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ABSTRACT
Modern database applications including computer-aided design,
multimedia information systems, medical imaging, molecular
biology, or geographical information systems impose new
requirements on the effective and efficient management of spatial
data. Particular problems arise from the need of high resolutions
for large spatial objects and from the design goal to use general
purpose database management systems in order to guarantee
industrial-strength. In the past two decades, various stand-alone
spatial index structures have been proposed but their integration
into fully-fledged database systems is problematic. Most of these
approaches are based on the decomposition of spatial objects
leading to replicating index structures. In contrast to common
black-and-white decompositions which suffer from the lack of
intermediate solutions, we introduce gray intervals which are
stored in a spatial index. Additionally, we store the exact
information of these gray intervals in a compressed way. These
gray intervals are created by using a cost-based decompositioning
algorithm which takes the access probability and the
decompression cost of them into account. Furthermore, we exploit
statistical information of the database objects to find a cost-optimal
decomposition of the query objects. The experimental evaluation
on the SEQUOIA benchmark test points out that our new concept
outperforms the Relational Interval Tree by more than one order of
magnitude with respect to overall query response time.

Categories and Subject Descriptors
H.2.8 [Database applications]: Scientific databases - Spatial
databases and GIS.

General Terms

Management, Performance.

Keywords

Object Decomposition, Object-Relational Database, Spatial
Data Management.

1. INTRODUCTION
The efficient management of rasterized geographical objects
has become an enabling technology for many novel database
applications. As a common and successful approach, spatial
objects can conservatively be approximated by a set of voxels,
i.e. cells of a grid covering the complete data space. By means
of space filling curves, each voxel (often called pixel in 2D)
can be encoded by a single integer and, thus, an extended
object is represented by a set of enumerated voxels. These
voxels can further be grouped together to intervals, which can
be organized by spatial index structures. 

By expressing spatial region queries as intersections of these spatial
primitives, vital operations for two-dimensional GIS and environ-
mental information systems can be supported. For these applica-
tions suitable index structures, which guarantee efficient spatial
query processing, are indispensable. 
For commercial use, a seamless and capable integration of temporal
and spatial indexing into industrial-strength databases is essential.
Fortunately, a lot of traditional database servers have evolved into
Object-Relational Database Management Systems (ORDBMS).
This means that in addition to the efficient and secure management
of data ordered under the relational model, these systems now also
provide support for data organized under the object model. Object
types and other features, such as binary large objects (BLOBs), ex-
ternal procedures, extensible indexing, user-defined aggregate
functions and query optimization, can be used to build powerful,
reusable server-based components.
An important new requirement for large spatial objects is a high
approximation quality which is primarily influenced by the resolu-
tion of the grid covering the data space. A promising way to cope
with high resolution spatial data may be found somewhere in be-
tween replicating and non-replicating spatial index structures. In the
case of replicating access methods, e.g. the Relational Interval Tree
[15], the number of the simple spatial primitives used to approxi-
mate the objects can become very high, resulting in a storage and
query processing overhead. On the other hand, many of the non-
replicating access methods, e.g. R-trees [8], use simple spatial
primitives such as rectilinear hyper-rectangles for one-value ap-
proximations of extended objects. Although providing the minimal
storage complexity, one-value approximations of spatially extended
objects often are far too coarse. In many GIS applications, objects
feature a very complex geometry. A non-replicating storage of such
data causes region queries to produce too many false hits that have
to be eliminated by subsequent filter steps. For such applications,
the accuracy can be improved by decomposing the objects.

1.1 Related Work
In this section, we will shortly discuss different aspects related
to an effective decompositioning of complex spatial objects for
efficient relational indexing. Often complex objects consist of
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many line segments. An approved way to describe these objects is
to use rasterization.

Complex Spatial Objects. Gaede pointed out that the number of
voxels representing a spatially extended object exponentially de-
pends on the granularity of the grid approximation [6]. Furthermore,
the extensive analysis given in [17] and [5] shows that the asymptot-
ic redundancy of an interval-based decomposition is proportional to
the surface of the approximated object. Thus, in the case of large
high-resolution parts, the number of intervals can become unreason-
ably high.
Relational Spatial Indexing. A wide variety of access methods for
spatially extended objects has been published so far. For a general
overview on spatial index structures, we refer the reader to the sur-
veys of Manolopoulos, Theodoridis and Tsotras [18] or Gaede and
Günther [7]. We use the Relational Interval Tree (RI-tree) in this
paper as starting point and comparison partner because it outper-
forms competing index structures by factors of up to 4.6 (Relational
Quadtree [4]) and 58.3 (Relational R-tree [22]) for spatial intersec-
tion queries [15].

1.2 Outline
The remainder of this paper is organized as follows. In Section 2, we
suggest a pragmatic and effective cost-based decompositioning
method for rasterized objects into gray intervals, which can be
stored within a spatial index. In Section 3, we discuss the processing
of intersection queries on top of an ORDBMS. In Section 4, we
present convincing experimental results based on a geographical 2D
data set corresponding to the SEQUOIA 2000 benchmark [23]. We
resume our work in Section 5 and close with a few final remarks on
future work.

2. MANAGEMENT OF GRAY INTERVALS 
IN AN ORDBMS

Interval sequences, representing high resolution spatially
extended objects, often consist of very short intervals
connected by short gaps. Following [15], adjacent intervals can
be grouped together to longer gray intervals (cf. Figure 1b) in
order to improve storage behavior and query response time.

Definition 1 (gray object interval sequence)
Let id be an object identifier and W = {(l, u) ∈ IN2, l ≤ u} be
the domain of intervals which we call black intervals
throughout this paper. A black interval (l, u) contains all
integers x such that l ≤ x ≤ u. Furthermore, let b1 = (l1, u1), …,
bn = (ln, un) ∈  W be a sequence of intervals with ui + 1 < li+1
for all i ∈  {1, …, n – 1}. Moreover, let m ≤ n and let i0, i1,
i2, …, im ∈ IN such that 0 = i0 < i1 < i2 < …< im = n holds.
Then, we call Ogray = (id, 〈 , , …,

〉) a gray object interval sequence of
cardinality m. If m equals n, we denote Ogray also as a black
object interval sequence Oblack . We call each of the j = 1, ..., m
groups  of Ogray a gray interval Igray . If ij-1+1
equals ij, we denote Igray also as a black interval Iblack.

Intuitively, a gray interval is a covering of one or more disjoint and
nonadjacent black intervals where there is at least a gap of one inte-
ger between adjacent intervals, i.e. it bridges the gap between black
intervals. In the next definition, we introduce a few useful operators
on gray intervals. In order to clarify these definitions, Figure 1c
demonstrates the values of these operators for a sample set of gray
intervals. For any gray interval Igray = 〈(lr ,ur),…, (ls ,us)〉 we define
the following operators: 

bi0 1+ ,...,bi1
〈 〉 bi1 1+ ,...,bi2

〈 〉
bim 1– 1+ ,...,bim
〈 〉

bij 1– 1+ ,...,bij
〈 〉

Operator Description and Definition
L (Igray) length

us – lr + 1

H (Igray) hull

(lr ,us)

G (Igray) maximum gap

{
B (Igray) byte sequence

〈s0, .., sn〉, where si ∈ IN and 0 ≤ si < 28, 

Figure 1. Gray Intervals.
a) voxelized spatial object, b) black and gray intervals,  

c) operators on gray intervals, d) storage of gray intervals 
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We use B (Igray) as an abbreviation for a byte sequence containing
the complete information of the black intervals which have been
grouped together to Igray.
The gray interval sequence Igray = (id, 〈I1, ..., Im〉) is stored in a set
of m tuples in an object-relational table GrayIntervals (id, cnt, da-
ta). The primary key is formed by the object identifier id and a
unique number cnt for each gray interval. The black intervals of
each gray interval Igray= 〈(lr ,ur),…, (ls ,us)〉 are mapped to the com-
plex attribute data which consists of aggregated information, i.e. the
hull H (Igray) and a BLOB containing the complete information of
the black intervals. In order to guarantee efficient query processing,
we apply spatial index structures on H (Igray) and store B (Igray) in a
compressed way within a BLOB.
There are two different problems related to the storage of gray inter-
val sequences: the compression problem and the grouping problem. 

2.1 Compression
The detailed black interval sequence br , …, bs of a gray interval
Igray = 〈br , …, bs〉 can be materialized and stored in a BLOB in
many different ways. A good materialization for Igray = 〈br , …, bs〉
should consider two aspects: 

A good query response behavior is based on the fulfillment of both
aspects. The first rule guarantees that the I/O cost  are rela-
tively small whereas the second rule is responsible for low CPU cost

. The overall time  for the evalua-
tion of a BLOB is composed of both parts. Unfortunately, these two
requirements are not necessarily in accordance with each other. If
we compress B (Igray), we can reduce the demand of secondary stor-
age and consequently . The CPU cost  might rise be-
cause we first have to decompress the data before we can evaluate it.
On the other hand, if we store B (Igray) without compressing it,

might become very high whereas  might be low. 
As we will show in our experiments, it is very important for a good
query response behavior to find a well-balanced way between these
two compression rules. 
There exist many different data compression techniques. ZLIB is an
example for a dictionary based packer [16], HSC is an implementa-
tion of an arithmetic coder [26]. For a detailed survey on lossless
and lossy compression techniques, we refer the reader to [21] and
[25]. 

2.2 Grouping into Gray Intervals
High resolution spatial objects may consist of several hundreds of
thousands of black intervals (cf. Figure 1a). For each object, there
exist a lot of different possibilities to decompose it into approxima-
tions by grouping numerous black intervals together. The question
at issue is, which grouping is most suitable for efficient query pro-
cessing. A good grouping should take the following requirements
into consideration:

The first rule guarantees that the number of index entries is small, as
the hulls of the gray intervals are stored in appropriate index struc-

tures, e.g. the RI-tree (cf. Figure 1d). The second rule guarantees
that many unnecessary candidate tests can be omitted, as the number
and size of gaps included in the gray intervals is small. Finally, the
third rule guarantees that a candidate test can be carried out effi-
ciently. A good query response behavior results from an optimum
trade-off between these grouping rules.
Our grouping algorithm takes the expected access cost of the gray
intervals into account. The expected cost cost(Igray) related to a gray
interval Igray depend on the average access probability of Igray and
on the cost related to the evaluation of the exact byte sequence
B (Igray).

2.2.1 Access Probability
Our grouping algorithm takes the expected access cost of the gray
intervals into account. The expected cost cost(Igray) related to a gray
interval Igray depend on the average access probability of Igray and
on the cost related to the evaluation of the exact byte sequence
B(Igray). 
First, the access probability is computed by assuming that we know
the average query distribution. Then, the evaluation cost are intro-
duced which heavily depend on the used data compressor. Finally,
our cost-based grouping algorithm GroupObj is introduced which is
used for storing complex objects in an ORDBMS.
Assumed Query Distribution. For many application areas, e.g. in
the field of GIS, the average query distribution can be predicted
very well. It is obvious that queries inquiring rather dense areas, e.g.
big cities like New York, occur much more frequently than for less
dense areas. Furthermore, often small selective queries are posted. 
For determining a suitable query distribution function, we first
transform the potential query intervals into the upper triangle
D*:=  of the two-dimensional hyper cuboid.
An interval Q = [x, y] therefore corresponds to the point  with

. Examples are visualized in Figure 2. To each of these two-
dimensional points Q=(x,y) we assign a numerical value P(Q)
where  holds. As the probability is equal to one that a
query is somewhere located in the upper triangle D*, the following
equation has to hold:

Figure 2 shows two different query distribution functions. For in-
stance, a potential query Q2 is very unlikely according to the depict-
ed query distribution of Figure 2a, and impossible according to the
query distribution of Figure 2b. On the other hand, query Q1 is very
likely in both cases. 

• As little as possible secondary storage should be
occupied.

• As little as possible time should be needed for the
(de)compression of the BLOB.

• The number of gray intervals should be small.

• The dead area of all gray intervals should be small.

• The gray intervals should allow an efficient
evaluation of the contained black intervals.
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Figure 2. Query distribution functions Pi(x,y).
a) Complex query distribution P1(x,y),   

b) Simple query distribution P2(x,y) 
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Let us note, that we used the simple query distribution function of
Figure 2b throughout our experiments. In all considered application
areas the common query objects only comprise a very small portion
of the data space D*. Therefore, we introduce the parameter k*,
which restricts the extension of the possible query objects. For the
computation of the access probability we only consider query ob-
jects whose extensions do not exceed  k* D* .

Access Probability. The access probability P(Igray) related to a
gray interval Igray denotes the probability that an arbitrary query
interval has an intersection with the hull H(Igray). All possible query
intervals that intersect I0 are visualized by the shaded area A(I0) in
Figure 3a. The area displays all intervals whose lower bounds are
smaller or equal to b and whose upper bounds are larger or equal to
a. These query intervals are exactly the ones that have a non empty
intersection with I0. The probability that an interval I0 = [a0, b0] is
intersected by an arbitrary query interval is: 

Evaluation Cost. Furthermore, the expected query cost depend on
the cost related to the evaluation of the byte sequence stored in the
BLOB of an intersected gray interval Igray. The evaluation of the
BLOB content requires to load the BLOB from disk and decom-
press the data. Consequently, the evaluation cost depends on both
the length L(Igray) of the uncompressed BLOB and the length
Lcomp(Igray) << L(Igray) of the compressed data. Additional, the
evaluation cost costeval depend on a constant  related to the
retrieval of the BLOB from secondary storage, a constant 
related to the decompression of the BLOB, and a constant  re-
lated to the intersection test. The cost  and  heavily
depend on how we organize B(Igray) within our BLOB, i.e. on the
used compression algorithm. A highly effective but not very time
efficient packer, e.g. an arithmetic packer, would cause low loading
cost but high decompression cost. In contrast, using no compression
technique, leads to very high loading cost but no decompression
cost. On the other hand, ZLIB is an effective and very efficient com-
pression algorithm which yields a good trade-off between the load-
ing and decompression cost. Finally,  solely depend on the

used system. The overall evaluation cost are defined by the follow-
ing formula:

Grouping Algorithm. Orenstein [Ore 89] introduced the size- and
error bound decomposition approach. Our first grouping rule “the
number of gray intervals should be small” can be met by applying
the size-bound approach, while applying the error-bound approach
results in the second rule “the dead area of all gray intervals should
be small”. For fulfilling both rules, we introduce the following top-
down grouping algorithm for gray intervals, called GroupObj (cf.
Figure 4). GroupObj is a recursive algorithm which starts with an
approximation Ogray = (id, 〈 Igray 〉), i.e. we approximate the object
by one gray interval. In each step of our algorithm, we look for the
maximum gap g within the actual gray interval. We carry out the
split along this gap, if the average query cost caused by the decom-
posed intervals is smaller than the cost caused by our input interval
Igray. The expected cost related to a gray interval Igray can be com-
puted as described in the foregoing paragraph. A gray interval
which is reported by the GroupObj algorithm is stored in the data-
base and no longer taken into account in the next recursion step.
Data compressors which have a high compression rate and a fast
decompression method, result in an early stop of the GroupObj al-
gorithm generating a small number of gray intervals. Our experi-
mental evaluations suggest that this grouping algorithm yields re-
sults which are very close to the optimal ones for different data
compression techniques and data space resolutions.

3. QUERY PROCESSING

In this section, we will discuss how we can efficiently carry out
intersection queries on top of the SQL-engine. Our approach uses
the RI-tree for efficiently detecting intersecting interval hulls. In
contrast to the last section, we do not assume any arbitrary data dis-
tribution but use statistical information reflecting the distribution of
the gray interval hulls managed by the RI-tree. 
The algorithm for decomposing a query object is basically the same
as the one presented in Figure 4. The main difference is that the
assumed intersection probability P, is replaced by a more accurate
selectivity estimation σ reflecting the actual data distribution.
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ALGORITHM GroupObj (Igray, P)

BEGIN
interval_pair := split_at_maximum_gap(Igray);

Ileft := interval_pair.left;

Iright := interval_pair.right;

costgray  := P(Igray) • costeval(Igray);

costdec := P(Ileft) • costeval(Ileft)+ 

P(Iright) • costeval(Iright);

IF costgray > costdec THEN
GroupObj (Ileft, P);

GroupObj (Iright, P);

ELSE
report (Igray); 

END IF;
END.

Figure 4. Grouping algorithm GroupObj.



In [13] it was shown how we can effectively and efficiently estimate
the selectivity of interval intersection queries based on the RI-tree.
Both index structure and the corresponding cost-model can be inte-
grated into modern object relational database systems by using their
extensible indexing and optimization frameworks (cf. Figure 5). By
exploiting the statistical information provided by the cost model, we
can find an optimum decomposition for the query object. The tradi-
tional error-and size bound decomposition approaches [20] decom-
pose a large query object into smaller query objects optimizing the
trade off between accuracy and redundancy. In contrast, the idea of
taking the actual data distribution into account in order to decom-
pose the query object, leads to a new selectivity-bound decomposi-
tion approach, which tries to minimize the overall number of logical
reads. 

3.1 Decomposition of the Query Object
In this section, we shortly sketch the decompositioning of the query
object into suitable gray object interval sequences. Thereby two dif-
ferent cases have to be distinguished. First, the query object is al-
ready stored in a decomposed way in the database. Second, it has to
be decomposed in real-time from scratch.
Query object is a database object. In this case, the query object is
already stored in a decomposed way within the database according
to our GroupObj algorithm which assumes a potential query distri-
bution P (cf. Figure 2). Usually areas which are often inquired also
contain a lot more objects than seldomly inquired areas. For in-
stance, New York contains a lot of geographical objects and is much
more often inquired than Alaska. As we assume that the characteris-
tic P coincides with the data distribution σ of the actual databases
objects, we use the already decomposed objects as starting point for
a further statistic-driven generation of the gray intervals instead of
starting from scratch. In order to carry-out a fine-tuning of our gray
query-sequence we test whether two already decomposed gray in-
tervals should be merged to one gray interval. This is beneficial if
σ < P holds for the query region. On the other hand, if σ > P holds,
we further decompose the gray query interval according to the algo-
rithm presented in Figure 4. Thereby, we do not assume a potential
query distribution P, but replace P by the actual selectivity estima-
tion σ w.r.t. the corresponding gray interval. We carry out the selec-
tivity estimation for Igray and for the two potentially new gray inter-
vals Ileft and Iright which result from a split at the maximum gap of
Igray. Based on the computed cost, we decide whether we actually
carry out the split. 
Query object is no database object. Second, if the query object has
to be decomposed from scratch, we carry out a decompositioning
starting with one gray interval conservatively approximating the
query object. Similar to the approach of the last paragraph, we de-
cide based on an accurate selectivity estimation whether to further

decompose the query object. This approach is quite feasible if the
query object is already available as rasterized object. If not, which is
the case for many query objects used in GIS, they are often very
simple and can be described by a few parameters, e.g. a rectilinear
box can be described by two points. Again, we approximate the que-
ry object by one gray interval and apply the already sketched de-
compositioning approach for query objects. The few parameters
which are necessary to describe the query object can be stored in the
BLOB of each gray interval instead of the exact black interval se-
quence. These few values contain the whole information in the most
compressed way. In the blobintersection routines of Figure 6,
B(Igray) is created on demand from this simple and compact geomet-
ric information. As the geometric information is already in the most
compressed form we do not need a special data compressor, but only
a decompression algorithm specific to the geometry of the query
object. 
In the following, we will show how we can carry out an interval
intersection query on top of an ORDBMS.

3.2 Intersection Query
In this section, we discuss the query processing of a boolean and a
ranked intersection predicate on top of the SQL-engine. The pre-
sented approaches can easily be embedded by means of extensible
indexing interfaces (cf. Figure 5) into modern ORDBMS. Most OR-
DBMSs, including Oracle [19] [24], IBM DB2 [10] [2] or Informix
IDS/UDO [11] [1], provide these extensibility interfaces in order to
enable database developers to seamlessly integrate custom object
types and predicates within the declarative DDL and DML.
As we represent spatial objects by gray object interval sequences,
we first clarify when two of these sequences intersect. 

Definition 1 (object intersection)
Let Wblack = {(l, u) ∈ IN2, l ≤ u} be the domain of black intervals and
let b1 = (l1, u1) and b2 = (l2, u2) be two black intervals. Further, let
I1= 〈 , …, 〉 and I2 = 〈 , …, 〉 be two gray intervals,
and let O1 = (id1, 〈 , , …, 〉) and O2 = (id2, 〈 , , …, 〉)
be two gray object interval sequences. Then, the notions intersect,
Xintersect and interlace are defined in the following way:

1a. Two black intervals b1 and b2 intersect if l1 ≤ u2 and l2 ≤ u1.

1b. Xintersect(b1,b2) = max { 0, min{u1, u2} - max{l1, l2} + 1 }.

2a. Two gray intervals I1 and I2 intersect if for any i ∈ {1, …, n1},
j ∈ {1, …, n2}, the black intervals  and  intersect.

2b. Xintersect(I1, I2) = .

2c. Two gray intervals I1 and I2 interlace, if their hulls H(I1) and
H(I2) intersect.

3a. Two objects O1 and O2 intersect, if for any i ∈ {1, …, m1}, j ∈
{1, …, m2}, the gray intervals  and  intersect. 

3b. Xintersect(O1, O2) = .

3c. Two objects O1 and O2 interlace, if for any i ∈ {1, …, m1}, j ∈
{1, …, m2}, two gray intervals  and  interlace.

3.2.1 The intersect SQL Statements 
In [14] many index structures for interval intersection queries were
surveyed, which can be integrated into the extensible indexing
framework of modern ORDBMSs. These index structures also sup-
port the evaluation of the interlace predicate on gray intervals. As
we defined gray object interval sequences as a conservative approx-
imation of black object interval sequences, we can use the hulls of

Figure 5. Analogous architectures for the object-relational 
embedding of user-defined index structures and cost models 

into extensible indexing and optimization frameworks.

Extensible Indexing Framework
Object-relational interface for index 
maintenance and querying functions.

User-defined Index Structure

Relational Implementation
Mapping to built-in indexes (B+-trees); 
SQL-based query processing.

Extensible Optimization Framework
Object-relational interface for selectivity 
estimation and cost prediction functions.

User-defined Cost Model

Relational Implementation
Mapping to built-in statistics facilities; 
SQL-based evaluation of cost model.
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the gray intervals in a first conservative filter step. Thereby, we can
take advantage of the same access methods as used for the detection
of intersecting black interval pairs. As shown in Section 2, the gray
object interval sequences can be mapped to an object-relational
schema GrayIntervals. Following this approach, we can also clearly
express the intersect predicates on top of the SQL engine (cf.
Figure 6).
In the case of the intersect-predicate (cf. Figure 6a), the nesting
function table groups references of interlacing gray query and data-
base interval pairs together. The NF2-operator table was realized by
a user-defined aggregate function as provided in the SQL:1999 stan-
dard. In order to find out which database objects are intersected by
a specific query object, the interlacing gray intervals have to be test-
ed for intersection. This test is carried out by a stored procedure
blobintersection. If one intersecting gray database and query inter-
val pair is found, no gray interlacing interval pairs belonging to the
same database object have to be examined. This skipping principle
is realized by means of the exists-clause within the SQL-statement.
In the case of the Xintersect-predicate (cf. Figure 6b), the intersec-
tion volume has to be determined for each interlacing interval pair.
No BLOB tests can be skipped. The results are summed up in the
user-defined aggregate function Xblobintersection. 
In both blobintersection routines, we first decompress the data and
then test the two byte sequences in the interlacing area for intersec-
tion. As already mentioned in Section 2.1 it is important that the
compressed BLOB size is small in order to reduce the I/O cost. Ob-
viously, the small I/O cost should not be at the expense of the CPU
cost. Therefore, it is important that we have a fast decompressing
algorithm in order to evaluate the BLOBs quickly. 

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our approach. We
evaluate two different grouping algorithms GRP in combination
with three data compression techniques DC. We used the following
data compressors DC:
NOOPT: The BLOB is unpacked.

ZLIB: The BLOB is packed according to the ZLIB approach [3].

HSC: The BLOB is packed according to the arithmetic approach of [9].

Furthermore, we grouped the voxels into gray intervals depending
on two grouping algorithms, called Maxgap and GroupObj.
MaxGap. This grouping algorithm tries to minimize the number of
gray intervals while not allowing that a maximum gap G(Igray) of
any gray interval Igray exceeds a given MAXGAP parameter. By
varying this MAXGAP parameter, we can find the optimum trade-
off between the first two opposing grouping rules of Section 2.2,
namely a small number of gray intervals and a small number of
white cells included in each of these intervals.
One of the main goals of this experimental evaluation is to show that
our new GroupObj algorithm analytically finds this empirically de-
rived optimum of the Maxgap-approach. 
GroupObj. We grouped the intervals according to our cost-based
grouping algorithm GroupObj (cf. Section 2.2), where we used the
query distribution function from Figure 2b with k* = 1/100,000. 

Note, that the grouping based on MaxGap(DC) does not depend on
DC, whereas GroupObj(DC) takes the actual data compressor DC
into account for performing the grouping.
In order to support the first filter step of GRP(DC), we used the RI-
tree. We have implemented the RI-tree [14, 15] on top of the
Oracle9i Server using PL/SQL for most of the computational main
memory based programming. The evaluation of the blobintersec-
tion routines was delegated to a DLL written in C. All experiments
were performed on a Pentium 4/2600 machine with IDE hard drives.
The database block cache was set to 500 disk blocks with a block
size of 8 KB and was used exclusively by one active session.
Test Data Set. The tests are based on a subset of 2D GIS data
representing woodlands, rivers, and transportation networks de-
rived from the SEQUOIA 2000 benchmark [23], for simplicity
called SEQUOIA throughout this section. It contains about 3500
rasterized polygons approximated by 50•106 voxels. The SEQUOIA
data space is of size 234. The Z-curve was used as a space filling
curve to enumerate the voxels. Figure 7 depicts the interval and gap
histograms for our SEQUOIA test data set. The figure shows that the
3500 geographical objects consist of many short black intervals and
short gaps and only a few longer ones. 
Storage Requirements. Figure 8 shows the different storage re-
quirements for the BLOB with respect to the different data compres-
sion techniques. The figure shows clearly that the HSC-approach
yields the best compression ratios for all MAXGAP parameters. For
medium to high MAXGAP parameters the ZLIB-approach also
yields compression ratios of almost two orders of magnitude. If we
do not apply any compression, the required secondary storage for
high MAXGAP values it is very high leading to high I/O cost during
the query process. 
Update Operations. In this section, we will investigate the time
needed for updating complex spatial objects in the database. Figure
9a shows that inserting all objects into the database takes very long
if we store the numerous black intervals in the RI-tree (i) or if we

SELECT candidates.id FROM

( SELECT db.id AS id, table (pair(db.rowid, q.rowid)) AS ctable

FROM GrayIntervals db, :GrayQueryIntervals q

WHERE intersects (hull(db.data), hull(q.data))

GROUP BY db.id

) candidates 

WHERE EXISTS

( SELECT 1 

FROM GrayIntervals db, :GrayQueryIntervals q, candidates.ctable ctable

WHERE db.rowid = ctable.dbrowid AND q.rowid = ctable.qrowid AND

blobintersection (db.data, q.data) 

)

SELECT db.id, Xblobintersection(db.data, q.data) 

FROM GrayIntervals db, :GrayQueryIntervals q

WHERE intersects (hull(db.data), hull(q.data)) 

group by db.id

Figure 6. SQL statements for spatial object intersection, 
based on gray object interval sequences.

a) intersect-predicate, b) Xintersect-predicate

a)

b)

Figure 7. Histograms for intervals and gaps.
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store the huge one value approximations of the unpacked object in
the RI-tree (ii). On the other hand, using our GroupObj(ZLIB) ap-
proach (iii) accelerates the insert operations by one to two orders of
magnitude. The time spent for grouping and packing pays off, if we
take into consideration that we save a lot of time for storing grouped
and packed intervals in the database. Obviously, the delete opera-
tions are also carried out much faster for our GroupObj(ZLIB) ap-
proach as we have to delete much less disk blocks (cf. Figure 9b). 

Query Processing. In this section, we want to turn our attention to
the query processing by examining different kinds of collision que-
ries. The figures presented in this paragraph depict the average re-
sult obtained from collision queries where we have taken the 100
largest parts from our SEQUOIA data set as query objects.

In Figure 10 it is shown in which way the overall response time for
boolean intersection queries based on the RI-tree depends on the

MAXGAP parameter. If we use small MAXGAP parameters, we
need a lot of time for the first filter step whereas the blobintersection
test is relatively cheap. Therefore, the different MaxGap(DC) ap-
proaches do not differ very much for small MAXGAP values. For
high MAXGAP values we can see that the MaxGap(ZLIB) approach
performs best with respect to the overall runtime. The Max-
Gap(ZLIB) approach is rather insensitive against too large MAX-
GAP parameters. Even for values where the first filter step is almost
irrelevant, e.g. MAXGAP = 108, the MaxGap(ZLIB) approach still
performs well. This is due to the fact that for large MAXGAP values
the MaxGap(ZLIB) approach needs much less physical reads, about
1% of the MaxGap(NOOPT) approach. As a consequence, the que-
ry response time of the MaxGap(ZLIB) approach is approximately
1/67 of the query response time of the MaxGap(NOOPT) approach.
In Figure 11 it is shown in what way the different data space resolu-
tions influence the query response time. Generally, the higher the
resolution, the slower is the query processing. Our MaxGap(ZLIB)
is especially suitable for high resolutions, but also accelerates medi-
um or low resolution spatial data.
To sum up, the MaxGap(ZLIB) approach improves the response
time of collision queries for varying index structures and resolutions
by more than one order of magnitude. 
We will now show that the GroupObj algorithm analytically finds
this empirically derived optimum of the Maxgap-approach, i.e. our
GroupObj approach yields almost optimum query response times
for varying compression techniques and data space resolutions. 
Table 1 depicts the overall query response time of our
GroupObj(DC) approach compared to the RI-tree for boolean and
ranking intersection queries.  

We can see that for boolean intersection queries this grouping deliv-
ers results quite close to the minimum response times depicted in
Figure 10. Furthermore, we notice that the GroupObj(ZLIB) ap-
proach outperforms the RI-tree [15] by a factor of 44 for boolean
intersection queries. For ranking intersection queries the RI-tree
[14] is not applicable due to the enormous amount of generated join
partners. On the other hand, the GroupObj(ZLIB) approach yields
interactive response times even for such queries. 
In Table 2 it is shown that the query response times resulting from
the GroupObj algorithm for varying resolutions, are almost identi-
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Figure 9. Update operations.
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Figure 10. MaxGap(DC) for boolean intersection queries.
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queries using different resolutions. 
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NOOPT ZLIB HSC RI-tree [15]*[14]**

number of intervals 7,285 5,206 8,934 1,188,356

Overall Runtime* [s] 0.68 0.29 0.91 12.74

Overall Runtime** [s] 1.20 0.52 1.53  (not applicable)

Table 1. GroupObj (DC) evaluated for boolean* and ranking** 
intersection queries.
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cal to the ones resulting from a grouping based on an optimum
MAXGAP parameter (cf. Figure 11). 

To sum up, the GroupObj algorithm produces object decomposi-
tions which yield almost optimum query response times for varying
compression techniques and data space resolutions.
Window Queries. In a last experiment, we carried out different
window queries. Figure 12 depicts the average runtime for window
queries, where we moved each window to 10 different locations. As
shown in Figure 12, our statistic-based decomposition approach of
the query object can improve the query response behavior by more
than one order of magnitude, compared to the granularity-bound
decompositioning approach where we decompose the query objects
into black intervals. This speed up is mainly due to the reduced de-
composition time resulting from the fact that we do not decompose
the gray intervals completely into black intervals, but take the actual
data distribution into account to guide the decompositioning pro-
cess. If our selectivity estimation indicates low selectivity for the
actual gray interval, we do not further decompose the gray interval
but use it directly as query interval, where the actual window coor-
dinates are stored in the corresponding BLOB. The experiments
show that the query response time does not suffer from the fact that
we did not decompose the windows with the maximum possible
accuracy. The time we need for the additional refinement step to
filter out false hits is compensated by the much smaller number of
query intervals resulting from a coarser decomposition of the query
window. To sum up, our statistic-based decomposition approach is
especially useful for commonly used window queries. 

5. CONCLUSION
In this paper, we introduced a new approach for accelerating spatial
query processing for complex geographical objects. We used gray
intervals and showed how we can efficiently store them by means of
data compression techniques within an ORDBMS. Furthermore, we
introduced a cost-based decompositioning algorithm for complex
rasterized objects, called GroupObj. GroupObj takes the decom-

pression cost of the gray intervals and their access probabilities into
account. We showed how to use the gray intervals generated by
GroupObj for efficient spatial query processing on top of an OR-
DBMS. The resulting spatial access method is applicable for differ-
ent data space resolutions and compression algorithms. We demon-
strated in a broad experimental evaluation that our new approach
accelerates spatial query processing on complex rasterized geo-
graphical objects by more than one order of magnitude.
In our future work, we will show that our new approach can also be
applied to accelerate other index structures, e.g. the Relational R-
tree [22] or the Relational Quadtree [4]. 
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