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Abstract

M odern geographic information systems do not only have
to handle static information but al so dynamically moving ob-
jects. Clustering algorithmsfor these moving objects provide
new and helpful information, e.g. jam detection is possible by
means of these algorithms. One of the main problemsof these
clustering algorithms is that only uncertain positional infor-
mation of the moving objects is available. In this paper, we
propose clustering approacheswhich take these uncertain po-
sitionsinto account. The uncertainty of the moving objectsis
modelled by spatial density functions which represent the
likelihood that a certain object islocated at acertain position.
Based on sampling, we assign concrete positions to the ob-
jects. Wethen cluster such asample set of objectsby standard
clustering algorithms. Repeating this procedure creates sev-
era sample clusterings. To each of these sample clusteringsa
ranking val ueisassigned which reflectsitsdistanceto the oth-
er sample clusterings. The clustering with the smallest rank-
ing valueis called the medoid clustering and can be regarded
astheaverage clustering of al the sampleclusterings. Inade-
tailed experimental evaluation, we demonstrate the benefits
of these medoid clusterings. We show that the medoid cluster-
ing ismore suitable for clustering moving objects with fuzzy
positions than arbitrary sample clusterings or clusterings
based on the distance expectation values between the fuzzy
positions of the moving objects.

1. Introduction

Clustering algorithms aim at grouping similar objects to-
gether, whereas dissimilar objects are assigned to different
clusters. Inthe areaof clustering moving objects, the similar-
ity criterion isthe distance between the objects. If we cluster
objects moving on a spatial network [21], the distance be-
tween the objects on the network isused for clustering. If we
aim at clustering objectswhich can freely move, the Euclide-
an distance between the objects can be used to measure the
similarity, i.e. the closeness, between the objects [15].

Clustering moving objects has many different application
ranges. For instance, clustering agorithms on a spatia net-
work can be used for traffic jam detection and prediction.

Clustering algorithms on freely moving objects can be used
for weather forecasting [6], for detecting outliers, or for de-
tecting animal migrations.

The problem of clustering moving objectsisthat often no
accurate positional informationisavailable. For instance, due
to technical problems, the GPS system might not be able to
pinpoint the exact positions of the moving objects. Another
reason for uncertain positional informationisthat dueto effi-
ciency reasons it is not possible to update the exact position
of the objects continuoudly. Clustering algorithms therefore
have to deal with uncertain, outdated positional information.

In this paper, we propose an approach for clustering mov-
ing objects with uncertain positional information. We moti-
vate a fuzzy modelling approach for describing moving ob-
jects and discuss several strategies which can be used for
clustering these objects with standard clustering algorithms.
After discussing the problems with the most straightforward
approaches for clustering moving objects, we introduce an
approach which uses the new concept of clustering rankings.
Based on suitable distance functions between clusterings, we
determine the medoid clustering from a set of sample clust-
gerings. The medoid clustering can be regarded as the clus-
tering which represents all sampl e clusteringsin the best pos-
sible way. Like ranking queries in databases, we can now
return the sample clusterings according to their ranking val-
ues. Thefirst returned clustering is the medoid clustering. In
a give-me-more manner, the user can ask for more cluster-
ings. Thus, the user gets a better picture of al clusterings
which are possible when we cluster moving objects with un-
certain positional information.

The remainder of this paper is organized as follows. In
Section 2, we present therelated work in the area of clustering
moving objects. In Section 3, weintroduce our fuzzy model-
ling approach which takesthe uncertain positions of themov-
ing objectsinto account. In Section 4, we present different ap-
proaches for clustering fuzzy moving objects. Our final
approach relies on distance functions between clusterings.
These distance functions areintroduced in Section 5. In Sec-
tion 6, we present our experimental evaluation, and conclude
the paper in Section 7 with a short summary and a few re-
marks on future work.



2. Related Work

Inthis section, wewill present the related work inthe area
of clustering moving objects. In Section 2.1, wefirst classify
well-known clustering algorithms according to different cat-
egorization schemes. Then, in Section 2.2, we present the ba-
sic conceptsof fuzzy clustering al gorithms, and describe how
the approach of this paper differs from the fuzzy clustering
approaches presented in the literature. Finally, in Section 2.3,
we present various approaches for clustering moving objects
as presented in the literature.

2.1. Clustering Algorithms

Clustering algorithms can be classified al ong different, in-
dependent dimensions. One well-known dimension catego-
rizesclustering methods according to theresult they produce.
Here, we can distinguish between hierarchical and partition-
ing clustering algorithms [12]. Partitioning algorithms con-
struct aflat (singlelevel) partition of adatabase D of n objects
into a set of k clusters such that the objects in a cluster are
more similar to each other thanto objectsin different clusters.
Hierarchical algorithms decompose the database into several
levels of nested partitionings (clusterings), represented for
example by adendrogram, i.e. atree that iteratively splits D
into smaller subsets until each subset consists of only one ob-
ject. In such a hierarchy, each node of the tree represents a
cluster of D.

Ancther dimension according to which we can classify
clustering algorithms is from an algorithmic point of view.
Here we can distinguish between optimization based or dis-
tance based algorithms and density based algorithms. Dis-
tance based methods use the di stances between the obj ects di-
rectly in order to optimize a global criterion. In contrast,
density based algorithmsapply alocal cluster criterion. Clus-
tersare regarded as regionsin the data space in which the ob-
jectsaredense, and which are separated by regions of low ob-
ject density (noise).

The following representatives of the 4 categories are used
throughout our experimental evaluation:

distance based density based
partitioning k-means[16] DBSCANI7]
hierarchical Single-Link[12] |OPTICS[1]

2.2 Fuzzy Clustering

In real applicationsthere is very often no sharp boundary
between clusters so that fuzzy clustering is often better suited
for the data. Membership degrees between zero and one are
used in fuzzy clustering instead of crisp assignments of the
data to clusters. The most prominent fuzzy clustering algo-
rithm is the fuzzy c-means algorithm, a fuzzification of the
partitioning clustering algorithm k-means. For more details
about fuzzy clustering algorithms, werefer thereader to[11].

In contrast to fuzzy clustering algorithms where objects
are assigned to different clusters, we cluster in this paper
fuzzy object representations. Thefuzzy spatial objectsareas-
signed to exactly one cluster.

2.3. Clustering Moving Objects

In this section, we present some recent approaches from
the literature dealing with the problem of clustering moving
objects.

Yiu and Mamoulis [21] tackled the complex problem of
clustering moving objects based on a spatial network. Here,
the distance between the objects is defined by their shortest
path distance over the network. Based on this distance mea-
sure they proposed variants of well-known clustering algo-
rithms.

In[15], Han et a. applied micro-clustering [23] to moving
objects. They propose techniques to keep the spatial exten-
sion of the moving micro-clusters small. To detect crucia
events, e.g. split events, they measured the compactness of
the moving micro-clusters by means of their bounding rect-
angles. If the size of the bounding rectangle exceedsacertain
threshold, the micro-cluster issplit. Different clustering algo-
rithms can then be carried out on the moving micro-clusters
instead of theindividual points. In contrast to the experimen-
tal approach presented in [15], Har-Peled presented a more
theoretical approach which also sacrifices quality in order to
gain efficiency [10].

Clustering moving objects is not only interesting in its
own, but can also beneficially be used for spatio-temporal se-
lectivity estimation [22]. Zhang and Lin proposed anew clus-
tering based spatio-temporal histogram, called CSTH, which
alows to estimate the selectivity of predictive spatio-tempo-
ral queriesaccurately.

3. Modelling Fuzzy Moving Objects

In thissection, we motivatethe use of spatial density prob-
ability functions for describing the location of moving ob-
jects. Thisapproachisquite similar to the approach presented
by Behr and Guiting [3] which use “ degree or affinity” values
to describe the probability that acertain pointisincludedin a
fuzzy spatial object.

Normally modern GPS systems can determine the exact
position of moving objects very accurately. But, for instance,
in the case of awar, this precision is reduced due to security
aspects. Although, the system assigns a position
p(o, t) = (X, y) to each object o at a certain timet, we cannot
be sure that the object o islocated at the point (X, y) a timet.
Nevertheless, it is very likely, that o is close to (X, y). This
closeness can be modelled by assigning a 2-dimensional
Gaussian density probability function o, to the object (cf.
Figure 1). The center of this probability function is at point
(%, y) and the standard deviation ¢ is determined by the accu-
racy of the GPS system.



possible exact
position of o

Figure 1. Fuzzy object representations for
freely moving objects.

There exist other exampleswhereit is beneficia to assign
a2-dimensional Gaussian distribution function oy, toan ob-
ject o. For instance, animals or pedestrians which can freely
moveinthe 2-dimensional space with acertain maximumve-
locity can be modelled by such aspatia density function. In
order to cluster these objectseffectively, it al so seemsreason-
able to describe their positions by a 2-dimensional density
probability function (cf. Figure 1). The center of this proba-
bility function isthelast sent position of the object. The stan-
dard deviation ¢ depends on the maximum vel ocity of the ob-
ject and the time passed since the object last sent its exact
position.

If we assume that the object moves on a spatial network,
e.g. cars moving on roads, we can assign a 1-dimensional
Gaussian distribution functionto theobject (cf. Figure2). The
center of this probability function isa certain distance | away
from the last sent position of the object. The value of | de-
pends on the average velocity v,,q and the time tj,q which
passed since the object last sent its exact position. The stan-
dard deviation ¢ depends on the difference between the max-
imum and minimum assumed vel ocity, i.€. Vi, - Viin @00 0N
0t

Finally, if we, for instance, follow the approach presented
in[15], we also cannot determine an exact position of an ob-
ject o at clustering time. But aswe know that the object islo-
cated within the bounding rectangle of the moving micro-
cluster, we can assign to each object of the micro-cluster a
density-probability function which assignsto each position a
value VA, where A, denotesthe area of the bounding rect-
angle. Note that we assign to each object of a micro-cluster
the same density probability function (cf. Figure 3).

As shown in the above examples the position of amoving
object cannot be described by only one single positional val-

¢ = k- (Vmax = Vmin) - (tclustering_tlast)’ eg. (k=07)
I = Vaverage' (tclustering_tlast)
(¢)
| /Ofuzzy(xy y)
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last positional information road

of object o at time t,

Figure 2. Fuzzy object representations for
objects moving on a spatial network.
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Figure 3. Fuzzy object representations for objects
within a moving micro-cluster.

ue. A better way, to describe afuzzy moving object isto as-
sign to each object aset of possible positions. To each of these
positions, we assign a probability value which indicates the
likelihood that this position is the exact one. Obviously, the
sum of al these probability valuesis equal to 1.

Definition 1 (fuzzy moving object)

Let 0o e DB be amoving object. To each moving object, we
assign afuzzy moving object function oy, IR>= IR Ueo
for whichthe following condition holds:

Il Ofyz2y(%: y)dxdy = 1

IR2

Figure 1, 2 and 3 show different fuzzy moving object func-
tions oy, for two dimensional moving objects o. The func-
tions oy, assigns a probability value o5,,(X, y) > O'to each
possible position (x, y) of o. Inthefollowing, we usetheterm
fuzzy moving object for both the object 0 and the correspond-
ing function o5,

4. Clustering Fuzzy Moving Objects

In this section, we present three different approaches
which enableusto cluster fuzzy moving objects. All three ap-
proaches are based on sampling. In Section 4.1, wedetermine
for each object 0 aconcrete position based on the correspond-
ing fuzzy moving object function. We use the resulting sam-
ple points as input parameters for the clustering algorithms.
In Section 4.2, we carry out the clustering algorithms based
on thedistance expectation val ues between our fuzzy moving
objects. The distance expectation values between our fuzzy
moving objects are again computed by means of sampling. In
Section 4.3, we determine a medoid clustering from a set of
sample clusterings. The sample clusterings are computed as
shown in Section 4.1. Then, we use suitable distance func-
tions (cf. Section 5) between our sample clusteringsto deter-
mine the corresponding medoid clustering.

4.1. Sampling

The most straightforward approach for clustering fuzzy
moving objectsisto assign to each moving object 0 an exact
position according to its spatial density-probability function
Oruzy Figure 4 showstwo possible positionsp’ and p” of our
fuzzy moving object 0. Although position p’ is much more
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Figure 4. Two possible positions p’ and p’
of a moving object o.

likely, itisalso possiblethat oisat positionp” . For eachfuzzy
object 05, We assume apositionp IR?. We can then apply
any given clustering algorithm (cf. Section 2.1) to our fuzzy
moving objects. The similarity between two fuzzy moving
objects 0y, and 0’ is then determined by an application
dependent distance function, e.g. the Euclidean distance or
thenetwork distance, betweentheassumed positionspandp’.
Based on this simple similarity measure between two fuzzy
objects, we can apply any standard clustering al gorithm.

Note that the thereby created clustering heavily depends
on what positions we assumed for our fuzzy moving objects.
Figure 5, for instance, shows a density-based clustering [7]
based on sample positions. The resulting sample clustering
does not reflect the intuitive clustering. If we look at the fig-
ure, we would rather derive a clustering Cl = {{o,, 0},
{03, 0,}} which groups o, and o, together and o5 and 0,. On
the other hand, the sample clustering groups o, and o5 togeth-
er and assigns the objects 0, and 0, to noise.

4.2. Distance Expectation Values

Inthissection, weintroducethe distance expectation value
between fuzzy moving objects. This similarity measure be-
tween fuzzy moving objects is based on distance functions
which do not express the similarity between two fuzzy mov-
ing objects by asingle numerical value. Instead, we propose
to use fuzzy distance functions, where the similarity between
two objects is expressed by means of a probability function
which assigns a probability value to each possible distance
value. Then, we carry out the clustering a gorithms based on
the expectation values of the fuzzy distance functions (cf.
Figure 6).

Definition 2 (fuzzy distance function)

Let d: O x O — IR) be a distance function, and let
P(a<d(o, 0') < b) denotethe probability that d(o, 0’) isbe-
tween aand b. Then, aprobability density function pg;: Ox O
— (IR} = IRy U ) iscalled afuzzy distance function if the
following condition holds:

b
P(a<d(o,0)<h) = [py(o, 0)(x)dx
a
If thedistancet = d(0,0’) between two objects can exactly
be determined, the fuzzy distance function p,is equal to the
dirac-delta-function 9, i.e. p4(0, 0')(X) = 8(x-1) [2]. Thusthe
traditional approach can beregarded asaspecial case of Def-
inition 2.

0 (1,y) 1,

Based on sampling,

0, and o5 are grouped
together, and o, and o,
2y (x,y) are assigned to noise.

0L (X, Y)

=

Figure 5. Clustering moving objects based on sampling.

As traditional algorithms can only handle distance func-
tions which yield a unique distance value, we propose to ex-
tract the distance expectation value from these fuzzy distance
functions. The distance expectation value E;: O x O — IRj
representsthefuzzy distancefunctioninthebest possibleway
by one single value E4(0, 0) = [~ x- py(0, 0)(x)dx (cf. Fig-
ure 6b). -

Although, this distance expectation value expresses the
distance between two fuzzy moving objectsin the best possi-
ble way, clustering based on these expectation values might
be mideading. Figure 7, for instance, showsthe computation
of the core object condition for afuzzy moving object 0. Den-
sity based clustering algorithms like DBSCAN [7], for in-
stance, decide for each object o whether MinPts objects are
located within an e—range of o. If thisisthe case, wecall oa
core object. Although, the object oin Figure 7adoesnot seem
tobelocatedinavery densearea, it isacore object according
to the distance expectation approach. This holds as the dis-
tance expectation value between o and MinPts=4 other ob-
jectsis smaller than €. On the other hand, it is very unlikely
that all MinPtsobjectsareindeed located in N,(0). Therefore,
the probability that o is a core object isvery small. In Figure
7b the reverse situation is sketched. Object o is located in a
very dense area but there do not exist MinPts objects o' for
which E4(0, 0') < € holds. Therefore, 0 isno core object ac-
cording to the distance expectation approach, although it is
very likely that there exist MinPts elements o' for which
d(o, 0') <& holds. To sum up, clustering based on the dis-
tance expectation values might be misleading.

probability

o  distance density function distance

b) fEd(o, 0) = [7_x-py(0, 0)(x)dx

} Ll
‘0 expected distance value  distance

Figure 6. Fuzzy distance functions.
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coreobject according tothe ap-
proach based on the distance
expectation values Eg.

no core object according to the ap-
proach based on the distance
expectation values Eg.

Figure 7. Determination of the core object property
based on the distance expectation value
(MinPts=4).

4.3. Medoid Clustering

Inthissection, we propose athird approach whichisbased
on the computation of sample clusterings. As shown in Sec-
tion 4.1, we can compute a clustering of our moving objects
based on sampling. Obviously, we can compute several of
these sample clusterings. The question at issueiswhichisthe
most suitabl e of these sample clusterings. Theideaof thispa
per isthat we propose to compute the medoid clustering from
these sample clusterings. In order to determine the average
clustering, we need suitable distance functions between the
sample clusterings (cf. Section 5). If we assume that we have
functions which express the similarity between two cluster-
ings, we can assign to each clustering Cl aclustering ranking
value (cf. Definition 3) which sumsup al the distancesto all
theother clusterings. The clustering with the smallest ranking
valueis called the medoid clustering (cf. Definition 4).

Definition 3 (clustering ranking value)

Let DB be adatabase of fuzzy objects, and let Cl, ..., Cl; be
s sample clusterings of DB. Furthermore, let d be a distance
function between clusterings. Then, we assign to each
clustering Cl, aclustering ranking value R;:

R = ¥ d(Cl,Cl)
i=1
j#i
Obvioudly, the clustering having the smallest ranking val-
ue represents the set of clusteringsin the best possible way. It
is called the medoid clustering.

Definition 4 (medoid clustering)

Let DB beaset of fuzzy objects, andlet Cl,, ..., Cl bessample
clusterings of DB. Furthermore, let d be a distance function
between clusterings. Then, Cl; iscalled the medoid clustering
if Vje 1...sR; <R, holds.

Note, that intheexample of Figure5itisvery unlikely that
theclustering Cl = { 0,, 05} isthemedoid clustering, athough
it might be one sample clustering. If we compute, for in-
stance, s=5 clusterings, we might once get the above cluster-
ing, oncewewould assign all objectsto noiseand threetimes

the sample clusterings areidentical to theintuitive clustering
Cl ={{0;, 05}, {03, 0,}}. Suitable metric distance functions
between clusterings (cf. Section 5) would detect that the me-
doid clustering corresponds to the intuitive clustering
Cl ={{0,0,},{03, 03}}.

Similarly, if welook at the example presented in Figure 7,
our medoid clustering approach seems to be more suitable
than the approach based on the distance expectation values.
Although in Figure 7a it might be possible that one sample
clustering would decidethat o isacore object, the majority of
the samplings would decide that o is no core object. There-
fore, it is very likely that the resulting medoid clustering
would classify o correctly, i.e. assign it to noise. Similar, in
Figure7bitisvery likely that our medoid clustering approach
would decidethat oisacoreobject, and, again, would classify
the object correctly.

Inthefollowing, wewill present an approach which helps
usto compute the medoid clustering efficiently, if we assume
that several slave computers are available.

4.3.1. Parallelization. If we assume that L different dave
computersare available, we can easily parallelize the compu-
tation of the s sample clusterings. Obvioudly, each slave has
a most [s/L] clusterings to compute. Each slave can inde-
pendently computeits clusterings and send thefinal resultsto
al the other slaves. So all slaves have the final s clusterings
before the computation of the medoid clustering based on the
ssample clusterings starts.

Asthe computation of the distance measures between the
clusterings can be very time consuming, we propose an ap-
proach which parallelizes the execution of the s- (s—-1)/2
distance computations between our s sample clusterings.

The idea is that a master triggers the computation of the
clustering distances which are then carried out by the avail-
able slaves. Thus, one of the primary goalsisthat all slaves
have an equal workload. To achievethat, the master keepsan
sx smatrix M which indicates which distance computations
between clusterings have aready taken place. Furthermore,
the master maintains an ordered list of the clusterings. The
clusteringsare ordered ascendingly according to their current
clustering ranking values. Initially, all ranking values are set
to zero. If adave has computed a distance between two clus-
terings Cl; and Cl;, the master updatesthe corresponding rank-
ing values R and R, of these two clusterings and reorganizes
the sorted list of clusterings. Furthermore, the master indi-
cates in the matrix that the distance between Cl; and Cl; has
been computed.

After initializing the matrix and the sorted list of cluster-
ings, the master continuously checks whether there exist a
slave Swhich is out of work. If this is the case, the master
takesthefirst clustering Cly;, 4 from the sorted list and checks
by means of thematrix M whether al distancesbetween Cly;, 4
and the other s-1 clusterings have aready been computed. If
there is till one distance computation missing, the master
asksthe slave Sto carry out this distance computation. If we



assumethat the distance d between the clusteringsisametric,
i.e. VCI,ClI':(d(CI,CI") > 0) holds, the algorithm terminatesif
all s-1 distance computationsof Cly;, 4 have already been com-
puted. Then, the master knowsthat Cly;, isthe searched me-
doid clustering without any further distance computations.
Note that the ranking value of al the other clusterings can
only increase but never decrease if we carry out further dis-
tance computations. Obvioudly, if the user is not only inter-
ested in the clustering having the smallest ranking value, the
master continues with the above described ranking process.

The approach presented in this section is applicable to ar-
bitrary distance functions between clusterings. In thefollow-
ing section, we introduce concrete distance functions be-
tween clusterings which are wused throughout our
experimental evaluation.

5. Similarity Measures between Clusterings

In the literature there exist some approaches for compar-
ing partitioning [5, 17] and hierarchical [9] clusterings to
each other. All of these approaches do not take noise objects
into consideration which naturally occur when using densi-
ty-based clustering algorithms such as DBSCAN [7] or OP-
TICS[1]. In[13] similarity measures are introduced which
are suitable for generally measuring the similarity between
partitioning and hierarchical clusterings even if noiseis con-
sidered. Inthis section, we adapt these measuresto our needs.
We introduce distance functions between clusterings which
can be used for computing medoid clusterings from sample
clusterings. Based on the similarity measuresfor clusterings,
we introduce quality measures which allow us to compare
fuzzy clustering approaches to reference clusterings. In our
experimental evaluation, we use these quality measures to
compare the approaches presented in Section 4 to areference
clustering which is computed based on the exact positions of
the moving objects'.

Let us first introduce some basic terms necessary for de-
scribing clusterings. The following definitions are rather ge-
neric and can be applied to both reference clusterings and ap-
proximated fuzzy clusterings.

Definition 5 (cluster)
A cluster Cisanon-empty subset of objects from adatabase
DB,i.e. CcDBandC=# Q.

Definition 6 (partitioning clustering)
Let DB beadatabase of arbitrary objects. Furthermore, let C;,
..., C,bepairwisedigoint clustersof DB, i.e. Vi,je 1, ..., n:
i#]=CnC=4d. Then wecal CL,={C,, ..., C;} aparti-
tioning clustering of DB.

Note that due to the handling of noise, we do not demand
from apartitioning clustering CL,={C, ..., C;} that C, U ...
w C,,=DB holds. Each hierarchical clustering can be repre-

1. Inorder to follow the main idea of this paper, you do not
have to understand all details presented in this section. Thus,
you might continue reading with Section 6.

sented by atree. Even the density-based hierarchical cluster-
ing algorithm OPTICS which computes a hierarchical clus-
tering order can be transformed into atree structure by means
of suitable cluster recognition algorithms[1, 4, 20].

Definition 7 (hierarchical clustering)

Let DB beadatabase of arbitrary objects. A hierarchical clus-
tering isatreet,,, Where each subtree t represents a cluster
C,i.et=(C, (t, ...,t))), and the n subtrees t; of t represent
non-overlapping subsets Gy ie Vi,jel ..,nizj =
C,NC, = ACuu .. uC_ < C. Furthermore, the root
node t,, represents the complete database, i.e. C;, = DB.

Again, we do not demand from the n subtreest; of t = (C,
(ty, - ty) that C U ... u G = C; holds.

5.1. Smilarity Measurefor Clusters

Asoutlined in the last section, both partitioning and hier-
archical clusterings consist of flat clusters. In order to com-
pare flat clusters to each other we need a suitable distance
measure between sets of objects. The similarity of two clus-
ters depends on the number of identical objects contained in
both clusters which is reflected by the symmetric set differ-
ence.

Definition 8 (symmetric set difference)

Let C, and C, betwo clusters of adatabase DB. Thenthe sym-
metric set difference d,: 2PB x 2°B — [0..1] and the normal-
ized symmetric set difference d,"™ 2PB x 2PB _ [0..1] are
defined asfollows:

d,(C1. Cy) = [C;UCY—|C;NCy and
norm _ lclucz‘_‘clmCZI
dy" (€1 C) = |C,uUCy

Note that (2°B, d,) and (2PB, d,"'™) are metric spaces.

5.2. Similarity Measurefor Partitioning Clusterings

In this section, we will introduce a suitable distance mea-
sure between sets of clusters. Several approaches for com-
paring two sets Sand T to each other exist in the literature. In
[8] the authors survey the following distance functions: the
Hausdorff distance, the sum of minimal distances, the
(fair-)surjection distance and the link distance. All of these
approaches rely on the possibility to match several elements
in one set to just one element in the compared set which is
guestionable when comparing clusterings to each other.

A distance measure on sets of clusters that demonstrates
to be suitable for defining similarity between two partition-
ing clusteringsis based on the minimal weight perfect match-
ing of sets. This well known graph problem can be applied
here by constructing a complete bipartite graph G=
(Cl, CI', E) between two clusterings Cl and ClI'. Theweight
of each edge (C;, C’j) € CI x CI" inthisgraph G is defined
by the distance d, (C;, Cj) introduced in the last section be-
tween the two clusters Cje Cl and Cje CI'. A perfect
matching isasubset M < Cl x CI' that connects each clus-



ter C; e Cl to exactly one cluster C'; e CI" and vice versa. A
minimal weight perfect matching is a matching with maxi-
mum cardinality and aminimum sum of weights of itsedges.
Since a perfect matching can only be found for sets of egqual
cardinality, it is necessary to introduce weights for un-
matched clusters when defining a distance measure between
clusterings. We propose to penalize each unmatched cluster
by its cardinality. Thereby, large clusters which cannot be
matched are penalized more than small clusters which is a
desired property for an intuitive similarity measure between
partitioning clusterings.

Definition 9 (partitioning clustering distance diaermg"®)
Let DB be adatabase. Let Cl = {Cy, ..., C} and CI' ={C',
wy C' o} betwo clusterings. We assume w.l.0.g. [Cl| < |CI’[.
Let m beamapping that assignsto all C' € CI" aunique num-
berie {1, ..,|CI'|}, denoted by n(CI") = (C'y, ....C' ) -
The family of al possible permutations of CI' is called
I1(CI'). Then the partitioning clustering distance

diadeimgd: 2°° x 2% IR is defined asfollows:

partitioning 1y —
dclustering (C|9C| )—

Icl|

. cl ' ’
neriql(gr) [Z{ldA(Ci’ Cn(i) ) + - %%+1’Cn(i) ’j

Let us note that the partitioning clustering distance is a
specidization of the metric netflow distance [19]. The parti-
tioning clustering distance d&3terng 2(Cl, CI') can be
computed in O(max(|Cl|,|CI’ )®) time using the algorithm pro-

posedin [18].

Based on Definition 9, we can define our final quality cri-
terion which helps to assess the quality of partitioning fuzzy
clusterings to reference clusterings. We compare the costs
for transforming the fuzzy clustering CI"™® into a reference
clustering CI'®, to the costs piling up when transforming
CI"'® first into &, i.e. a clustering consisting of no clusters,
and then transforming & into CI™®".

Definition 10 (fuzzy partitioning clustering quality Qgpc)

Let CI"® be a fuzzy partitioning clustering and CI™ be the
corresponding reference clustering. Then, the fuzzy parti-
tioning clustering quality Qgpc (CI"#, CI'®) is equal to 1 if
ClI'™ = CI'"®, dseit is defined as

digmuten™ (1", CI'
SR (1™, @) + dAin™ (2, CI')

1-

Note that our quality measure Qgpc iS between 0 and 1. If
CI"® and CI"® areidentical, Qqpe (CI™#, CI"™®) = 1 holds. On
the other hand, if the clusterings are not identical and the
clusters from CI® and CI"® have no objects in common,
i.eVC®e CI', VC"™ e CI"™ :C" " C"™ = & holds,
then Q.. (CI™®, CI"®) isequal to 0.

5.3 Similarity Measure for Hierarchical Clusterings

In this section, we first present a similarity measure be-
tween hierarchical clusterings. Based on these distance func-
tions, we then introduce a quality criterion suitable for mea-
suring the quality of fuzzy hierarchical clusterings. As
aready outlined, ahierarchical clustering can be represented
by atree (cf. Definition 7). In order to define a meaningful
quality measure for fuzzy hierarchical clusterings, we need a
suitable distance measure for describing the similarity be-
tween two treest and t'. Note that each node of the trees re-
flectsaflat cluster, and the compl ete treesrepresent theentire
hierarchical clusterings.

A common and successfully applied approach to measure
the similarity between two treesisthe degree-2 edit distance
[24]. It minimizesthe number of edit operations necessary to
transform one tree into the other using three basic operations,
namely the insertion and deletion of a tree node and the
change of anode label.

Definition 11 (cost of an edit sequence)

An edit operation eis the insertion, deletion or relabeling of
anodeinatreet. Each edit operation eisassigned anon-neg-
ative cost c(e). The cost ¢(S) of asequence of edit operations
S={(e, ..., &, isdefined as the sum of the cost of each edit
operation, i.e. ¢(S) = c(e)+...+ c(e,).

Definition 12 (degree-2 edit distance)

Thedegree-2 edit distanceis based on degree-2 edit sequenc-
es which consist only of insertions and deletions of nodes n
with degree(n) <2, and of relabelings. Then, the degree-2
edit distance between two treest andt’, ED,(t, t'), isthemin-
imum cost of al degree-2 edit sequencesthat transformt into
t' orviceversa: ED,(t, t') = min{ c(9)| Sisadegree-2 edit se-
guencetransformingtintot’}.

Our final distance measure between two hierachical clus-
teringsis based on the degree-2 edit distance.

hierarchical

Definition 13 (hierarchical clustering distance d;stering )

Let DB beadatabase. Let Cl and CI' betwo hierarchical clus-

terings represented by the treest and t'. Then, the hierarchi-

cal clustering distance dijceeshs?! is defined by:
dfiScaing ™ (Cl, CI") = EDy(t, 1)

Itisimportant to notethat the degree-2 edit distanceiswell
defined. Two trees can always be transformed into each other
using only degree-2 edit operations. Thisistrue becauseit is
possibleto construct any tree using only degree-2 edit opera-
tions. As the same istrue for the deletion of an entire tree, it
is always possible to delete t completely and then build t’
from scratch resulting in adistancevaluefor thispair of trees.
In [24] Zhang, Wang, and Shasha presented an algorithm
which computes the degree-2 edit distance in O(|t| - |t| - D)
time, where D denotes the maximum fanout of the trees, and
[t| and |t’ | denote the number of tree nodes.

We propose to set the cost ¢(e) for each insert and delete
operation eto 1. Furthermore, we propose to use the normal-



ized symmetric set difference d,""™ as introduced in Defini-
tion 8 to weight the relabeling cost. Using the normalized
version allows us to define a well-balanced trade-off be-
tween the relabeling cost and the other edit operations, i.e.
the insert and del ete operations.

Based on the described similarity measure between hier-
archical clusterings, we can define a quality measure for
evaluating fuzzy hierarchical clustering agorithms. We
compare the costs for transforming afuzzy hierarchical clus-
tering Cl " modelled by atree t @ into a reference clus-
tering CI"® modelled by atreet'®, to the costs piling up when
transforming t @ first into an “empty” tree t™, which does
not represent any hierarchical clustering, and then transform-
ing t" into t'®.

Definition 14 (fuzzy hierarchical clustering quality Qgyc)
Let t' be atree representing a hierarchical reference cluster-
ing CI'® and t"' a tree consisting of no nodes at all, repre-
senting an empty clustering. Furthermore, let t 2 be atree
representing afuzzy hierarchical clustering Cl . Then, the
fuzzy hierarchical clustering quality Qg (CIM®, CI'¥) is
equal to 1if CI"¥ = CI"@, elseit is defined as:

hierarchical , ~ fuzzy .ref
dc ,CT)

1— lustering (C

: - ; : :
dijerarshieal c MY gy + dijeahical (g, e
As the hierarchical clustering distance dijosime? is a
metric [24], the fuzzy hierarchical clustering quality Qg iS
between 0 and 1.

6. Evaluation

In this section, we present adetailed experimental evalua-
tion which demonstrates the characteristics and benefits of
our new approach.

6.1. Settings

Astest data sets for the effectiveness eval uation we used
1.000 2-dimensional points arbitrarily distributed in a data
space [0..1] x [0..1]. For the efficiency evaluation, we used
10.000 of these points. The points moved at each timetick
with an arbitrary velocity v e [0..v,,,] in an arbitrary direc-
tion. Figure 8 shows that the higher the value of v, s, the
more uncertain isthe position of the object after onetimetick.
Each position within the circular uncertainty area of the ob-
ject is equaly likely. As parameter for the experiments we
used theradiusr; of the uncertainty areaU.

In order to evaluate the quality of the various algorithms,
wearbitrarily distributed the pointsin the data space. Theref-
erence clustering, was created by letting the points move as
described above. A sample clustering was created by choos-
ing one point arbitrarily from the uncertainty area of the ob-
ject. From theresulting s sampl e clusteringswe computed the
medoid clustering by using the distance function of Defini-
tion 9 and 13 between clusterings. For the fuzzy clustering
based on the distance expectation values, we used also the

current position
of the object

last position
of the object

uncertainty areaU
related to Vi

uncertainty area U’
related to V' oy > Vinax

)\
o

the uncertainty area U’

Figure 8. Test data set.

sample positions in the uncertainty areas. The distance be-
tween two moving objects is then equal to the average dis-
tance between their sample points.

The qualities of the fuzzy clusteringsw.r.t. the exact clus-
terings were measured by the quality criterionsintroduced in
Section 5. For DBSCAN [7] and for k-means [16], we used
the one introduced in Definition 10, and for OPTICS[1] and
for Single-Link [12], we used the one introduced in
Definition 14.

If not otherwise stated, we used a sample rate s=10
throughout our experiments. For all clustering agorithms, we
used aparameter setting which created aclustering according
tointuition. For DBSCAN, for instance, we used a parameter
setting so that we approximately detected 20 clusterscontain-
ing 80% of all objects.

All clustering algorithms, the used quality measures, and
the heuristic to accelerate the computation of the reference
clustering were implemented in Java 1.4. The experiments
wererun on aWindowslaptop with a730 MHz processor and
512 MB main memory.

6.2. Experiments

6.2.1. Sample-Clusterings. Inafirst set of experiments, we
investigated the maximum and minimum quality resulting
from sampling w.r.t. the reference clustering. We compared
these quality values to the quality achieved by the medoid
clustering. Figure 9 showsclearly, that for al clustering algo-
rithms the quality decreases with an increasing uncertainty
area. Furthermore, we can seethat there exist quite noticeable
quality differences between the best and the worst sample
clustering. Thisis especially true for interesting uncertainty
values U which are neither too small nor too large. If the un-
certainty areaistoo large, the quality is around zero for al
sample clusterings, which means that the sample clusterings
and the reference clustering are quite different from each oth-
er. On the other hand, if the uncertainty areaisvery small, all
sample clusterings are almost identical to the reference clus-
tering resulting in high quality values. Furthermore, the fig-
ure shows that the quality of the medoid clustering is some-
where in between the best and the worst sample clustering,
and often quite closeto the best sampleclustering. Obviously,
using the medoid clustering instead of an arbitrary sample
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clustering reducesthe probability that the determined cluster-
ing is very dissimilar to the reference clustering. Further-
more, let usnotethat Figure 9 also indirectly demonstratesthe
suitability of thedistancefunctionsand quality measures pre-
sented in Section 5.

As the partitioning density based clustering paradigm
seems to be the most important and adequate clustering ap-
proach for moving objects[21], we concentratein thefollow-
ing on theflat density-based clustering algorithm DBSCAN.

Figure 10 shows that the quality of the medoid clustering
increases with increasing sampling rate s. This holds espe-
cially for small values of s. For values of shigher than 10 the
increase of the quality is only marginal indicating that rather
high values of sare not necessary to produce good clustering
results. Furthermore, we can see that the quality of the worst
sample clustering decreases with increasing sample rate s.
Likewise, the quality of the best sample clustering increases.
Obviousdly, the higher the samplerateis, the morelikely it is
that we generate aclustering which hasavery small or avery
high distance to the reference clustering. For the other clus-
tering algorithms we made basically the same observations.

6.2.2. Distance Expectation Values. In Figure 11, the re-
sults of the clustering approaches based on the distance ex-
pectation value and the medoid clustering are compared to
each other. Figure 11ashowsclearly, that for high uncertainty
values the quality achieved by the medoid clustering ap-
proach is much higher than the quality achieved by a DB-
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Figure 10. Medoid Clustering (DBSCAN) (r, = 0.001).
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SCAN run based on the distance expectation values. It is
noteworthy, that in this case often the worst sampleclustering
achieved higher quality values than the distance expectation
approach. Theexplanationfor the bad performanceof thedis-
tance expectation approach can be found in Figure 11b. Al-
though the precision of the detected core objectsisvery high,
the recall is very low, i.e. the approach fails to detect many
core objects. Thus we have very often the situation depicted
in Figure 7b. Let us note that for small uncertainty valuesthe
difference between the two approachesis less significant.

6.2.3. Other Comparison Partners. In[14] adensity-based
approach for clustering multi-represented objects was pro-
posed which is based on DBSCAN. The authors propose for
sparse data sets, the union-method which assumes that an ob-
ject is a core object if MinPts objects are found within the
union of all e-neighborhoods of all representations. Further-
more, the intersection method was introduced where an ob-
ject isacore-abject, if it isacore object in each representa-
tion. We used these two approaches as comparison partners
where arepresentative correspondsto asamplevalue. Figure
12 shows again that our medoid clustering approach outper-
forms the union and intersection method by far.

6.2.4. Efficiency. Inalast set of experiments, weinvestigated
the efficiency of our approaches. In al tests we did not use
any index structure and all data was kept in main memory.
Figure 13 showsclearly that if only one daveisavailablethe
single sampling approach is by far the most efficient ap-
proach. Obviously, the distance expectation approach is
much slower due to the much more expensive distance com-
putation between two objects. Note that the runtimes of the
union/intersection approach are similar to the ones of the ex-
pectation approach. When using only one slave, the medoid
1
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Figure 12. Union / Intersection Approach (DBSCAN).
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Figure 13. Efficiency Evaluation (DBSCAN).
sampling rate s = 10, uncertainty radiusr; = 0.001

approach is even slower than the distance expectation ap-
proach because we have to determine the medoid clustering
from the sample clusterings. The more slave computers are
available, the more benefits our medoid approach. If s(=sam-
ple rate) slave computers are available, we can carry out a
sample clustering on each slave. Therefore, we have an al-
most linear speed-up until sslavesareused. For ahigher num-
ber of daves, we can only parallelize the computation of the
medoid clusterings from the sample clusterings, but not the
generation of the sample clusterings. Therefore, we suggest
to use sslaves for the computation of the medoid clustering.

Inall our tests, we noticed that the heuristic introduced in
Section 4.3.1 saves on average 12% of all distance computa-
tionsbetweentwo clusterings. Theratio betweentheruntimes
needed for the determination of the sampleclusteringsand the
runtimes needed for the determination of the medoid cluster-
ing from these sampl e clusterings depends on the ratio of ob-
jects to be clustered and on the detected number of clusters.
If we detect only asmall number of clusters, the computation
of the distances between two clusterings can be done effi-
ciently when using the distance measures introduced in
Section 5. On the other hand, distance computations between
clusterings containing many clusters are rather expensive.

To sum up, the medoid approach is the method of choice
for clustering fuzzy moving objects, especialy if several
davesare available.

7. Conclusions

In thispaper, we tackeled the complex problem of cluster-
ing moving object with uncertain positions. In order to do this
effectively, weintroduced the concept of medoid clusterings.
We showed that these medoid clusteringsare more suitableto
cluster fuzzy moving objectsthan other approacheswhich are
purely based on sampling or which are based on the distance
expectation val ues between the fuzzy objects.

In our future work, we will show that density probability
functions describing the positions of fuzzy moving objects
can aso beneficially be used in the context of location-based
services.
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