In Proc. 12th Int. Conf. on Database Systems for Advanced Applications (DASFAA '07), Bangkok, Thailand, 2007

Detection and Visualization of Subspace Cluster
Hierarchies

Elke Achtert, Christian Bohm, Hans-Peter Kriegel, Peer Kroger, Ina Miiller-Gorman,
Arthur Zimek

Institute for Informatics, Ludwig-Maximilians-Universitit Miinchen, Germany
{achtert, boehm, kriegel, kroegerp,muellerg, zimek}@dbs Lificlmu.de
WWW home page: http://www.dbs.ifi.lmu.de

Abstract. Subspace clustering (also called projected clustering) addresses the
problem that different sets of attributes may be relevant for different clusters in
high dimensional feature spaces. In this paper, we propose the algorithm DiSH
(Detecting Subspace cluster Hierarchies) that improves in the following points
over existing approaches: First, DiSH can detect clusters in subspaces of sig-
nificantly different dimensionality. Second, DiSH uncovers complex hierarchies
of nested subspace clusters, i.e. clusters in lower-dimensional subspaces that are
embedded within higher-dimensional subspace clusters. These hierarchies do not
only consist of single inclusions, but may also exhibit multiple inclusions and
thus, can only be modeled using graphs rather than trees. Third, DiSH is able to
detect clusters of different size, shape, and density. Furthermore, we propose to
visualize the complex hierarchies by means of an appropriate visualization model,
the so-called subspace clustering graph, such that the relationships between the
subspace clusters can be explored at a glance. Several comparative experiments
show the performance and the effectivity of DiSH.

1 Introduction

The well-known curse of dimensionality usually limits the applicability of traditional
clustering algorithms to high-dimensional feature spaces because different sets of fea-
tures are relevant for different (subspace) clusters. To detect such lower-dimensional
subspace clusters, the task of subspace clustering (or projected clustering) has been de-
fined recently. Existing subspace clustering algorithms usually either allow overlapping
clusters (points may be clustered differently in varying subspaces) or non-overlapping
clusters, i.e. points are assigned uniquely to one cluster or noise. Algorithms that al-
low overlap usually produce a vast amount of clusters which is hard to interpret. Thus,
we focus on algorithms that generate non-overlapping clusters. Those algorithms in
general suffer from two common limitations. First, they usually have problems with
subspace clusters of significantly different dimensionality. Second, they often fail to
discover clusters of different shape and densities, or they assume that the tendencies of
the subspace clusters are already detectable in the entire feature space.

A third limitation derives from the fact that subspace clusters may be hierarchi-
cally nested, e.g. a subspace cluster of low dimensionality is embedded within several
larger subspace clusters of higher dimensionality. None of the existing algorithms is

subspace cluster hierarchy

2D level 2
cluster y

\ IDcluster D D D 1
s \ [‘
1D cluster C cluster C cluster D eve

Fig. 1. Hierarchies of subspace clusters with multiple inheritance.

able to detect such important hierarchical relationships among the subspace clusters.
An example of such a hierarchy is depicted in Figure 1 (left). Two one-dimensional
(1D) cluster (C and D) are embedded within one two-dimensional (2D) cluster (B).
In addition, cluster C' is embedded within both 2D clusters A and B. Detecting such
relationships of subspace clusters is obviously a hierarchical problem. The resulting hi-
erarchy is different from the result of a conventional hierarchical clustering algorithm
(e.g. adendrogram). In a dendrogram, each object is placed in a singleton cluster at the
leaf level, whereas the root node represents the cluster consisting of the entire database.
Any inner node n represents the cluster consisting of the points located in the subtree
of n. Dendrograms are limited to single inclusion, i.e. a lower dimensional cluster can
only be the child cluster of one higher dimensional cluster. However, hierarchies of sub-
space clusters may exhibit multiple inclusions, e.g. cluster C' in Figure 1 is a child of
cluster A and B. The concept of multiple inclusions is similar to that of “multiple inher-
itance” in software engineering. To visualize such more complex relationships among
subspace clusters, we need graph representations rather than tree representations. Such a
graph representation which we will call subspace clustering graph (cf. Figure 1(right))
consists of nodes at different levels. These levels represent the dimensionality of the
subspace in which the cluster is found (e.g. the level of cluster A in the graph of Figure
1 is 2). Each object p is assigned to a unique node in that hierarchy representing the
lowest dimensional subspace cluster in which p is placed. In addition, an edge between
a k-dimensional cluster C' and an [-dimensional cluster B, where [> k, (e.g. cf. Figure
1) indicates that all points of cluster C' are also members of cluster B.

In this paper, we propose the algorithm DiSH (Detecting Subspace cluster Hierar-
chies) that improves in the following aspects over the state-of-the-art subspace cluster-
ing approaches: First, DiSH uncovers complex hierarchies of nested subspace clusters
including multiple inclusions. Second, DiSH can detect clusters in subspaces of signif-
icantly different dimensionality. Third, DiSH is able to detect clusters of different size,
shape, and density. Furthermore, we propose the subspace clustering graph to visual-
ize the resulting complex hierarchies by means of an appropriate visualization model.
Using this visualization method the relationships between the subspace clusters can be
explored at a glance.

The rest of the paper is organized as follows. We discuss related work in Section 2.
Section 3 describes our new algorithm DiSH. The concepts of the clustering graph visu-
alization are outlined in Section 4. An experimental evaluation is presented in Section
5. Section 6 concludes the paper.

2 Related Work

Many subspace clustering algorithms, e.g. [1-4], aim at finding all clusters in all sub-
spaces of the feature space producing overlapping clusters, i.e. one point may belong to
different clusters in different subspaces. In general, these methods also produce some
sort of subspace hierarchy. However, those hierarchies are different from the hierarchy
addressed in this paper because points are allowed to be placed in clusters such that
there are no relationships between the subspaces of these clusters. Thus, the resulting
“hierarchy” is much more complex and usually hard to interpret.

Other subspace clustering algorithms, e.g. [5-7], focus on finding non-overlapping
subspace clusters. These methods assign each point to a unique subspace cluster or
noise. Usually, those methods do not produce any information on the hierarchical rela-
tionships among the detected subspaces. The only approach to find some special cases
of subspace cluster hierarchies introduced so far is HiSC [8]. However, HiSC is limited
by the following severe drawbacks. First, HiSC usually assumes that if a point p be-
longs to a projected cluster C', then C' must be visible in the local neighborhood of p in
the entire feature space. Obviously, this is a quite unrealistic assumption. If p belongs
to a projected cluster and the local neighborhood of p in the entire feature space does
not exhibit this projection, HiSC will not assign p to its correct cluster. Second, the
hierarchy detected by HiSC is limited to single inclusion which can be visualized by a
tree (such as a dendrogram). As discussed above, hierarchies of subspace clusters may
also exhibit multiple inclusions. To visualize such more complex relationships among
subspace clusters, we need graph representations rather than tree representations. Third,
HiSC uses a Single-Linkage approach for clustering and, thus, is limited to clusters of
particular shapes. DiSH applies a density-based approach similar to OPTICS [9] to the
subspace clustering problem that avoids Single-Link effects and is able to find clusters
of different size, shape, and densities.

We do not focus on finding clusters of correlated objects that appear as arbitrarily
oriented hyperplanes rather than axis-parallel projections (cf. e.g. [10-13]) because ob-
viously, these approaches are orthogonal to the subspace clustering problem and usually
demand more cost-intensive solutions.

3 Hierarchical Subspace Clustering

Let D C R? be a data set of n feature vectors and A be the set of attributes of D. For
any subspace S C A, mg(0) denotes the projection of o € D into S. Furthermore, we
assume that DIST is a distance function applicable to any S C A, denoted by DIST®, e.g.

when using the Euclidean distance, DIST® (p, ¢) = \/Za,;es (T{a} (P) — T{as} (q))z.

Our key idea is to define the so-called subspace distance that assigns small values
if two points are in a common low-dimensional subspace cluster and high values if two
points are in a common high-dimensional subspace cluster or are not in a subspace
cluster at all. Subspace clusters with small subspace distances are embedded within
clusters with higher subspace distances.

For each point o € D we first compute the subspace dimensionality representing the
dimensionality of that subspace cluster in which o fits best. Thereby, we assume that

[}
1
1
1
1
1
1
: N;"‘"” (0)
I
1
1
1
|
1

7 (0 > "
‘v}()t Y’/(n) N} (0)

”(x;(o) X

Fig. 2. Subspace selection for a point o (see text for details).

the “best” projection for clustering o is the subspace with the highest dimensionality
(providing the most information), or in case of tie-situations, which provides the larger
subspace cluster (containing more points in the neighborhood of o w.r.t. the subspace).
The subspace dimensionality of a point o is determined by searching for dimensions of
low variance (high density) in the neighborhood of o. An attribute-wise e-range query
(Ng{ai}(o) = {z|pisti®} (0, z) < ¢} for each a; € A) yields a simple way to assign
a predicate to an attribute for a certain object o. If only few points are found within the
e-neighborhood in attribute a; the variance around o in attribute a; will be relatively
high. For this attribute we will assign 0 as predicate for the query point o, indicating
that this attribute does not participate in a subspace that is relevant to any cluster to
which o could possibly belong. Otherwise, if Ng{a*} (o) contains at least y objects, the
attribute a; will be a candidate for a subspace containing a cluster including object o.

From the variance analysis the candidate attributes that might span the best subspace
S, for object o are determined. These attributes need to be combined in a suitable way.
This combination problem is equivalent to frequent itemset mining due to the mono-
tonicity S C T = |NZ(0)| < |[N5(0)|. Thus, we can use any frequent itemset mining
algorithm (e.g. the Apriori-algorithm [14]) in order to determine the best subspace of
an object o.

Definition 1 (subspace preference vector/dimensionality of a point). Ler S, be the
best subspace determined for object o € D. The subspace preference vector w(o) =
(w1, ..., wq)T of o is defined by

- 1 lf (17;650
wi((’){o i a ¢S,

The subspace dimensionality \(0) of o € D is the number of zero-values in the subspace
preference vector w(o).

In the example in Figure 2 the e-neighborhoods of the 3D point p in attributes x
and y are shown by gray-shaded areas. If we assume that both of these areas contain at

least i points whereas the e-neighborhood of 0 along z (not shown) contains less than p
points, o may participate in a subspace cluster that is projected into the subspace {x, y}.
If |N5{$y} (0)| > u, then w(o) = (1,1,0)T and A(0) = 1. Otherwise, none of the 1D
subspace clusters containing o can be merged to form a higher dimensional subspace
cluster, i.e. we assign o to the subspace containing more points.

Obviously, using any frequent itemset mining algorithm is rather inefficient for
high-dimensional data sets, especially when the dimensionality of the subspace clus-
ters are also high-dimensional. Thus, we further propose a heuristics for determining
the best subspace S, for an object o which scales linearly in the number of dimensions.
We simply use a best-first search:

Determine the candidate attributes of o: C'(0) = {a; |a; € AN |N%(0)| > p}.
Add a; = arg mca(x){\N;‘(o)\} to S, and delete a; from C(o).
acC(o

1.

2.

3. Set current intersection I := N2% (o).

4. Determine attribute a; = arg mca(x){|l NNZ(o)|}.
acC(o

(@) If |[INNZ%(0)| > p then:
Add a; to S,, delete a; from C(o), and set [:= I NN (o).
(b) Else: stop.
5. If C # () continue with Step 4.

Using these heuristics to compute S, for o € D, we can determine w(o) as in
Definition 1. Overall, we assign a d-dimensional preference vector to each point. The
attributes having predicate “1” span the subspace where to find a cluster containing the
point, whereas the remaining attributes are irrelevant.

We define a similarity measure between points which assigns a distance of 1, if
these two points share a common 1D subspace cluster. If they share a common 2D sub-
space cluster, they have a distance of 2, etc. This similarity measure is integrated into
the algorithm OPTICS [9]. Sharing a common k-dimensional subspace cluster may
mean different things: Both points may be associated to the same k-dimensional sub-
space cluster, or both points may be associated to different (k-1)-dimensional subspace
clusters that intersect or are parallel (but not skew). Intuitively, the distance measure be-
tween two points corresponds to the dimensionality of the data space which is spanned
by the “combined” subspace preference vector of the two points. We first give a def-
inition of the subspace dimensionality of a pair of points A(p,q) which follows the
intuition of the spanned subspace and then define our subspace distance measure.

Definition 2 (subspace dimensionality of a point pair). 7he subspace preference vec-
tor w(p, q) of a pair of points p,q € D representing the combined subspace of p and
q is computed by an attribute-wise logical AND-conjunction of w(p) and w(q), i.e.
wi(p,q) = w;i(p) A w;i(q) (1 < i < d). The subspace dimensionality between two
points p,q € D, denoted by \(p, q), is the number of zero-values in w(p, q).

We cannot directly use the subspace dimensionality A(p, ¢) as the subspace distance
because points from parallel subspace clusters will have the same subspace preference
vector. Thus, we check whether the preference vectors of two points p and ¢ are equal
or one preference vector is “included” in the other one. This can be done by computing

the subspace preference vector w(p, ¢) and checking whether w(p, ¢) is equal to w(p)
or w(q). If so, we determine the distance between the points in the subspace spanned by
w(p, q). If this distance exceeds 2-¢, the points belong to different, parallel clusters. The
threshold e, playing already a key role in the definition of the subspace dimensionality
(cf. Definition 1), controls the degree of jitter of the subspace clusters.

Since A(p, q¢) € IN, we usually have many tie situations when merging points/clus-
ters during hierarchical clustering. These tie situations can be solved by considering
the distance within a subspace cluster as a second criterion. Inside a subspace cluster
the points are then clustered in the corresponding subspace using the traditional OP-
TICS algorithm and, thus, the subspace clusters can exhibit arbitrary sizes, shapes, and
densities.

Definition 3 (subspace distance). Ler w be an arbitrary preference vector. Then S(w)
is the subspace defined by w and w denotes the inverse of w. The subspace distance
SDIST between p and q is a pair SDIST(p, q) = (d1, ds), where d1 = \(p, q) + A(p, q)
and dy = DISTS@PD) (p, ¢), and A(p, q) is defined as

Alp,q) = {(1) Zs(:(p, q) = w(p) Vw(p,q) = w(q)) ADIST P (p q) > 2

We define SDIST(p,q) < SDIST(r,s) <= SDIST(p,q).d; < SDIST(r,s).dy or
(SDIST(p, q).dy = SDIST(r, s).dy and SDIST(p, q).d2 < SDIST(r, $).d2)).

As suggested in [9], we introduce a smoothing factor x4 to avoid the Single-Link
effect and to achieve robustness against noise points. The parameter y represents the
minimum number of points in a cluster and is equivalent to the parameter g used
to determine the best subspace for a point. Thus, instead of using the subspace dis-
tance SDIST(p, ¢) to measure the similarity of two points p and ¢, we use the subspace
reachability REACHDIST,,(p, ¢) = max(SDIST(p,r), SDIST(p, ¢)), where r is the p-
nearest neighbor (w.r.t. subspace distance) of p. DiSH uses this subspace reachability
and computes a “walk” through the data set, assigning to each point o its smallest sub-
space reachability with respect to a point visited before o in the walk. The resulting
order of the points is called cluster order. In a so-called reachability diagram for each
point (sorted according to the cluster order along the x-axis) the reachability value is
plotted along the y-axis. The valleys in this diagram represent the clusters. The pseudo-
code of the DiSH algorithm can be seen in Figure 3.

4 Visualizing Subspace Cluster Hierarchies

The reachability plot is equivalent to tree-like representations and, thus, is not capable
of visualizing hierarchies with multiple inclusions. This is illustrated in Figures 4(a)
and 4(d): When exploring the reachability plots of the two different data sets A and
B, one can see that they look almost the same (cf. Figures 4(b) and 4(e)). Thus, taking
only the reachability plots into account, it is impossible to detect the obviously different
kind of hierarchy of the second data set. This phenomenon is due to the fact that in data
set B we face a subspace cluster hierarchy with multiple inclusion (the 1D cluster is
embedded within both 2D clusters).

algorithm DiSH(D, u, ¢)
co«— cluster order; // initially empty
pq — empty priority queue ordered by REACHDIST,;
foreach p D do
compute w(p);
p.REACHDIST,, + 00}
insert p into pg;
while (pg+#0) do
o+ pg.next();
r «— u—nearest neighbor of o w.r.t. SDisT;
foreach p cpq do
new_sr «— max(SDisT(o,r), SDIST(0,p));
pq.update(p, new_sr);
append o to co;
return co;

Fig. 3. The DiSH algorithm.

This limitation of the reachability plot leads to our contribution of representing the
relationships between cluster hierarchies as a so-called subspace clustering graph such
that the relationships between the subspace clusters can be explored at a glance. The
subspace clustering graph displays a kind of hierarchy which should not be confused
with a conventional (tree-like) cluster hierarchy usually represented by dendrograms.
The subspace clustering graph consists of nodes at several levels, where each level rep-
resents a subspace dimension. The top level represents the highest subspace dimension,
which has the dimensionality of the data space. It consists of only one root node rep-
resenting all points that do not share a common subspace with any other point, i.e. the
noise points. Let us note that this is different to dendrograms where the root node rep-
resents the cluster of all objects. The nodes in the remaining levels represent clusters in
the subspaces with the corresponding dimensionalities. They are labeled with the pref-
erence vector of the cluster they represent. For emphasizing the relationships between
the clusters, every cluster is connected with its parents and its children. In contrast to
tree representations, like e.g. dendrograms, a graph representation allows multiple par-
ents for a cluster. This is necessary, since hierarchical subspace clusters can belong to
more than one parent cluster. Consider e.g. data set B, where the objects of the inter-
section line are embedded in the horizontal plane as well as in the vertical plane, i.e.
the cluster forming the intersection line belongs to two parents in the hierarchy. The
subspace clustering graphs of the two data sets A and B are depicted in Figures 4(c)
and 4(f). The line of data set A is represented by the cluster with the preference vector
[1,0,1]. This cluster is a child of cluster [1,0,0] representing the plane in data set A (cf.
Figure 4(c)). The more complex hierarchy of data set B is represented in Figure 4(f),
where the cluster [1,0,1] belongs to two parent clusters, the cluster of the horizontal
plane [0,0,1] and the cluster of the vertical plane [1,0,0].

In contrast to dendrograms, objects are not placed in singleton clusters at the leaf
level, but are assigned to the lowest-dimensional subspace cluster they fit in within

i1, 0,01 rel
S P I fa o, 1]| net
(a) Data set A. (b) Reachability plot. (c) Subspace clustering graph.

fo, 0, 0 | hee
0,0, 11 | i1, 0,0 | rel

b B
ERCS bs‘ i 3 a0 3 El 3 12 r[l, [l, 1] | ?\ B 1
(d) Data set B. (e) Reachability plot. (f) Subspace clustering graph.

Fig. 4. Different hierarchies in 3-dimensional data.

method extractCluster (ClusterOrder co)
cl «— empty list; // cluster list
foreach o< co do
p < o.predecessor;
if (Bce c1 with w(c) =w(o,p) A disty(op)(0,c.center) <2-¢) then
create a new c;
add ¢ to ci;
add o to c;
return ci;

Fig. 5. The method to extract the clusters from the cluster order.

the graph. Similar to dendrograms, an inner node n of the subspace clustering graph
represents the cluster of all points that are assigned to n and of all points assigned to its
child nodes.

To build the subspace clustering graph, we extract in a first step all clusters from the
cluster order. For each object o in the cluster order the appropriate cluster ¢ has to be
found, where the preference vector w(c) of cluster ¢ is equal to the preference vector
w(o, p) between o and its predecessor p. Additionally, since parallel clusters share the
same preference vector, the weighted distance between the centroid of the cluster ¢ and
object o with w(o, p) as weighting vector has to be less or equal to 2¢. The complete
method to extract the clusters from the cluster order can be seen in Figure 5.

After the clusters have been derived from the cluster order, the second step builds
the subspace cluster hierarchy. For each cluster we have to check, if it is part of one
or more (parallel) higher-dimensional clusters, whereas each cluster is at least the child
of the noise cluster. The method to build the subspace hierarchy from the clusters is
depicted in Figure 6.

method buildHierarchy (c1)
d «— dimensionality of objects in D;
foreach c¢; € c1 do
foreach ¢; € c1 do
if (A\c; >Ac) then
d « disty(c;,c;)(Ci . center,c;. center);
if (/\C]. =dvVv(d<2-¢ ANBce c1 :chi.parents/\Ac<)\cj)) then
add ¢; as child to ¢;;

Fig. 6. The method to build the hierarchy of subspace clusters.

“10, 0, 017
‘10, 0, 1017
‘g0, 11 -
“f1,"0,701
- 0, 117
01101 -
R C MV i

fo, o, 01 ned

h=2

|
Hl, 0, 0] | ﬁ, 0, l_l]]l ﬁ, 0, 1_1]|
S A 3

I | |
2 101 | 0.1, 1,u1| 0,1, 1,11| ret
(b) Subspace clustering graph.

Fig. 7. Results on synthetic dataset DS1.
Table 1. Runtime, precision and recall w.r.t. the strategy for preference vector computation.

APRIORI | BEST-FIRST
DS1|DS2|DS3|DS1|DS2|DS3
runtime [sec]|147| 32 |531| 76 | 14 | 93
precision [%]|99.7|99.5{99.7{99.7(99.5]99.5
recall [%] |99.8|99.6/99.8]99.8|99.6(99.5

5 Experimental Evaluation

We first evaluated DiSH on several synthetic data sets. Exemplary, we show the results
on three data sets named “DS1”, “DS2”, and “DS3”.

We evaluated the precision, recall and the runtime of our DiSH algorithm w.r.t.
the strategies used for determination of the preference vectors. The strategy using the
Apriori-algorithm [14] is denoted with “APRIORI”, the heuristics using the best-first
search is denoted with “BEST-FIRST”. The results of the runs with both strategies on
the three data sets are summarized in Table 1. Since the heuristics using best-first search
outperforms the strategy using the Apriori-algorithm in terms of runtime and has almost
equal precision and recall values, we used in all further experiments the heuristics to
compute the preference vectors rather than the Apriori-based approach.

Data set “DS1” (cf. Figure 7(a)) contains 3D points grouped in a complex hierarchy
of 1D and 2D subspace clusters with several multiple inclusions and additional noise

=4
___,;—%”. - 0!
= | ’es
' 0,0, [I_[I]| , 0,0, [I_1]| ' 0,0, [I_2]| F 0, 0, [I_3]| F 0, 0, [I_4]| ., 0,0, 0.5] F 0, D, 0_6]| F 0, 0, 0_7] ' 0,0, [I_B]l

/ =2
!, 1, 0, 0_0] !, 1, 0,0.1]
A=l
!1, 0,1,1]

Fig. 8. Subspace clustering graph of the Forest data.
n=23
A A
X R
O mrgggon

Fig. 9. Subspace clustering graph of the Gene data.

points. The results of DiSH applied to DS1 are depicted in Figure 7(b). As it can be
seen, the complete hierarchical clustering structure can be obtained from the resulting
subspace clustering graph. In particular, the complex nested clustering structure can be
seen at a glance. Data set “DS2” is a 5D data set containing ten clusters of different di-
mensionality and noise: one cluster is embedded in a 4D subspace, four clusters are 3D,
three clusters are 2D and two clusters are 1D subspace clusters. The resulting subspace
clustering graph (not shown due to space limitations) produced by DiSH exhibits all
ten subspace clusters of considerably different dimensionality correctly. Similar obser-
vations can be made when evaluating the subspace clustering graph obtained by DiSH
on data set “DS3” (not shown due to space limitations). The 16D data set DS3 contains
noise points, one 13 dimensional, one 11 dimensional, one 9 dimensional, one 7 di-
mensional cluster, and two 6 dimensional clusters. Again, DiSH found all six subspace
clusters correctly.

We also applied HiSC, PreDeCon and PROCLUS on DS1 for comparison. Neither
PreDeCon nor PROCLUS are able to detect the hierarchies in DS1 and the subspace
clusters of significantly different dimensionality. HiSC performed better in detecting
simple hierarchies of single inclusion but fails to detect multiple inclusions.

In addition, we evaluate DiSH using several real-world data sets. Applied to the
Wisconsin Breast Cancer Database (original) from the UCI ML Archive' (d = 9, n =
569, objects labeled as “malignant” or “benign”) DiSH finds a hierarchy containing

"http://www.ics.uci.edu/ mlearn/MLSummary.html

160.000 4.500

140.000 4.000
120.000 5 350
T 100.000 & 3000
o, o 2500
g 80000 £ o
E 60000 £ 1500
S 40000 1,000
20.000 500

ot 0+ —-———

10 20 30 40 50 60 70 80 90 100 5 10 15 20 25 30 35 40 45 50

size * 1,000 dimensionality
(a) Scalability w.r.t. size. (b) Scalability w.r.t. d.

Fig. 10. Scalability results.

several low dimensional clusters and one 7D cluster (¢ = 0.01, u = 15). An additional
9D cluster contains the noise points. It is worth mentioning that the reported clusters
are pure. In particular, the seven low dimensional clusters only contain objects labeled
as “benign”, whereas the 7D cluster only contains objects marked as “malignant”.

We applied DiSH on the Wages data set> (d = 4, n = 534). Since most of the
original attributes are not numeric, we used only 4 dimensions (YE=years of education,
W=wage, A=age, and YW=years of work experience) for clustering. The resulting sub-
space cluster hierarchy (using ¢ = 0.001, x = 9) is visualized in Figure 8. The nine par-
allel clusters having a subspace dimensionality of A = 3 consist of data of people having
equal years of education, e.g in cluster [1,0,0,0-0] YE=17 and in cluster [1, 0,0, 0_5]
YE=12. The two clusters labeled with [1,1,0,0.0] and [1, 1,0, 0_1] in the 2D subspace
are children of cluster [1,0,0,0.5] and have (in addition to equal years of education,
YE=12) equal wages values (W=7.5 and W=5, respectively). The 1-dimensional clus-
ter [1,0,1,1] is a child of [1, 1, 0,0-0] and has the following properties: YE=12, A=26,
and YW=8.

Last but not least, we applied DiSH to the yeast gene expression data set of [15]
(d = 24, n = 4,000). The result of DiSH (using € = 0.01, x = 100) on the gene
expression data is shown in Figure 9. Again, DiSH found several subspace clusters of
different subspace dimensionalities with multiple inclusions.

The scalability of DiSH w.r.t. the data set size is depicted in Figure 10(a). The
experiment was run on a set of 5D synthetic data sets with increasing number of objects
ranging from 10,000 to 100,000. The objects are distributed over equally sized subspace
clusters of subspace dimensionality A = 1,...,4 and noise. As parameters for DiSH
we used ¢ = 0.001 and i = 20. As it can be seen, DiSH scales slightly superlinear w.r.t.
the number of tuples. A similar observation can be made when evaluating the scalability
of DiSH w.r.t. the dimensionality of the data set (cf. Figure 10(b)). The experiments
were obtained using data sets with 5,000 data points and varying dimensionality of
d =5,10,15, ..., 50. For each data set the objects were distributed over d — 1 subspace
clusters of subspace dimensionality A = 1,...,d—1 and noise. Again, the result shows
a slightly superlinear increase of runtime when increasing the dimensionality of the data
set. The parameters for DiSH were the same as in the evaluation of the scalability of
DiSH w.r.t. the data set size (¢ = 0.001 and p = 20).

http://lib.stat.cmu.edu/datasets/CPS_85_Wages

6 Conclusions

In this paper, we presented DiSH, the first subspace clustering algorithm for detecting
complex hierarchies of subspace clusters. DiSH is superior to the state-of-the-art sub-
space clustering algorithms in several aspects: First, it can detect clusters in subspaces
of significantly different dimensionality. Second, it is able to determine hierarchies of
nested subspace clusters containing single and multiple inclusions. Third, it is able to
detect clusters of different size, shape, and density. Fourth, it does not assume that the
subspace preference of a point p is exhibited in the local neighborhood of p in the entire
data space. We have shown by performing several comparative experiments using syn-
thetic and real data sets that DiSH has a superior performance and effectivity compared
to existing methods.

References

1. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of
high dimensional data for data mining applications. In: Proc. SIGMOD. (1998)

2. Cheng, C.H., Fu, AW.C., Zhang, Y.: Entropy-based subspace clustering for mining numeri-
cal data. In: Proc. KDD. (1999) 84-93

3. Kailing, K., Kriegel, H.P.,, Kroger, P.. Density-connected subspace clustering for high-
dimensional data. In: Proc. SDM. (2004)

4. Kriegel, H.P., Kroger, P.,, Renz, M., Wurst, S.: A generic framework for efficient subspace
clustering of high-dimensional data. In: Proc. ICDM. (2005)

5. Aggarwal, C.C., Procopiuc, C.M., Wolf, J.L., Yu, P.S., Park, J.S.: Fast algorithms for pro-
jected clustering. In: Proc. SIGMOD. (1999)

6. Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M.: A Monte Carlo algorithm for fast
projective clustering. In: Proc. SIGMOD. (2002)

7. Bohm, C., Kailing, K., Kriegel, H.P., Kroger, P.: Density connected clustering with local
subspace preferences. In: Proc. ICDM. (2004)

8. Achtert, E., Bohm, C., Kriegel, H.P., Kroger, P., Miiller-Gorman, 1., Zimek, A.: Finding
hierarchies of subspace clusters. In: Proc. PKDD. (2006) To appear.

9. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify
the clustering structure. In: Proc. SIGMOD. (1999)

10. Yang, J., Wang, W., Wang, H., Yu, P.S.: Delta-Clusters: Capturing subspace correlation in a
large data set. In: Proc. ICDE. (2002)

11. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets.
In: Proc. SIGMOD. (2002)

12. Bohm, C., Kailing, K., Kroger, P., Zimek, A.: Computing clusters of correlation connected
objects. In: Proc. SIGMOD. (2004)

13. Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional space.
In: Proc. SIGMOD. (2000)

14. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. SIGMOD.
(1994)

15. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O.,
Botstein, D., Futcher, B.: "Comprehensive Identification of Cell Cycle-Regulated Genes of
the Yeast Saccharomyces Cerevisiae by Microarray Hybridization.”. Molecular Biolology
of the Cell 9 (1998) 3273-3297

