of view when the number
of points is large. Even more important in this setting is that each
client is required to send its exact location at least once and, thus,
the drain of the clients’ power sources is very large.

In this paper we present a novel framework for CRkNN search
on mobile objects that minimizes the amount of network traffic.
Our framework is applicable to both mono-chromatic and bi-chromatic
CRkNN queries. It extends the idea of using Voronoi hyperplanes
[10] to prune the search space of possible results and (most im-
portantly) allows pruning based on object approximations in order
to save position polls. In particular, in the case of extended query
objects and database objects, the pruning regions are no longer de-
fined by simple Voronoi hyperplanes, but become rather complex
regions. We propose new refinement heuristics that vastly reduces
the required amount of network traffic compared to traditional re-
finement heuristics used for RkNN search. In general, the contri-
butions of this paper can be summarized as follows:

• We formalize the problem of Constrained Reverse k-Nearest
Neighbor (CRkNN) queries on mobile objects in a client/server
scenario which is prevalent in several important applications.

• We propose a multi-step query processing algorithm for mono-

chromatic and bi-chromatic CRkNN queries that allows the
pruning of candidates based on approximations of locations
of objects in the filter step and, thus, considerably decreases
the communication between clients and server.

• We prove the correctness of our filter step, i.e., that it returns
a superset of the true hits and does not produce false drops.

• We propose a heuristic for deciding which objects are re-
quired to submit their exact location in the refinement step,
that performs significantly better in this scenario than state-
of-the-art refinement heuristics used for traditional RkNN
search in terms of communication costs.

• We give analytical and experimental evidence that our frame-
work significantly reduces the amount of network traffic re-
quired for CRkNN-queries on moving objects which is im-
portant to minimize waste of the most precious resource, the
battery of the miniature clients.

The remainder is organized as follows. We review related work
in Section 2. The problem of CRkNN query processing in spatio-
temporal data implementing a client-server setting is formalized
in Section 3. Section 4 provides the details of our novel multi-
step CRkNN query processor and Section 5 describes the complete
query algorithm. A comparative experimental evaluation is pre-
sented in Section 6. Section 7 concludes the paper.

2. RELATED WORK
Existing approaches for RkNN search on static data can be clas-

sified according to the pruning approaches used.
Self-pruning approaches are usually designed on top of a hi-

erarchical index structure. They usually try to estimate the kNN
distance of each index entry E, i.e. E can be a database object or
an intermediate index node. If the kNN distance of E is smaller
than the distance of E to the query q then E can be pruned. Several
approaches use an exact estimation by simply pre-computing kNN
distances. The RNN-Tree [6] is an R-Tree-based index that pre-
computes for each object p the distance to its 1NN, i.e. nndist1(p).
The objects are not stored in the index itself. Rather, for each ob-
ject p, the RNN-Tree manages a sphere with radius nndist1(p),
i.e. the data nodes of the tree contain spheres around objects. The
RdNN-Tree [12] extends the RNN-Tree by storing the objects of
the database itself in an R-Tree rather than circles around them. For
each object p, the distance to p’s 1NN, i.e. nndist1(p), is aggre-
gated. For each leaf entry E, the maximum of the 1NN distances
of all objects in E is aggregated. An inner node of the RdNN-Tree
again aggregates the maximum 1NN distances of all its child nodes.
In addition, the RdNN-Tree, can be extended to metric spaces (e.g.
by applying an M-Tree instead of an R-Tree). However, both ap-
proaches are limited to a fixed value of k. To overcome this prob-
lem, the MRkNNCoP-Tree [2] has been proposed which is con-
ceptually similar to the RdNN-Tree but stores a conservative and
progressive approximation for all kNN distances of any data ob-
ject rather than the exact kNN distance for one fixed k. The only
limitation is that k is constrained by a parameter kmax specifying
the maximal value of k that can be supported. For RkNN queries
with k > kmax, the MRkNNCoP-Tree cannot be applied. The
conservative and progressive approximations of any index node
are propagated to the parent nodes. Using these approximations,
the MRkNNCoP-Tree can identify a candidate set, true hits, and
true drops. For each object in the candidate set, a kNN query is
launched for refinement. A variant of the MRkNNCoP-Tree is pro-
posed in [1, 3] that achieves a further runtime improvement and



gets rid of the kmax bound for the value of k to the cost of generat-
ing only approximative results. A different approach is proposed in
[11] where a method for RkNN search in metric spaces that is tai-
lored to the M-Tree is presented. The authors derive several rules
from the M-Tree structure that can be used to estimate the kNN
distance of an index entry. For each database object o that is con-
tained in a non-pruned leaf node of the M-Tree a kNN query is
required for refinement. The above self-pruning approaches are
not applicable for a database containing mobile objects, because
RkNN-distances (or their approximations) have to be materialized
and frequently updated due the constant change of position infor-
mation of objects.

Mutual-pruning approaches are usually designed for the Eu-
clidean space only and use other objects to prune a given index
entry E. For that purpose, they use special geometric properties
of the Euclidean space, typically the concept of Voronoi cells. The
basic idea is that given the Voronoi-cell around the query object
q, each object or index node E can be pruned if E is beyond a
Voronoi plane (for k = 1). In [8] a two-way filter approach for
supporting R1NN queries based on this idea is proposed that pro-
vides approximate solutions. In [10] the first approach for RkNN
search was presented, that can handle arbitrary values of k. The
method uses any hierarchical index structure to compute a near-
est neighbor ranking of the query object q. From this ranking, a
Voronoi cell around q is iteratively constructed. Objects that are
beyond k Voronoi planes w.r.t. q can be pruned and need not to be
considered for Voronoi construction. The remaining objects must
be refined. In [9], a different approach for R1NN search in a 2D
data set is presented. It is based on a partition of the data space
into six equi-sized units where the border lines of the units are cut
at the query object q. The 1NN of q in each unit is determined and
all these neighbors are merged together to generate a candidate set.
This considerably reduces the cost for the nearest-neighbor queries.
Each candidate is refined by computing its nearest neighbor.

Hybrid approaches combine the strengths of both pruning con-
cepts to get the “best of both worlds”. In [4], a framework is pre-
sented to obtain conservative and progressive distance approxima-
tions between a query point and arbitrarily approximated regions,
such as MBRs of an R*-Tree in the Euclidian case or “circles” of an
M-Tree in the general metric case. An approximated object E may
prune itself, if the minimal distance to the query object is already
greater than the maximal distance to E itself. Similarly, one ap-
proximated object E may prune another approximated object E′, if
the minimal distance of E′ to q is already greater than the maximal
distance of E to q. A specialization of this approach to Euclidean
data is proposed in [7] exploiting geometric properties to achieve a
higher pruning power. The hybrid approaches have shown to yield
a better pruning but all of these approaches assume that the query is
given as a single point. To the best of our knowledge, no work has
been done to tackle the problem where the query object is given by
an approximated region only.

3. PROBLEM FORMALIZATION

3.1 Client-Server Scenario
In the following, we assume that D is a database of n objects

(clients) moving continuously within a 2-dimensional Euclidean
space and dist is the Euclidean distance1 on the objects in D. In
addition, we assume that the objects (clients) are connected with a
central server via a wireless network and can send their exact posi-
tions when requested from the server.

1The concepts described here can also be extended to any Lp-norm.

At server side the position of each object o is approximated by
a two-dimensional axis aligned rectangle o.mbr that minimally
bounds the possible positions of o. The objects send their exact
positions to the server only if necessary. The exact position of an
object o will not be updated at server side as long as

• the exact object position o.pos is within the region o.mbr.

• the query can be answered based on the information of the
object positions that is currently available at the server.

Here, we will be interested in performing queries among the
clients at the server.

3.2 CRkNN Query
We will first review the two different types of traditional re-

verse k-nearest neighbor queries, the mono-chromatic and the bi-
chromatic variant. Then, we will derive the novel constrained re-
verse k-nearest neighbor query.

3.2.1 Mono-Chromatic RkNN Query
In a mono-chromatic setting, we have only one set of objects

D. The set of k-nearest neighbors (kNNs) of an object q is the
smallest set kNN (q) ⊆ D that contains at least k objects such that
∀o ∈ kNN (q), ∀ô ∈ D − kNN (q) : dist(q, o) < dist(q, ô). The
object p ∈ kNN (q) with the highest distance to q is called the
k-nearest neighbor (kNN) of q. The distance dist(q, p) is called
kNN distance of q.

The set of reverse k-nearest neighbors (RkNNs) of an object q
is defined as

RkNN (q) = {p ∈ D | q ∈ kNN (p)}.

3.2.2 Bi-Chromatic RkNN Query
For the bi-chromatic RkNN query we assume that the database

is divided into two disjunctive sets of objects, Dred ⊆ D and
Dblue ⊆ D, where Dred ∪ Dblue = D. Here, the set of k-nearest
neighbors of an object q ∈ Dblue is the smallest set kNN (q) ⊆
Dred that contains at least k objects such that ∀o ∈ kNN (q), ∀ô ∈
Dred − kNN (q) : dist(q, o) < dist(q, ô).

Let us note that the mono-chromatic query is a special case of
the bi-chromatic query. The mono-chromatic query is equal to the
bi-chromatic query if we assume that Dred = Dblue. In addition,
the two distinct sets can be exchanged with each other in the above
definition.

The set of RkNNs of an object q is defined as above taking the
bi-chromatic version of the kNNs into account.

3.2.3 Constrained RkNN Query
The problem of a constrained RkNN (CRkNN) query is to report

for a given query object q the result of a RkNN query if and only if
the result size exceeds a specific threshold m, formally

CRkNN(q) =


RkNN(q) , if Card(RkNN (q)) ≥ m

∅ , else.

Note that the case where m = 1 corresponds to a traditional, non-
constrained RkNN query.

3.3 General Idea for Answering CRkNN Queries
The main objective of our approach is to keep the communica-

tion cost between the clients and the sever as low as possible while
answering CRkNN queries for a given query object q, and speci-
fied values for k and m that may vary from query to query. For this
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Figure 2: R1NN selectivity estimation based on position approximations.

reason, we try to avoid unnecessary position updates at the server
side. The communication cost of each position update is assumed
to be very expensive, since it composes the cost required to build up
the communication channel between the server and the client, and
the cost for transferring the position information from the client
to the server. The problem is that we might update object posi-
tions when issuing CRkNN queries in order to get exact results.
However, the CRkNN query offers a potential for a lazy update
strategy. Whenever a CRkNN query is issued, first, we estimate
conservatively the selectivity of the query only based on the infor-
mation available at the server, i.e. in consideration of the object
approximations. An example illustrating this estimation task for
the mono-chromatic and the bi-chromatic case is depicted in Figure
2. Detailed strategies for estimating the selectivity, i.e. finding the
RkNN candidates, will be discussed in the next section. Only if the
estimated size of the result set exceeds a specified threshold m, then
the server requests exact position updates from the clients. In our
example, m must be smaller than 6 in the mono-chromatic case (cf.
Figure 2(a)) and smaller than 2 in the bi-chromatic case (cf. Figure
2(b)). Thereby, only those position updates are requested that are
necessary to compute the exact result. The determination of those
objects (including the query object) that definitely have to transmit
their exact positions to the server is challenging. In summary, there
are two problems to be solved:

• First, we have to compute a conservative but accurate esti-
mation of the query selectivity.

• Secondly, we have to find a possibly small set of objects
whose refined positions suffice to compute the correct query
result.

Obviously, the higher the accuracy of the position information
of the query object and the database objects at sever are, the better
is the query selectivity estimation. However, since our main focus
is to keep the position updates as low as possible, we first estimate
the query selectivity without any position update. For the query se-
lectivity estimation we have to compute RkNN candidates in con-

sideration of the minimal bounding rectangles associated with the
query object and the database objects.

4. CRKNN QUERY PROCESSING
In the following sections, we present our framework for answer-

ing CRkNN queries on objects initially approximated by minimal
bounding rectangles. For a clear presentation, we focus on the
mono-chromatic case but all concepts can be directly applied to
the bi-chromatic case.

4.1 Pruning Strategies
First, we will introduce pruning strategies which are applicable

for extended query objects and are used in a filter step to iden-
tify potential candidates and, thus, to estimate the selectivity of
the query. Thereby, the main focus is to cut down the number of
CRkNN candidates to achieve a good conservative estimation of
the selectivity of an RkNN query and to identify a possibly small
number of objects for which the server has to request the exact po-
sitions.

4.1.1 Basic Pruning
Let us first construct the simple case where we consider the ba-

sic pruning strategy based on exact object representations. Let q be
an exactly represented query object, e′ be an exactly represented
database object, and E be a rectangular approximated object as il-
lustrated in Figure 3. Now, we want to identify whether E can be
pruned according to a R1NN(q) query. E can be pruned (accord-
ing to e’), if there exists no point e ∈ E which could be R1NN
of q. A straight forward approach would be to use the pruning
criterion based on distance approximations called Min-/MaxDist
pruning as proposed in [4], where E can be pruned if the mini-
mal distance MinDist(q, E) between q and E is larger than the
maximal distance MaxDist(e′, E) between e′ and E. However
this strategy would not work in our case, since MinDist(q, E) <
MaxDist(e′, E). Rather, we adopt the geometrical pruning ap-
proach as proposed in the TPL approach [10]. The main idea is
to compute the Voronoi plane (Voronoi line in the two-dimensional
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Figure 3: Pruning according to TPL.

space) between q and e′, containing all points having equal dis-
tance to q and to e’. This line which is depicted as dashed line in
our example divides the Euclidean space into two half-spaces. All
points in the half-space containing e′ can be pruned because they
are closer to e′ than to q. This means, that if an object or an ob-
ject approximation, e.g. object E in our example, lies completely
within this area, it can be pruned. However this approach requires
(at least two) exact object representations in order to build such a
Voronoi line. Thus, it is not applicable to prune objects based on
approximative object representations. Rather, we need more ad-
vanced concepts which can be applied to rectangles.

4.1.2 Pruning Based on Extended Regions
Now we consider our initial setting assuming that all objects (in-

cluding the query object) are approximated by axis-aligned min-
imal bounding rectangles. Again, the Min-/MaxDist pruning as
proposed in [4] can be easily applied to the rectangles, but would
not be a good choice due to similar reasons as for the simple case
described above. A geometrical pruning approach would be more
selective, but the question at issue is, how can this be done in case of
rectangles, e.g. for the rectangles Q.mbr and E′.mbr as illustrated
in Figure 4. A naive solution would be to materialize all possible
Voronoi lines defined by all pairs (q, e′) : q ∈ Q, e′ ∈ E′. In
order to guarantee no false dismissals, the corresponding pruning
area have to be built by intersecting all half-spaces opposite to Q.
Obviously, the materialization of the Voronoi lines of all possible
pairs of points of Q and E′ is not applicable. Rather, we only need
to focus on the pairs of points which are responsible for the border
of the pruning area.

In fact, the pruning space defined by a Voronoi line between a
query point q and a database point e′ has the property that all points
p in this space are closer to e′ than to q, i.e. dist(p, q) ≥ dist(p, e′)
(cf. Figure 2). Now, let us again consider the object approximations
Q and E′. The pruning space according to Q and E′ is represented
by all points p that are definitely closer to each point in E′ than to
each point in Q, i.e.

∀q ∈ Q : ∀e′ ∈ E′ : dist(p, q) ≥ dist(p, e′). (1)

In order get a conservative pruning space we can replace the dis-
tance p and Q by the minimum distance MinDist(p, Q) and re-
place the distance between p and E′ by the maximum distance
MaxDist(p, E′). Consequently, we can define the pruning area
by means of the following lemma:

Lemma 1. Let Q be a rectangle containing the query object q and
E′ be a rectangle containing a database object. Then, all points p
for which the following equation holds cannot be the R1NN(q) and,
thus, can be pruned:

MinDist(p, Q) ≥ MaxDist(p, E′). (2)

PROOF. Though the pruning spaces defined by the two equa-
tions 1 and 2 are in fact identical, for the proof of the above lemma

it suffices to show that each point p in the pruning space defined by
Equation 2 is within the pruning space defined by Equation 1. Let
p be any point, for which Equation 2 holds. Then, each point q in
Q has a larger distance to p than MinDist(p, Q), i.e.

∀q ∈ Q : dist(p, q) ≥ MinDist(p, Q).

Furthermore, each point e′ in E′ has a smaller distance to p than
MaxDist(p, E′), i.e.

∀e′ ∈ E : MaxDist(p, E) ≥ dist(p, e′).

Consequently, with Equation 2 we get the following equation:
∀q ∈ Q : dist(p, q) ≥ MinDist(p, Q)

≥ MaxDist(p, E′) ≥ dist(p, e′),

which is equal to Equation 1.

Let us note, that the pruning strategy based on Lemma 1 can
be easily applied for RkNN queries with k > 1 by considering k
pruning areas.

Based on Lemma 1 we can define the border of the half space
representing the pruning area associated with the rectangles Q and
E′. This area composes all points that are definitely closer to each
point in E′ than each point in Q. The border of this half-space is
defined by all point p for which the following equation holds:

MinDist(p, Q) = MaxDist(p, E′). (3)

In the remainder we will show how the pruning area can be con-
structed in consideration of the topology of the corresponding rect-
angles. The computation of the border of the pruning area defined
by two rectangles in a two-dimensional space can be partially re-
duced to the basic case. In fact, we have to consider 326 cases,
i.e. the space can be decomposed into 4 · 9 = 36 partitions having
certain topological properties w.r.t. to both rectangles, as depicted
in Figure 4. The query rectangle Q decomposes the space into 9
partitions along the rectangle margins, 3 partitions per dimension.
For each partition P we can determine a point or margin of the
rectangle Q that represents or contains the nearest point of Q to
any point in P . For example, consider the north-east partition P Q

NE

built by Q. The upper-right corner of Q is the nearest point in Q
for all points in P Q

NE . Furthermore, the lower-right corner of Q is
the nearest point in Q for all points in the south-east partition P Q

SE .
Similar representatives can be found for the north-west and south-
west partitions. The nearest point in Q to any point in the east
partition P Q

E is not a unique point and corresponds to the nearest
point on the right rectangle margin. This also holds for the south,
west and north partition P Q

S , P Q
W and P Q

N , respectively. Obviously,
the partition which is defined by the rectangle Q itself composes all
points having a distance of zero to Q.

The database rectangle E′ decomposes the space into 4 addi-
tional partitions, 2 partitions per dimension. Here, the center of E′

is used to define the partitioning which leads to the partitions P E′
NE ,

P E′
SE , P E′

SW and P E′
NW . In contrast to the partitions defined by Q,

here we are interested in partitions having the farthest point in E′ in
common. For example, all points in the south-west partition P E′

SW

built by E′ have the upper right point of E′, i.e. the opposite corner
of E′ w.r.t. P E′

SW , as their farthest point in E′. Analogous consid-
erations hold for the other four partitions.

Let us now consider the combined partitioning defined by the
two rectangles Q and E′ in order to determine the margin of the
pruning area. The margin of the pruning area is composed of parts
defined for each partition. In our example illustrated in Figure 4,
the margin of the pruning area within partition P Q

N,E ∪ P E′
S,W is

defined by the upper-right corner of Q and the upper-right corner
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Figure 4: Geometrical pruning on MBRs

of E′. In contrast the partition P Q
N,E ∪ P E′

N,W defines the mar-
gin of the pruning area by means of the upper-right corner of Q
and the lower-right corner of E′. Each of the above margin parts
can be represented by a single line segment. We achieve a more
complex structure when considering the margin part within parti-
tion P Q

E ∪ P E′
S,W . Since, this partition has not a common nearest

point in Q, i.e. the nearest point in Q depends on the location of
the margin point, the geometry of the margin is not linear anymore.
The resulting structure of the margin of the pruning area is now
rather complex, persisting of several line segments and even non
linear parts (see the solid blue line in Figure 4). The materializa-
tion of the pruning area in order to test whether an object E lies
completely within the pruning area is not trivial and could be com-
putationally expensive.

4.1.3 Advanced Geometrical Pruning
Since the geometrical pruning based on the pruning area as de-

scribed above is effective but the materialization of the pruning area
is expensive, we have to find a method to check whether a point or
rectangle is completely within the pruning area without requiring to
materialize the pruning area. Note that in figure 4 it is sufficient to
only test whether the corners of E can be pruned, in order to prune
E as a whole. In the following, we will show that this approach is
sufficient in general.

First, we utilize the fact that the pruning area always have a con-
vex structure which is shown by the following two lemmas:

Lemma 2. Let P1, . . . , Pn ⊂ R2 be convex areas. Then the inter-
section P = P1

T
. . .

T
Pn is also convex.

PROOF. Let p1, p2 ∈ P , then p1 and p2 are within every set Pj .
Since the sets Pj are convex, the whole segment [p1, p2] lies within
each set Pj . Since this segment lies within each set Pj , it also is
part of the intersection of these sets, i.e. [p1, p2] ⊂ P . Thus the
intersection P of finite number of convex sets is also convex.

Lemma 3. The pruning area defined by a query rectangle Q and
a database rectangle E′ is convex.

PROOF. The pruning area defined by any two points q ∈ Q, e′ ∈
E′ is a half-plane, which is a convex set. The resulting area when
intersecting the pruning areas of all pairs (p, e′) is again convex as
a consequence of lemma 2.

Now, we can use the convexity property of a pruning area in
order to check whether a point or rectangle is completely within
the pruning area in an efficient way using the following lemma.

MinDist(Q)=MaxDist(E‘)

E‘

Q E

‘‘E‘‘

MinDist(Q)=MaxDist(E‘‘)MinDist(Q)=MaxDist(E )

Figure 5: Partial pruning

Lemma 4. In order to prune an Object E according to a query re-
gion Q and a database object E′ it suffices to show that all corners
v of E can be pruned according to the following criterion:

MaxDist(v, E′) ≤ MinDist(v, Q).

PROOF. According to lemma 3 Q and E′ form a convex pruning
area. Therefore if E is not completely within the pruning area, at
least one corner v of E must be outside the pruning area. Thus
the following inequality MinDist(vi, Q) < MaxDist(vi, E

′)
holds.

As a consequence of Lemma 4 the test if an rectangular object E
lies within the R1NN pruning area formed by a rectangular query
region Q and a rectangular database object E′ can be reduced to
the Min-/MaxDist pruning test of the corners of E′. This pruning
criterion is optimal as it is based on the exact pruning area defined
by Q and E′. In particular, it is different from the Min-/MaxDist
pruning as proposed in [4] which applies the pruning test only for
the complete rectangles rather than to the corner points and, thus,
is significantly less selective. This technique is extendible to the
RkNN-problem where an object E can be pruned if it lies com-
pletely within k pruning areas (defined by Q and k database ob-
jects).

4.1.4 Partial Pruning
The objective of the partial pruning is to increase the pruning

power of the geometrical pruning strategy. The idea of this ap-
proach is that objects can be pruned by means of pruning regions,
even if the objects are only partially covered by the pruning regions
[5]. This can be applied, if some pruning regions complement one
another. An example of an R1NN-based pruning is illustrated in
Figure 5. Here, two objects E′ and E′′ build two pruning regions
together with the query object Q. The pruning regions partially in-
tersect the rectangle of another object E. Though, the rectangle of
E does not completely lie within any pruning region, each point in
E does. Consequently, each point in E can be pruned by at least
one pruning area.

4.1.5 Progressive Pruning
Up to now, we presented conservative pruning techniques in or-

der to prune candidates that can be excluded from the query result.
Now, we present additional pruning strategies called progressive
geometrical pruning that find true hits without any refinement of
candidates. Thereby, we apply similar geometrical properties as
used for the conservative geometrical pruning. For a given query
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rectangle Q and a database rectangle E′ the progressive pruning
area defines all points that are definitely closer to all points in Q
than to all points in E′. An example is illustrated in Figure 6. In
contrast to the margin of the conservative pruning area, the margin
of the progressive pruning area is defined by all points p for which
the following equation holds:

MaxDist(p, Q) = MinDist(p, E′). (4)

Hence, if a point or rectangle completely lies within this area, it
can be concluded that it is closer to any point in E′ than to Q. For
a R1NN query, if a point or rectangle completely lies within the
progressive pruning area of each database object (except itself), it
can be immediately reported as R1NN(q) result.

Like the conservative pruning area the progressive pruning area
is convex which can be used to identify true hits efficiently.

Lemma 5. An object E can be identified as true hit according to
a query object Q if all corners v of E lie within the progressive
pruning areas of all database objects according to the following
criterion:

∀E′ ∈ D, E 6= E′ : MaxDist(v, Q) ≤ MinDist(v, E′).

The above lemma can easily be proved analogously to Lemma 4.
Again, this technique is extendible to the RkNN-problem where

an object E can be pruned if it lies completely within Card(D)−
k−1 progressive pruning areas (defined by Q and Card(D)−k−1
database objects).

4.2 Refinement Strategies
After applying our pruning strategy, there may still candidates

left. For these candidates, the decision whether they are part of
the result, cannot be made by using only information stored on the
server. In this case, one of the objects of the database has to be
refined, i.e. one of the objects is required to transmit its exact loca-
tion to the server. In this section we propose strategies that aim to
minimize the total number of refinements. This is important since
we follow our overall goal in minimizing the number of messages
sent between clients and server.

4.2.1 Minimal Mindist Heuristics
The idea of refining the object of the database, that has the small-

est Mindist to the query object q has been proposed in [10]. This
heuristic has also been adapted in [4]. The general idea is, that ob-
jects closest to q are likely to be true hits and also generate pruning
areas close to q that potentially prune other objects that are more
far apart. Thus, for each object approximation E, we compute the
minimal distance minDist(E, q) to q, and refine object

argMinE∈DB(minDist(E, q)).
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Figure 7: Different pruning potentials.

4.2.2 Maximum Pruning Potential Heuristics
The key of this idea is to pick the object that has the most influ-

ence on all other candidates as next refinement. In particular, that
object for which the likelihood, that due to its refinement, other
candidates can be pruned, is maximized should be chosen.

To evaluate this influence, each object E is associated a prun-
ing potential. The pruning potential of an object is composed of
two components, the Mutual-Pruning Potential, MPP (E), and the
Self-Pruning Potential, SPP (E). The Mutual-Pruning Potential of
an object E estimates the number of candidates that can possibly be
pruned by the exact position e of E, but cannot be pruned by means
of the approximation of E only. An example of this estimation is
given in Figure 7(a). In this example, we want to determine the
Mutual-Pruning Potential of E′, MPP (E′). Object E1 does not
affect MPP (E′), because E1 can already be pruned based on the
approximation of E′. E6 does not contribute to MPP (E′) either,
because regardless of the exact position of e′ ∈ E′, E6 cannot be
pruned by e′. The reason for this is that E6 cannot be pruned by any
line that is contained in the region between the conservative and the
progressive approximation of the Voronoi lines between q and any
e′ ∈ E′. The same applies for E5. Even in the best case, where
e′ ∈ E′ is very close to q, E5 cannot be completely pruned by e′.
Let us note that it is possible that the Voronoi line between q and e′

intersects E5, and by means of partial pruning, the prune count of
E5 can still be increased in combination with Voronoi lines of other
objects. Thus E5 increments MPP (E) by one. For objects E2,
E3 and E4 there exist possible positions e′ ∈ E′, for which they
can be completely pruned. Thus, the Mutual-Pruning Potential of
E′ is incremented by one for each of these objects and finally we
get MPP (E′) = 4. In the bi-chromatic case, the following addi-
tional constraints apply:

• The object E for which the Mutual-Pruning Potential is com-
puted must be a member of set Dblue (the blue objects), be-
cause objects of set Dred (the red objects) do not interfere
with other objects, and thus cannot prune other candidates.

• The objects (E1,. . . ,E6 in the example) that increase the Mutual-
Pruning Potential of E must be red, since the result of a
bi-chromatic CRkNN query may only contain red objects.
Therefore only red objects can be candidates.

Thus, red objects do not have a Mutual-Pruning Potential and
blue objects ignore other blue objects in the computation of their
Mutual-Pruning Potential.

The Self-Pruning Potential of an object E estimates the number
of objects that can possibly prune the exact position of e ∈ E, but
cannot prune the approximation E. An example for this situation



is depicted in Figure 7(b). Here, we want to determine the Self-
Pruning Potential SPP (E′) of E′. Object E1 does not increase
the Self-Pruning Potential of E′, because the approximation of E′

can already be pruned completely by E1. E2 does not increase
the Self-Pruning Potential of E′ either, because regardless of the
exact position of e′ ∈ E′, e′ cannot be pruned. Thus, SPP (E′) =
0. Now, consider the Self-Pruning Potential of E′′. Although E2

cannot prune the approximation E′′, E2 may be able to prune e′′ ∈
E′′ if it falls into the pruning region of E2, denoted by the shaded
area. Therefore, E2 increases the SPP (E′′) by one. The situation
of E′′′ is even more interesting, because here, both E1 and E2

contribute to the Self-Pruning Potential of E′′′. Again, in the bi-
chromatic case additional constraints apply including:

• The object E for which the Self-Pruning Potential is com-
puted must be a member of set Dred (the set of red objects),
because the result of a bichromatic (C)RkNN query may only
contain red objects, and thus, only red objects may be can-
didates.

• The objects (E1 and E2 in the example) that increase the
Self-Pruning Potential of candidates must be blue, because
only members of the blue set can prune other objects.

Thus, blue objects do not have a Self-Pruning Potential, and red
objects ignore other red objects in the computation of their Self-
Pruning Potential.

The object with the highest sum of Mutual-Pruning Potential and
Self-Pruning Potential

argMaxE∈DB(MPP (E) + SPP (E))

is chosen to be refined next.
As seen in the examples, in order to compute MPP (E) and

SPP (E) for an object E, we need to find objects that are not com-
pletely contained in either the pruning region or in the true-hit re-
gion of other objects. Due to the convexity of both the true-hit and
the pruning region of an object E, we can do this efficiently by
testing corners of MBRs only (see above).

5. ALGORITHM
In this section we present our algorithm for processing CRkNN

queries on approximated objects. An abstract outline of the algo-
rithm is shown in Algorithm 1. In the first step, the algorithm ap-
plies pruning based on extended regions utilizing the information
that is available on the server. If the number of candidates returned
in this step is less than m the algorithm terminates with the empty
set as result, since the number of results can not possibly exceed m.
Otherwise, if the number of candidates is at least m, then the query
object q is refined, and thus required to send its exact position to
the server. Then the candidate and result lists are updated accord-
ing to the new information about the exact position of q using the
various pruning strategies described above. This is repeated while
there are candidates left to be refined. If at any time, the possible
number of results, i.e. the number of current hits (result) plus the
number of remaining candidates cand becomes less than m, the
algorithm terminates again with the empty set as result. Once no
more candidates are left, the results are returned if their number
exceeds m.

6. EXPERIMENTAL EVALUATION
In the following, we outline the experimental evaluation. Since

all proposed techniques aim at reducing the number of refined ob-
jects, the number of refinements is the main variable to be mea-
sured. In this regard we will show:

Algorithm 1 CRcNN query processing.

CRkNN(query q, k, m)

LIST cand = filter(query, k, m);
LIST result = ∅;
if (Card(cand) < m)

return result;
else

Refine q;
Update cand;
Update result;
while(Card(cand) + Card(result) > m

&& Card(cand) > 0)
Apply Refinement Strategy;
Update cand;
Update result;

if (Card(result) > m)
return result;

else
return ∅;

• A comparison of the two proposed filter approaches Min-
/MaxDist-Pruning (MMP) (cf. Section 4.1.1) and geometri-
cal pruning called Corner-Based-Pruning (CBP) (cf. Section
4.1.3).

• A comparison of the two proposed refinement strategies Min-
imal Mindist-Heuristics (MMH) and Maximum Pruning Po-
tential Heuristics (MPPH).

• The impact of the constraint parameter m.

The experiments will be performed under various different pa-
rameter settings as well as on different datasets and in both monochro-
matic and bichromatic environment. Default values for parameters
are k = 5, m = 1, Card(D) = 10k, Card(Dred) = 10k and
Card(Dblue) = 10k.

6.1 Datasets and Parameters
For the evaluation of the different approaches we used two dif-

ferent 2D point datasets:

• Synthetic dataset with uniform distribution (2D-Uniform)

• The Twin Astrographic Catalog Version 2 [13]

Both datasets were normalized to have a feature value in [0,1].
Each point is equivalent to the exact position of one object. The
uncertain area of each object o is constructed by choosing a random
rectangle that covers o with a random side length in [0, maxsidelength].
Queries as well as database objects were picked from one of the
datasets for each experiment.

6.2 Filter Step
In our first experiment we evaluate the pruning power of our

pruning strategy CBP in comparison to the basic pruning strategy
MMP. First, we investigate the cost required to refine the query
object for varying threshold parameter m in terms of the average
number of query object refinements. Note, that in the case where
refining the query object is not required, we have no refinement
costs at all, i.e. no database object has to be refined. The results are
depicted in Figure 8(a). For very small m (m < 5) our advanced
approach CBP has no improvement in comparison to the simple
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Figure 8: MMP vs. CBP on uniform dataset

MMP approach because for a small m almost in all cases the result
set Card(RkNN (q)) exceeds m and, thus, the query object has to
be refined. For larger settings of the parameter m, indeed we can
save refinements of the query object and, thus, can save the compu-
tation of the CRkNN(q) result. With increasing the parameter m,
we can observe that our geometrical pruning strategy increasingly
outperforms MMP. In particular, for m = 11 the CBP is two times
more selective than the MMP approach.

Furthermore, we investigated the pruning power of both prun-
ing strategies in consideration of the number of result candidates
reported by the first filter (without any refinement). Figure 8(b)
shows the number of candidates generated in the first filter for vary-
ing sizes of the rectangles used to approximate the object positions
in terms of the side length of the rectangles. It is obvious that larger
rectangles lead to a lower pruning power with both competing ap-
proaches. However, the CBP pruning produces about 1/3rd less
candidates compared to MMP.

6.3 Refinement Strategy
The next set of experiments concerns the effectivity of the pro-

posed refinement strategies. As a baseline, we use the Minimal
Mindist Heuristics (MMH) (c.f. 4.2.1) and compare it to our pro-
posed Maximum Pruning Potential Heuristics (c.f. 4.2.2). We mea-
sure the total number of refinements, that is, the number of objects
that are required to submit their exact position. Figure 9(a) shows
the result of our evaluation with respect to k on uniform dataset. It
can be observed that the MPPH shows only a small improvement
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Figure 9: MMH vs. MPPH on uniform and tac dataset

over the the MMH for small values of k, but becomes significant
outperforms MMH as k increases. In contrast, the same evalua-
tion is shown in Figure 9(b) for the tac dataset. It can be observed
that the total number of refinements is higher on the tac dataset.
This can be explained by the clustered nature of the tac dataset.
Objects are closer to each other than in the uniform dataset, while
the max side length of an uncertain area is the same, resulting in
more overlap of the uncertain regions. It can also be observed that
the improvement of MPPH is relatively large for small values of
k, increases rather slowly as k increases.

6.4 Constraint Parameter m
As the parameter m constrains the minimum number of RkNN

results, which are of interest to the user, it can be used to stop the
refinement process at an early stage. Thus, increasing m results in a
smaller number of refinements. Figure 10 again shows the number
of necessary refinements (using MPPH) with respect to k, but
with different values of m. It can be seen, that for the same number
of k, the number of refinements can be enormously reduced by a
bigger m. Keep in mind that the case where m = 1 corresponds to
a traditional, non-constrained RkNN query.

6.5 Bichromatic Case
In the bichromatic case the interesting variable is the propotion

of Card(Dred) to Card(Dblue). Figure 11(a) shows the number
of refinements dependent on the size of Dred, where the size Dblue

is fixed to 10000. Figure 11(b) shows the opposite case, where
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Figure 10: Impact of parameter m on the number of refine-
ments

Card(Dred) is set to 10000 and Card(Dblue) varies from 1000 to
10000. In both cases MPPH outperforms MMH, using up to 50%
fewer refinements.

7. CONCLUSIONS
In this paper, we formalize a novel server-side reverse k-nearest

neighbor problem for moving clients, the constrained reverse k-
nearest neighbor (CRkNN) query. In a client/server scenario, the
bottleneck for the resources is typically not the query execution
time like I/O or CPU costs at clients or at the server. Rather, the
communication load needs to be minimized because the most pre-
cious resource is the power supply of the clients. Especially in ap-
plications, where miniature GPS-devices with low power resources
are used and the exchange of single devices is very complex, the
goal of query processing is to save even single messages between
clients and the server. While existing methods for the traditional
RkNN problem are not directly designed to optimize the commu-
nication load but rather the query execution time, we propose an
original solution for CRkNN queries in such a client/server appli-
cation. In fact, we propose several new pruning strategies in order
to keep the number of candidates as low as possible using only
approximative information on the location of the clients. Our ex-
perimental evaluation confirms that our novel solution is superior
to existing approaches adapted to the CRkNN problem in terms of
communication costs.

8. REFERENCES
[1] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and

M. Renz. Approximate reverse k-nearest neighbor search in
general metric spaces. In Proc. CIKM, 2006.

[2] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and
M. Renz. Efficient reverse k-nearest neighbor search in
arbitrary metric spaces. In Proc. SIGMOD, 2006.

[3] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and
M. Renz. Efficient reverse k-nearest neighbor estimation. In
Proc. BTW, 2007.

[4] E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle.
Reverse k-nearest neighbor search in dynamic and general
metric databases. In EDBT, pages 886–897, 2009.

[5] T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle.
Incremental reverse nearest neighbor ranking in vector
spaces. In to appear in SSTD, 2009.

40

35

40

MMH

MPPH

30

MPPH

20

25

m
en

ts

15

of
 r
ef
in
em

5

10# 
o

0

5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

size of blue set

(a) Varying Card(Dred)

25

MMH

20 MPPH

15

m
en

ts
10

of
 r
ef
in
em

5

# 
o

0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

size of blue set

(b) Varying Card(Dblue)

Figure 11: MMH vs. MPPH with varying size of the two sets

[6] F. Korn and S. Muthukrishnan. Influenced sets based on
reverse nearest neighbor queries. In Proc. SIGMOD, 2000.

[7] H.-P. Kriegel, P. Kröger, M. Renz, A. Züfle, and
A. Katzdobler. Reverse k-nearest neighbor search based on
aggregate point access methods. In SSDBM, 2009.

[8] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High
dimensional reverse nearest neighbor queries. In Proc.
CIKM, 2003.

[9] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse nearest
neighbor queries for dynamic databases. In Proc. DMKD,
2000.

[10] Y. Tao, D. Papadias, and X. Lian. Reverse kNN search in
arbitrary dimensionality. In Proc. VLDB, 2004.

[11] Y. Tao, M. L. Yiu, and N. Mamoulis. Reverse nearest
neighbor search in metric spaces. IEEE TKDE,
18(9):1239–1252, 2006.

[12] C. Yang and K.-I. Lin. An index structure for efficient
reverse nearest neighbor queries. In Proc. ICDE, 2001.

[13] N. Zacharias and M. I. Zacharias. The twin astrographic
catalog on the hipparcos system. The Astronomical Journal,
118(5):2503–2510, 1999.


