
Interval-focused Similarity Search in Time Series

Databases

Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey
Pryakhin, Matthias Renz

Institute for Computer Science, Ludwig-Maximilians Universität München
Oettingenstr. 67, 80538 Munich, Germany

http://www.dbs.ifi.lmu.de/

{assfalg,kriegel,kroegerp,kunath,pryakhin,renz}@dbs.ifi.lmu.de

Abstract. Similarity search in time series databases usually deals with
comparing entire time series objects or subsequence search. In this paper,
we formalize the notion of interval-focused similarity queries which take
a set of intervals specifying relevant time frames as additional parameter
and compare the time series objects only within this user-defined time
focus. We propose an original method to efficiently support interval-
focused distance range and k-nearest neighbor queries implementing a
filter/refinement architecture. In our broad experimental evaluation we
show the superiority of our novel approach compared to existing ap-
proaches on several real-world data sets.

1 Introduction

Similarity search in time series databases has attracted a lot of research work
recently. Existing work usually focus either on a full comparison, i.e. the en-
tire time series are compared by using an appropriate distance function, or on
subsequence matching, i.e. all time series objects that “match” a subsequence
are retrieved. However, in many applications, only predefined parts of the time
series are relevant for a similarity query rather than the entire time series data.
The time intervals of these predefined parts are fixed for all time series. Usually,
these parts are specified by the user depending on the analysis focus and change
from query to query. We call such type of queries where only a small part of
the entire time series is relevant interval-focused similarity queries. Obviously,
interval-focused similarity is a generalization of a full comparison of the time
series. On the other hand, the subsequence matching approach is orthogonal to
interval-focused similarity. In interval-focused similarity search, the interval rel-
evant to the query is fixed for all time series objects. In subsequence matching,
the matching sequences usually do not correspond to a common time frame.

The notion of interval-focused similarity queries is an important concept in
many applications. In stock marketing analysis, the behavior of the courses of
different securities is examined w.r.t. a given set of events such as political crises
or seasonal phenomena. The time courses need to be compared using interval-
focused similarity queries that take only some relevant time periods into account

In Proc. 12th Int. Conf. on Database Systems for Advanced Applications (DASFAA '07), Bangkok, Thailand, 2007

query

DB

complete matching subsequence matching interval-focused

Fig. 1. Different approaches for time series analysis.

(e.g. a certain time period after the events). The analysis of the annual balances
of a company is usually also focused on specific time intervals (e.g. months), i.e.
the balances of specific months are compared using interval-focused similarity
queries. In environmental research, the analysis of environmental parameters
such as the temperature or the ozon concentration measured over long time
periods at various locations usually focus on a given period during the year, e.g.
compare the temperatures occurring only in the first week of July each year.
Last but not least, in behavior research, brain waves of animals are recorded
throughout a given time period, e.g. a day. Researchers often want to compare
the brain waves of different individuals during a significant time interval, e.g.
during feeding. Obviously, in all these applications, the focus of the analysis
task frequently changes from time to time and is not known in advance.

In this paper, we formalize the novel notion of interval-focused similarity
queries which is an important generalization of comparing entire time series. In
addition, we propose an original method to efficiently support interval-focused
distance range and k-nearest neighbor queries that implements a filter/refinement
architecture. Furthermore, we discuss how the interval representation approxi-
mating the time series can be efficiently accessed using an index structure. The
remainder is organized as follows. We discuss related work in Section 2. The
novel notion of interval-focused similarity search is formalized in Section 3. In
Section 4, we introduce the concept of interval-based representation of the time
series. We further show how these representations can be managed efficiently
in order to upper and lower bound the distance between time series objects.
Based on these bounds we present a filter-refinement architecture to support
interval-focused similarity queries efficiently. We discuss two methods for gen-
eration interval representations of time series in Section 5. Section 6 provides
an experimental evaluation of our proposed methods. Section 7 concludes the
paper.

2 Related Work

The (dis)similarity between two time series is usually measured by an appro-
priate distance function, e.g. the Euclidean distance, Dynamic Time Warping
(DTW), Pearson’s correlation coefficient, or angular separation, also known as
cosine distance. Recent approaches focus either on an entire matching of the
query time series with the database objects, or on subsequence matching.

Entire matching approaches consider the complete time course using any of
the above mentioned distance measures (cf. Figure 1 (left)). Since the length of a
time series is usually very large, the analysis of time series data is limited by the
well-known curse of dimensionality. The GEMINI method [5] can exploit any
dimensionality reduction for time series as long as the distance on the reduced
data representation is always a lower bound of the distance on the original data
(lower bounding property). In [10], the GEMINI framework is adapted for k-
nearest neighbor search. Several dimensionality reduction techniques have been
successfully applied to similarity search in time series databases, e.g. [1, 11, 4, 12,
7, 2, 6, 3, 12]. In [9] the authors use a clipped time series representation rather
than applying a dimensionality reduction technique. Each time series is repre-
sented by a bit string indicating the intervals where the value of the time series
is above the mean value of all values of the time series. A distance function that
lower bounds the Euclidean distance and DTW is proposed. Obviously, entire
matching is a special case of interval-focused similarity. Since all mentioned ap-
proximation techniques employing dimensionality reduction or clipping are not
designed for interval-focused similarity queries they cannot optimally support
this novel query type, especially if the intervals relevant for the query are chang-
ing over time and are not known beforehand. In that case, the proposed methods
need to approximate the entire time series objects. To answer interval-focused
queries these methods need to access the entire approximations rather than only
the relevant parts. Subsequence matching approaches usually try to match a
query subsequence to subsequences of the database objects (cf. Figure 1 (mid-
dle)). The similarity is not affected by the time slot at which o best matches the
subsequence q. Usually, a subsequence matching problem is transferred into an
entire matching problem by moving a sliding window over each time series object
in the database and materializing the corresponding subsequence. If the length
of the query subsequence changes, a new sliding window has to be moved over
each database time series again. Obviously, subsequence matching is orthogonal
to interval-focused similarity. In interval-focused similarity, the time slot relevant
for matching is fixed. Two time series are not considered similar even if they have
a similar subsequence but at different time intervals. In addition, the concept
of interval-focused similarity allows to specify multiple relevant time intervals of
different length.

3 Problem Statement and Contributions

Let D denote a database of n time series. A time series X = [x1, . . . , xN] of length
N is a sequence of N values, where xi denotes the value corresponding to the time
slot i ∈ T = {t1, . . . , tN} and T is the domain of time. We assume that all time
series are normalized within the interval [MAX, MIN], i.e. maxxi∈X xi = MAX
and minxi∈X xi = MIN for all time series objects X ∈ D.

A (time) interval I = (lTI , uTI) ∈ T × T is a pair of time slots where lTI

denotes the start slot and uTI denotes the end slot. Given a time series X ∈ D
and an interval I, the interval sequence of X corresponding to I is a time series

of length (uTI − lTI)+1 consisting of the values of X between the start and the
end time slot of I, i.e. XI = [xlTI , . . . , xuTI]. A set of k intervals is denoted by
I = {I1, . . . Ik}.

Due to space limitations, we focus on the Lp-norms which are classical dis-
tance measures for time series, especially the Euclidean distance (p = 2). The
proposed concepts can easily be adapted to DTW. The Lp-norm between two
time series X and Y is defined as

Lp(X, Y) = p

√√√√ N∑
i=1

(xi − yi)p.

As discussed above, interval-focused similarity specifies a given part of the
time series (i.e. an interval) as relevant, whereas the remaining part of the time
series is irrelevant. The relevant part may change from query to query. Let I =
(lTI , uTI) be a relevant interval. The Lp-norm between X and Y w.r.t. I is
defined by

LI
p(X, Y) = p

√√√√ uTI∑
i=lTI

(xi − yi)p.

We want to define interval-focused similarity such that we are not limited to
one relevant interval. Rather, we want to be flexible to specify a set of relevant
intervals I that is again specified at query time. Thus, the Lp-norm between X
and Y w.r.t. I is defined by

LI
p (X, Y) = p

√∑
I∈I

LI
p(X, Y)p.

Note that the intervals I ∈ I can be of varying length and, thus, the influence
of each interval on the complete sum may be different. In some applications, it
may be interesting to weight the intervals, such that the contribution to the over-
all distance of each interval is similar. This can be easily achieved by multiplying
a weighting factor wI to each summand. In order to achieve similar influence of
each interval I regardless of its length |I|, we can set wI = 1/|I|.
Interval-focused distance range query: Given a query time series Q, a dis-
tance ε ∈ �, and a relevant set of intervals I, an interval-focused distance range
query retrieves the set DRQ(Q, ε, I) = {X ∈ D |LI

p (Q, X) ≤ ε}.
Interval-focused k-nearest neighbor query: Given a query time series Q,
a number k ∈ �, and a relevant set of intervals I, an interval-focused k-nearest
neighbor query (kNN query) retrieves the set NNQ(Q, k, I) ⊆ D containing at
least k time series such that
∀X ∈ NNQ(Q, k, I), X̂ ∈ D − NNQ(Q, k, I) : LI

p (Q, X) ≤ LI
p (Q, X̂).

In this paper, we claim the following contributions: After we have formalized
the notion of interval-focused similarity queries, we describe a new efficient rep-
resentation of time series based on interval boxes in the following. In addition,

timeuTrlTr

time seriesX

lVr

uVr

interval-box r

Fig. 2. Illustration of the interval box approximation of a given time series X.

we show how this representation can be used to efficiently support interval-
focused similarity search using an existing index structure. The key benefit of
our novel representation is that we only need to access those parts of the time
series objects that are relevant for a given query. Furthermore, we define a lower
and upper bound on the interval box representation for any Lp-norm, and de-
scribe an efficient multi-step filter/refinement architecture for interval-focused
similarity queries.

4 Distance Approximation of Time Series Objects

The basic idea of our approach is to represent each time series object of the
database by sequences of intervals. These intervals can be efficiently managed
by an index such as the RI-tree [8]. In addition, if we store the maximum and
minimum amplitude of the time series within the intervals, these intervals can be
used to compute upper and lower bounds of the true distance between different
time series. If an interval-focused similarity query is launched specifying a set of
relevant time frames I, only the intervals of the database objects that intersect
any I ∈ I need to be accessed in order to estimate the lower and upper bounding
distance approximations.

4.1 Representing Time Series Objects by Interval Boxes

We approximate each time series X ∈ D by a set of intervals. For each inter-
val, we further store the maximum and minimum amplitude of X within the
interval. This results in a minimum-bounding box around X within the spec-
ified interval (cf. Figure 2) called interval box. Formally, an interval box r is
given by r = (lTr, uTr, lVr, uVr), where (lTr, uTr) specifies the time interval,
lVr = minlTr≤i≤uTr xi, and uVr = maxlTr≤i≤uTr xi.

The set of interval boxes approximating X is denoted by rep(X). We discuss
methods for generating interval boxes for a given time series later in Section 5.
So far, we claim no further constraints for the interval boxes r ∈ rep(X) as far
as ∀i : lTr ≤ i ≤ uTr : lVr ≤ xi ≤ uVr.

4.2 Distance Estimation Using Interval Boxes

In the following, we will discuss how we can estimate the true distance between
a query object Q and any X ∈ D by means of an upper and a lower bound using
the information of rep(X) rather than using the complete representation of X .

At each relevant time slot i, we can lower bound the i-th summand of the Lp-
norm by the well-known MINDIST between qi and any interval box r ∈ rep(X)
that overlaps i, i.e. lTr ≤ i ≤ uTr. The MINDIST between qi and any interval
box r with lTr ≤ i ≤ uTr is defined as

MINDIST (qi, r) =

lVr − qi if qi ≤ lVr

qi − uVr if qi ≥ uVr

0 else.

If we do not have any interval box r ∈ rep(X) that overlaps time slot i, we can
only lower bound the true distance between qi and xi by 0. If there are several
interval boxes r ∈ rep(X) with lTr ≤ i ≤ uTr, we aggregate the maximum over
all the corresponding MINDIST values. Formally, at each time slot i, a lower
bound of the i-th summand of the Lp-norm between Q and X is given by

LBi(Q, X) = max{0, max
{r | r∈rep(X),lTr≤i≤uTr}

MINDIST (qi, r)}.

Obviously, LBi(Q, X) ≤ |qi − xi|. We can now extend the lower bound at
each time slot i to intervals I = (lTI , uTI) as follows:

LBI(Q, X) = p

√√√√ uTI∑
i=lTI

(LBi(Q, X))p.

Still, the lower-bounding property LBI(Q, X) ≤ LI
p(Q, X) is preserved. A

lower bound for a set of intervals I = {I | i ∈ �+} is then defined by

LBI(Q, X) = p

√∑
I∈I

(LBI(Q, X))p.

Again, we have the lower-bounding propertyLBI(Q, X) ≤ LI
p (Q, X).

Analogously, an upper bounding distance estimation can be determined. At
each relevant time slot i, we now need to use the MAXDIST between qi and
any interval box r ∈ rep(X) that overlaps i, i.e. lTr ≤ i ≤ uTr, to define an
upper bound of the i-th summand of Lp(Q, X). The MAXDIST between qi

and any interval box r with lTr ≤ i ≤ uTr is defined as MAXDIST (qi, r) =
max{|qi − lVr|, |qi − uVr|}.

If we do not have any interval box r ∈ rep(X) that overlaps time slot i, we
can upper bound the true distance between qi and xi by max{|qi −MAX |, |qi −
MIN |}. If there are several interval boxes r ∈ rep(X) with lTr ≤ i ≤ uTr, we
aggregate the minimum over all the MAXDIST values. Formally, at each time
slot i, an upper bound of the i-th summand of the Lp-norm between Q and X

time

X

Q

t
i
t
i+1

t
i+2 t

i+3
t
i+4

t
i+5

t
i+6

t
i+7

t
i+8

t
i+9

X

Q

MIN

MAX

LBi(Q,X)

UBi(Q,X)

Fig. 3. Lower and upper bounding the Lp-distance within the interval (ti, ti+9).

is given by

UBi(Q, X) =

min{max{|qi − MAX |, |qi − MIN |}, min
r∈rep(X),lTr≤i≤uTr

MAXDIST (qi, r)}.

Analogously, we define

UBI(qi, xi) = p

√√√√ uTI∑
i=lTI

(UBi(Q, X))p

for time intervals I, and

UBI(Q, X) = p

√∑
I∈I

(UBI(Q, X))p.

for sets of time intervals I. It is easy to prove that UBI(Q, X) ≥ LI
p (Q, X).

An example for the upper and lower bounding distance estimation is de-
picted in Figure 3. At time slot ti+6 we do not have any interval box repre-
sentations of X . Thus, the bounds are estimated by LBti+6(Q, X) = 0 and
UBti+6(Q, X) = max{|qti+6 − MAX |, |qti+6 − MIN |}. On the other hand, at
time slot ti+1 the interval box r = (ti, ti+3, lVr, uVr) ∈ rep(X) is the only in-
terval box that overlaps. We estimate LBti+1(Q, X) = MINDIST (qti+1, r) = 0
and UBti+1(Q, X) = MAXDIST (qti+1, r) = |qti+1 − lVr|.

4.3 Query Processing

In order to compute the upper and lower bounding distance approximations
between a query object Q and a database object X ∈ D efficiently, we need
to determine those interval boxes that intersect the relevant intervals I ∈ I.
For the efficient support of intersection queries, we organize the intervals of the
interval boxes in an adoption of the relational interval tree (RI-tree) [8]. An
interval intersection query takes a query interval I ∈ I and retrieves all intervals

in the RI-tree that intersect with I. Details on the processing of intersection
queries using RI-Trees can be found in [8]. In order to determine all interval
boxes that intersect with the query intervals we need such an intersection query
for all I ∈ I. This way, we determine for each database object X ∈ D those
interval boxes r ∈ rep(X) that intersect with any of the query intervals I ∈ I in
order to compute LBI(Q, X) and UBI(Q, X).

Based on our distance approximations LB and UB introduced above, we can
apply the paradigm of filter/refinement query processing to efficiently answer
interval-focused distance range and kNN queries. In case of an interval-focused
distance range query, we can use both, the upper and the lower bound in the
filter step. Each object X ∈ D with LBI(Q, X) > ε can be identified as true
drop because LI

p (Q, X) ≥ LBI(Q, X) > ε, i.e. X �∈ DRQ(Q, ε, I). On the other
hand, each object X ∈ D with UBI(Q, X) ≤ ε can be identified as true hit
since LI

p (Q, X) ≤ UBI(Q, X) ≤ ε, i.e. X ∈ DRQ(Q, ε, I). In case of an interval-
focused kNN query, we can only use the lower bound for the filter step. We apply
the approach presented in [10] which is optimal w.r.t. the number of candidates
that need to be refined.

5 Generating Approximations

In this section, we will show how to generate adequate interval boxes for a
time series. When building the interval boxes we need to take two contradicting
considerations into account. On one hand, the number of boxes covering the
time series should be low in order to avoid a dramatically increased overhead
of the filter step. The performance of the filter step is mainly influenced by the
number of interval box approximations to be considered at query time. More
boxes lead to higher join cost of the query process. This suggests to construct
wide boxes with long intervals. On the other hand, wide boxes will usually worsen
the approximation quality since the boxes conservatively approximate the time
series. As a consequence, the performance may decrease due to a reduced pruning
power of the filter step. This suggests to construct boxes with low approximation
error in order to achieve higher values for the lower bounding filter distance
LBI and lower values for the upper bounding filter distance UBI . Following
these considerations, the parts of the time series having a flat curvature can be
better approximated by interval boxes than parts featuring a high ascending or
descending curve (cf. Figure 4 (upper part)). The basic idea of our approach is to
optimize the box covering locally. We first identify those parts of the time series
which can be well approximated, i.e. subsequences covering the local maximums
or minimums of a time series. Then, we try to generate interval boxes that
optimally cover the local minimums and maximums of a time series according
to a quality criterion given below. Afterwards, we approximate each remaining
part of the time series which are not covered yet by one single box.

A high approximation quality of the interval box approximations of a time
series is responsible for a good pruning power of our filter step. A high lower
bounding distance estimation allows to prune a lot of true drops without the need

X

good

approximations

bad

approximation

Fig. 4. Interval box approximations.

time
t
i
t
i+1

t
i+2 t

i+3
t
i+4

t
i+5

t
i+6

t
i+7

t
i+8

t
i+9

X

MIN

MAX

r1r2r3r5

r4

Fig. 5. Generation of covering boxes.

to refine them. A low upper bounding distance estimation enable to identify some
of the true hits without any refinement. For this reason we propose to evaluate
the approximation quality of an interval box by considering the expectation
of the lower and upper bounding distance between any query object and the
approximated part of the database object. For the sake of clarity and due to space
limitations, we will focus on the expectation of the lower bound distance w.r.t.
an interval box approximation. The expectation of the upper bound distance
can be integrated analogously.

Given an interval box r = (lTr, uTr, lVr, uVr), the expected lower bounding
distance LB(lTr ,uTr) between r and any query time series Q = [q1, .., qN] which
values qi are assumed to be statistically independent can be computed as follows:

E(LB(lTr ,uTr)(Q, X)) = p
√

uTr − lTr · E(LBi(Q, X)),

where

E(LBi(Q, X)) =
∫ MAX

MIN

MINDIST (qi, r)fi(qi) =
(MAX − uVr)2 + (lVr − MIN)2

2 · (MAX − MIN)

is the expected lower bounding distance according to any time slot lTr ≤ ti ≤ uTr

and fi(qi) is the probability density function of the event time series value qi ∈
[MIN, MAX]. Thereby, we assume that the values of Q are equally distributed
between MIN and MAX , i.e.

fi(qi) =
1

MAX − MIN
, ∀i ∈ [MIN, MAX].

Now, we can use the expectation of the distance estimations in order to decide
for an interval box whether the box setting is more promising than alternative
box settings. The higher the expected lower bounding distance w.r.t. an interval
box approximation, the higher is its approximation quality.

Next, we will show how interval boxes covering the local extreme values of a
time series can be generated nearly optimal according to our quality score. As
already mentioned, flat parts, like the local maximums or minimums, of a time
series are very adequate for our interval box approximation. We start with the
approximation of the local maximums of a time series by searching for each local

0

0,1

0,2

0,3

0,4

0,5

0,6

OPTIMAL RANDOM EQUAL

p
ru

n
in

g
 p

o
w

e
r

[%
]

0

200

400

600

800

1000

1200

1400

1600

1800

OPTIMAL RANDOM EQUAL

I/
O

-c
o

s
ts

 [
m

s
]

Fig. 6. Evaluation of different interval box generation methods.

maximum iteratively in top-down direction. For each local maximum we take all
reasonable conservative coverings into account as shown in the example depicted
in Figure 5, and try to pick out the best one. Those interval box candidates
which cover or are covered by another interval box candidate are evaluated
against each other according to our quality score. The candidate with the highest
score is chosen for the approximation, the other candidates will be discarded.
This procedure will be applied to all local maximums, so that, finally all local
maximums are covered by any interval box. Redundant coverings are removed
according to our quality score.

The coverings of the local minimums are generated in the same way. Con-
trary, this time we start at the local minimums and search the corresponding
interval box candidates upwards. After generating all local maximum and min-
imum coverings, we remove those box candidates which are completely covered
by another interval box candidate in order to reduce redundant approximations.

Finally in a post-processing step, the remaining gaps between two adjacent
but disjunctive interval boxes, i.e. the parts of the time series which are not
covered so far by any interval box, are simply approximated by an additional
minimal bounding box. The overall covering of a time series can be performed
in O(N) time where N denotes the length of the time series.

6 Evaluation

All experiments were performed on a workstation featuring a 1.8 GHz Opteron
CPU and 8GB RAM. We used a disk with a transfer rate of 60 MB/s, a seek
time of 3 ms, a latency delay of 2 ms, and a cache allocating 80 KByte. The node
capacity of the RI-tree was set to 8 KByte. For each experiment, we launched
100 sample queries and averaged the performance. In each query, we choose the
relevant intervals randomly such that the sum of the length of each relevant
interval equals the desired query focus size.

We first evaluate our method for generating interval box representations in
comparison to two naive solutions on a synthetic data set featuring 400 time
series of length 6,000. The first competitor (“RANDOM”) determines a fixed
number of intervals randomly and generates a minimum bounding box for each
of these intervals. The second competitor (“EQUAL”) works analogously but
generates a fixed number of intervals with equal length. The results are shown

0

5000

10000

15000

20000

0 5 10 15 20 25 30 35 40

epsilon range [%]

I/
O

 c
o

s
t

[m
s
]

OPTIMAL

BIT LEVEL

SEQ. SCAN

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40

epsilon range [%]

I/
O

 c
o

s
t

[m
s

]

OPTIMAL

BIT LEVEL

SEQ. SCAN

Fig. 7. Performance w.r.t. the selectivity of the query. DS1(left) and DS2 (right).

in Figure 6. As it can be seen, our method (“OPTIMAL”) outperforms both
competitors in terms of pruning power and I/O cost. This empirically shows
that our interval box generation is superior to the two other naive solutions.

Secondly, we evaluate our proposed filter/refinement architecture (OPTI-
MAL) for answering interval-focused similarity queries compared to the sequen-
tial scan (SEQ. SCAN) and the approach proposed in [9] (BIT LEVEL). We
choose the second competitor since it is the only approach that does not need to
scan the entire time series information for answering interval-focused queries but
also proposes a filter/refinement architecture based on a compressed data rep-
resentation. We used two real-world data sets, “DS1” and ”DS2” each featuring
4,800 song-feature time series of length 10,000. The performance of the competi-
tors w.r.t. the selectivity of the query is visualized in Figure 7. The focus size
was set to 1% of the time series length. Our approach clearly outperforms both
competitors for all settings of the query selectivity. Furthermore, in contrast to
”BIT LEVEL” our approach scales well even for large query result sets. The
performance of the competitors w.r.t. the size of the query focus is depicted in
Figure 8. In this experiment we performed queries featuring a query selectivity
of 2% of the dataset. For small focus sizes (< 6% of the time series length) our
approach achieved smaller I/O cost than the competing techniques. However, in
many applications using interval focused similarity search a focus size smaller

0

2000

4000

6000

8000

10000

12000

2 4 6 8 10

focus size [%]

I/
O

 c
o

s
t

[m
s
]

OPTIMAL

BIT LEVEL

SEQ. SCAN

0

2000

4000

6000

8000

10000

12000

2 4 6 8 10

focus size [%]

I/
O

 c
o

s
t

[m
s
]

OPTIMAL

BIT LEVEL

SEQ. SCAN

Fig. 8. Performance w.r.t. the size of the query focus. DS1(left) and DS2 (right).

than 5% is reasonable. One can imagine a query on one year records focusing
only one certain weak which would correspond to a focus size of about 2%.

7 Conclusions

In this paper, we introduce and formalize the novel concept of interval-focused
similarity queries in time series databases which is an important generalization
of comparing entire time series. We describe a new efficient representation of
time series based on intervals and show how this representation can be used
to efficiently support these new query type implementing a filter/refinement
approach. Furthermore, we present a method for the generation of the interval-
based representation. In our experimental evaluation we show the superiority of
our proposed method for answering interval-focused similarity queries in com-
parison to existing approaches.

References

1. R. Agrawal, C. Faloutsos, and A. Swami. ”Efficient Similarity Search in Sequence
Databases”. In Proc. 4th Conf. on Foundations of Data Organization and Algo-
rithms, 1993.

2. O. Alter, P. Brown, and D. Botstein. ”Generalized Singular Value Decomposition
for Comparative Analysis of Genome-Scale Expression Data Sets of two Different
Organisms”. Proc. Natl. Aca. Sci. USA, 100:3351–3356, 2003.

3. Y. Cai and R. Ng. ”Index Spatio-Temporal Trajectories with Chebyshev Polyno-
mials”. In Proc. ACM SIGMOD, 2004.

4. K. Chan and W. Fu. ”Efficient Time Series Matching by Wavelets”. In Proc. IEEE
ICDE, 1999.

5. C. Faloutsos, M. Ranganathan, and Y. Maolopoulos. ”Fast Subsequence Matching
in Time-series Databases”. In Proc. ACM SIGMOD, 1994.

6. E. Keogh, K. Chakrabati, S. Mehrotra, and M. Pazzani. ”Locally Adaptive Di-
mensionality Reduction for Indexing Large Time Series Databases”. In Proc. ACM
SIGMOD, 2001.

7. F. Korn, H. Jagadish, and C. Faloutsos. ”Efficiently Supporting Ad Hoc Queries
in Large Datasets of Time Sequences”. In Proc. ACM SIGMOD, 1997.

8. H.-P. Kriegel, M. Pötke, and T. Seidl. ”Interval Sequences: An Object-Relational
Approach to Manage Spatial Data”. In Proc. SSTD, 2001.

9. C. A. Ratanamahatana, E. Keogh, A. J. Bagnall, and S. Lonardi. ”A Novel Bit
Level Time Series Representation with Implication for Similarity Search and Clus-
tering”. In Proc. PAKDD, 2005.

10. T. Seidl and Kriegel H.-P. ”Optimal Multi-Step k-Nearest Neighbor Search”. In
Proc. ACM SIGMOD, 1998.

11. S. Wichert, K. Fokianos, and K. Strimmer. ”Identifying Periodically Expressed
Transcripts in Microarray Time Series Data”. Bioinformatics, 20(1):5–20, 2004.

12. B. K. Yi and C. Faloutsos. ”Fast Time Sequence Indexing for Arbitrary Lp Norms”.
In Proc. VLDB, 2000.

