
Clustering Moving Objects via Medoid Clusterings

Hans-Peter Kriegel, Martin Pfeifle
Institute for Computer Science

University of Munich, Germany
{kriegel, pfeifle}@ifi.dbs.lmu.de

Abstract

Modern geographic information systems do not only have
to handle static information but also dynamically moving ob-
jects. Clustering algorithms for these moving objects provide
new and helpful information, e.g. jam detection is possible by
means of these algorithms. One of the main problems of these
clustering algorithms is that only uncertain positional infor-
mation of the moving objects is available. In this paper, we
propose clustering approaches which take these uncertain po-
sitions into account. The uncertainty of the moving objects is
modelled by spatial density functions which represent the
likelihood that a certain object is located at a certain position.
Based on sampling, we assign concrete positions to the ob-
jects. We then cluster such a sample set of objects by standard
clustering algorithms. Repeating this procedure creates sev-
eral sample clusterings. To each of these sample clusterings a
ranking value is assigned which reflects its distance to the oth-
er sample clusterings. The clustering with the smallest rank-
ing value is called the medoid clustering and can be regarded
as the average clustering of all the sample clusterings. In a de-
tailed experimental evaluation, we demonstrate the benefits
of these medoid clusterings. We show that the medoid cluster-
ing is more suitable for clustering moving objects with fuzzy
positions than arbitrary sample clusterings or clusterings
based on the distance expectation values between the fuzzy
positions of the moving objects.

1. Introduction

Clustering algorithms aim at grouping similar objects to-
gether, whereas dissimilar objects are assigned to different
clusters. In the area of clustering moving objects, the similar-
ity criterion is the distance between the objects. If we cluster
objects moving on a spatial network [21], the distance be-
tween the objects on the network is used for clustering. If we
aim at clustering objects which can freely move, the Euclide-
an distance between the objects can be used to measure the
similarity, i.e. the closeness, between the objects [15].

Clustering moving objects has many different application
ranges. For instance, clustering algorithms on a spatial net-
work can be used for traffic jam detection and prediction.

Clustering algorithms on freely moving objects can be used
for weather forecasting [6], for detecting outliers, or for de-
tecting animal migrations.

The problem of clustering moving objects is that often no
accurate positional information is available. For instance, due
to technical problems, the GPS system might not be able to
pinpoint the exact positions of the moving objects. Another
reason for uncertain positional information is that due to effi-
ciency reasons it is not possible to update the exact position
of the objects continuously. Clustering algorithms therefore
have to deal with uncertain, outdated positional information.

In this paper, we propose an approach for clustering mov-
ing objects with uncertain positional information. We moti-
vate a fuzzy modelling approach for describing moving ob-
jects and discuss several strategies which can be used for
clustering these objects with standard clustering algorithms.
After discussing the problems with the most straightforward
approaches for clustering moving objects, we introduce an
approach which uses the new concept of clustering rankings.
Based on suitable distance functions between clusterings, we
determine the medoid clustering from a set of sample clust-
gerings. The medoid clustering can be regarded as the clus-
tering which represents all sample clusterings in the best pos-
sible way. Like ranking queries in databases, we can now
return the sample clusterings according to their ranking val-
ues. The first returned clustering is the medoid clustering. In
a give-me-more manner, the user can ask for more cluster-
ings. Thus, the user gets a better picture of all clusterings
which are possible when we cluster moving objects with un-
certain positional information.

The remainder of this paper is organized as follows. In
Section 2, we present the related work in the area of clustering
moving objects. In Section 3, we introduce our fuzzy model-
ling approach which takes the uncertain positions of the mov-
ing objects into account. In Section 4, we present different ap-
proaches for clustering fuzzy moving objects. Our final
approach relies on distance functions between clusterings.
These distance functions are introduced in Section 5. In Sec-
tion 6, we present our experimental evaluation, and conclude
the paper in Section 7 with a short summary and a few re-
marks on future work.

17th Int. Conf. on Scientific and Statistical Database Management (SSDBM'05), Santa Barbara, CA, 2005.

2. Related Work

In this section, we will present the related work in the area
of clustering moving objects. In Section 2.1, we first classify
well-known clustering algorithms according to different cat-
egorization schemes. Then, in Section 2.2, we present the ba-
sic concepts of fuzzy clustering algorithms, and describe how
the approach of this paper differs from the fuzzy clustering
approaches presented in the literature. Finally, in Section 2.3,
we present various approaches for clustering moving objects
as presented in the literature.

2.1. Clustering Algorithms

Clustering algorithms can be classified along different, in-
dependent dimensions. One well-known dimension catego-
rizes clustering methods according to the result they produce.
Here, we can distinguish between hierarchical and partition-
ing clustering algorithms [12]. Partitioning algorithms con-
struct a flat (single level) partition of a database D of n objects
into a set of k clusters such that the objects in a cluster are
more similar to each other than to objects in different clusters.
Hierarchical algorithms decompose the database into several
levels of nested partitionings (clusterings), represented for
example by a dendrogram, i.e. a tree that iteratively splits D
into smaller subsets until each subset consists of only one ob-
ject. In such a hierarchy, each node of the tree represents a
cluster of D.

Another dimension according to which we can classify
clustering algorithms is from an algorithmic point of view.
Here we can distinguish between optimization based or dis-
tance based algorithms and density based algorithms. Dis-
tance based methods use the distances between the objects di-
rectly in order to optimize a global criterion. In contrast,
density based algorithms apply a local cluster criterion. Clus-
ters are regarded as regions in the data space in which the ob-
jects are dense, and which are separated by regions of low ob-
ject density (noise).

The following representatives of the 4 categories are used
throughout our experimental evaluation:

2.2 Fuzzy Clustering
In real applications there is very often no sharp boundary

between clusters so that fuzzy clustering is often better suited
for the data. Membership degrees between zero and one are
used in fuzzy clustering instead of crisp assignments of the
data to clusters. The most prominent fuzzy clustering algo-
rithm is the fuzzy c-means algorithm, a fuzzification of the
partitioning clustering algorithm k-means. For more details
about fuzzy clustering algorithms, we refer the reader to [11].

In contrast to fuzzy clustering algorithms where objects
are assigned to different clusters, we cluster in this paper
fuzzy object representations. The fuzzy spatial objects are as-
signed to exactly one cluster.

2.3. Clustering Moving Objects

In this section, we present some recent approaches from
the literature dealing with the problem of clustering moving
objects.

Yiu and Mamoulis [21] tackled the complex problem of
clustering moving objects based on a spatial network. Here,
the distance between the objects is defined by their shortest
path distance over the network. Based on this distance mea-
sure they proposed variants of well-known clustering algo-
rithms.

In [15], Han et al. applied micro-clustering [23] to moving
objects. They propose techniques to keep the spatial exten-
sion of the moving micro-clusters small. To detect crucial
events, e.g. split events, they measured the compactness of
the moving micro-clusters by means of their bounding rect-
angles. If the size of the bounding rectangle exceeds a certain
threshold, the micro-cluster is split. Different clustering algo-
rithms can then be carried out on the moving micro-clusters
instead of the individual points. In contrast to the experimen-
tal approach presented in [15], Har-Peled presented a more
theoretical approach which also sacrifices quality in order to
gain efficiency [10].

Clustering moving objects is not only interesting in its
own, but can also beneficially be used for spatio-temporal se-
lectivity estimation [22]. Zhang and Lin proposed a new clus-
tering based spatio-temporal histogram, called CSTH, which
allows to estimate the selectivity of predictive spatio-tempo-
ral queries accurately.

3. Modelling Fuzzy Moving Objects

In this section, we motivate the use of spatial density prob-
ability functions for describing the location of moving ob-
jects. This approach is quite similar to the approach presented
by Behr and Güting [3] which use “degree or affinity” values
to describe the probability that a certain point is included in a
fuzzy spatial object.

Normally modern GPS systems can determine the exact
position of moving objects very accurately. But, for instance,
in the case of a war, this precision is reduced due to security
aspects. Although, the system assigns a position
p(o, t) = (x, y) to each object o at a certain time t, we cannot
be sure that the object o is located at the point (x, y) at time t.
Nevertheless, it is very likely, that o is close to (x, y). This
closeness can be modelled by assigning a 2-dimensional
Gaussian density probability function ofuzzy to the object (cf.
Figure 1). The center of this probability function is at point
(x, y) and the standard deviation σ is determined by the accu-
racy of the GPS system.

distance based density based

partitioning k-means[16] DBSCAN[7]

hierarchical Single-Link[12] OPTICS[1]

There exist other examples where it is beneficial to assign
a 2-dimensional Gaussian distribution function ofuzzy to an ob-
ject o. For instance, animals or pedestrians which can freely
move in the 2-dimensional space with a certain maximum ve-
locity can be modelled by such a spatial density function. In
order to cluster these objects effectively, it also seems reason-
able to describe their positions by a 2-dimensional density
probability function (cf. Figure 1). The center of this proba-
bility function is the last sent position of the object. The stan-
dard deviation σ depends on the maximum velocity of the ob-
ject and the time passed since the object last sent its exact
position.

If we assume that the object moves on a spatial network,
e.g. cars moving on roads, we can assign a 1-dimensional
Gaussian distribution function to the object (cf. Figure 2). The
center of this probability function is a certain distance l away
from the last sent position of the object. The value of l de-
pends on the average velocity vavg and the time tlast which
passed since the object last sent its exact position. The stan-
dard deviation σ depends on the difference between the max-
imum and minimum assumed velocity, i.e. vmax - vmin, and on
tlast.

Finally, if we, for instance, follow the approach presented
in [15], we also cannot determine an exact position of an ob-
ject o at clustering time. But as we know that the object is lo-
cated within the bounding rectangle of the moving micro-
cluster, we can assign to each object of the micro-cluster a
density-probability function which assigns to each position a
value 1/Abox where Abox denotes the area of the bounding rect-
angle. Note that we assign to each object of a micro-cluster
the same density probability function (cf. Figure 3).

As shown in the above examples the position of a moving
object cannot be described by only one single positional val-

ue. A better way, to describe a fuzzy moving object is to as-
sign to each object a set of possible positions. To each of these
positions, we assign a probability value which indicates the
likelihood that this position is the exact one. Obviously, the
sum of all these probability values is equal to 1.

Definition 1 (fuzzy moving object)
Let o ∈ DB be a moving object. To each moving object, we
assign a fuzzy moving object function ofuzzy: IR

2 →
for which the following condition holds:

Figure 1, 2 and 3 show different fuzzy moving object func-
tions ofuzzy for two dimensional moving objects o. The func-
tions ofuzzy assigns a probability value ofuzzy(x, y) > 0 to each
possible position (x, y) of o. In the following, we use the term
fuzzy moving object for both the object o and the correspond-
ing function ofuzzy.

4. Clustering Fuzzy Moving Objects

In this section, we present three different approaches
which enable us to cluster fuzzy moving objects. All three ap-
proaches are based on sampling. In Section 4.1, we determine
for each object o a concrete position based on the correspond-
ing fuzzy moving object function. We use the resulting sam-
ple points as input parameters for the clustering algorithms.
In Section 4.2, we carry out the clustering algorithms based
on the distance expectation values between our fuzzy moving
objects. The distance expectation values between our fuzzy
moving objects are again computed by means of sampling. In
Section 4.3, we determine a medoid clustering from a set of
sample clusterings. The sample clusterings are computed as
shown in Section 4.1. Then, we use suitable distance func-
tions (cf. Section 5) between our sample clusterings to deter-
mine the corresponding medoid clustering.

4.1. Sampling
The most straightforward approach for clustering fuzzy

moving objects is to assign to each moving object o an exact
position according to its spatial density-probability function
ofuzzy. Figure 4 shows two possible positions p’ and p’’ of our
fuzzy moving object o. Although position p’ is much more

Figure 1. Fuzzy object representations for
freely moving objects.

y

ofuzzy(x, y)

possible exact
position of o

x

x

Figure 2. Fuzzy object representations for
objects moving on a spatial network.

road
X

last positional information
of object o at time tlast

ofuzzy(x, y)

σ k vmax vmin–() tclustering tlast–() e.g. k 0.7=(),⋅⋅=

l vaverage tclustering tlast–()⋅=

l

σ

Figure 3. Fuzzy object representations for objects
within a moving micro-cluster.

x

x

x

o

o’

o’’
ofuzzy(x, y) =

o’fuzzy(x, y) =

o’’fuzzy(x, y)

ofuzzy

IR0
+ ∞∪

ofuzzy x y,() x ydd

IR
2
∫∫ 1=

likely, it is also possible that o is at position p’’. For each fuzzy
object ofuzzy, we assume a position p ∈ IR2. We can then apply
any given clustering algorithm (cf. Section 2.1) to our fuzzy
moving objects. The similarity between two fuzzy moving
objects ofuzzy and o’fuzzy is then determined by an application
dependent distance function, e.g. the Euclidean distance or
the network distance, between the assumed positions p and p’.
Based on this simple similarity measure between two fuzzy
objects, we can apply any standard clustering algorithm.

Note that the thereby created clustering heavily depends
on what positions we assumed for our fuzzy moving objects.
Figure 5, for instance, shows a density-based clustering [7]
based on sample positions. The resulting sample clustering
does not reflect the intuitive clustering. If we look at the fig-
ure, we would rather derive a clustering Cl = {{o1, o2},
{o3, o4}} which groups o1 and o2 together and o3 and o4. On
the other hand, the sample clustering groups o2 and o3 togeth-
er and assigns the objects o1 and o4 to noise.

4.2. Distance Expectation Values
In this section, we introduce the distance expectation value

between fuzzy moving objects. This similarity measure be-
tween fuzzy moving objects is based on distance functions
which do not express the similarity between two fuzzy mov-
ing objects by a single numerical value. Instead, we propose
to use fuzzy distance functions, where the similarity between
two objects is expressed by means of a probability function
which assigns a probability value to each possible distance
value. Then, we carry out the clustering algorithms based on
the expectation values of the fuzzy distance functions (cf.
Figure 6).

Definition 2 (fuzzy distance function)
Let d: O × O → IR0

+ be a distance function, and let
 denote the probability that d(o, o’) is be-

tween a and b. Then, a probability density function pd: O × O
→ (IR0

+ →) is called a fuzzy distance function if the
following condition holds:

If the distance τ = d(o,o’) between two objects can exactly
be determined, the fuzzy distance function pd is equal to the
dirac-delta-function δ, i.e. pd(o, o’)(x) = δ(x-τ) [2]. Thus the
traditional approach can be regarded as a special case of Def-
inition 2.

As traditional algorithms can only handle distance func-
tions which yield a unique distance value, we propose to ex-
tract the distance expectation value from these fuzzy distance
functions. The distance expectation value Ed: O × O → IR0

+

represents the fuzzy distance function in the best possible way
by one single value (cf. Fig-
ure 6b).

Although, this distance expectation value expresses the
distance between two fuzzy moving objects in the best possi-
ble way, clustering based on these expectation values might
be misleading. Figure 7, for instance, shows the computation
of the core object condition for a fuzzy moving object o. Den-
sity based clustering algorithms like DBSCAN [7], for in-
stance, decide for each object o whether MinPts objects are
located within an ε−range of o. If this is the case, we call o a
core object. Although, the object o in Figure 7a does not seem
to be located in a very dense area, it is a core object according
to the distance expectation approach. This holds as the dis-
tance expectation value between o and MinPts=4 other ob-
jects is smaller than ε. On the other hand, it is very unlikely
that all MinPts objects are indeed located in Nε(o). Therefore,
the probability that o is a core object is very small. In Figure
7b the reverse situation is sketched. Object o is located in a
very dense area but there do not exist MinPts objects o’ for
which holds. Therefore, o is no core object ac-
cording to the distance expectation approach, although it is
very likely that there exist MinPts elements o’ for which

 holds. To sum up, clustering based on the dis-
tance expectation values might be misleading.

Figure 4. Two possible positions p’ and p’
of a moving object o.

ofuzzy(x, y)

p’’
p’x

x

P a d o o',() b≤ ≤()

IR0
+ ∞∪

P a d o o',() b≤ ≤() pd o o',() x() xd
a

b

∫=

Ed o o',() x p⋅ d o o',() x() xd
∞–

∞
∫=

Figure 5. Clustering moving objects based on sampling.

Based on sampling,
o2 and o3 are grouped
together, and o1 and o4
are assigned to noise.

o1
fuzzy (x, y)

o2
fuzzy (x, y)

o3
fuzzy (x, y)

o4
fuzzy (x, y)

Figure 6. Fuzzy distance functions.

distance0

distance0

expected distance value

distance density function

probability
|area| = 1

Ed o o',() x p⋅ d o o',() x() xd∞–
∞
∫=

pd(o,o’)
a)

b)

Ed o o',() ε≤

d o o',() ε≤

4.3. Medoid Clustering

In this section, we propose a third approach which is based
on the computation of sample clusterings. As shown in Sec-
tion 4.1, we can compute a clustering of our moving objects
based on sampling. Obviously, we can compute several of
these sample clusterings. The question at issue is which is the
most suitable of these sample clusterings. The idea of this pa-
per is that we propose to compute the medoid clustering from
these sample clusterings. In order to determine the average
clustering, we need suitable distance functions between the
sample clusterings (cf. Section 5). If we assume that we have
functions which express the similarity between two cluster-
ings, we can assign to each clustering Cl a clustering ranking
value (cf. Definition 3) which sums up all the distances to all
the other clusterings. The clustering with the smallest ranking
value is called the medoid clustering (cf. Definition 4).

Definition 3 (clustering ranking value)
Let DB be a database of fuzzy objects, and let Cl1, ..., Cls be
s sample clusterings of DB. Furthermore, let d be a distance
function between clusterings. Then, we assign to each
clustering Cli a clustering ranking value Ri:

Obviously, the clustering having the smallest ranking val-
ue represents the set of clusterings in the best possible way. It
is called the medoid clustering.

Definition 4 (medoid clustering)
Let DB be a set of fuzzy objects, and let Cl1, ..., Cls be s sample
clusterings of DB. Furthermore, let d be a distance function
between clusterings. Then, Cli is called the medoid clustering
if holds.

Note, that in the example of Figure 5 it is very unlikely that
the clustering Cl = {o2, o3} is the medoid clustering, although
it might be one sample clustering. If we compute, for in-
stance, s = 5 clusterings, we might once get the above cluster-
ing, once we would assign all objects to noise and three times

the sample clusterings are identical to the intuitive clustering
Cl = {{o1, o2}, {o3, o4}}. Suitable metric distance functions
between clusterings (cf. Section 5) would detect that the me-
doid clustering corresponds to the intuitive clustering
Cl = {{o1, o2}, {o3, o4}}.

Similarly, if we look at the example presented in Figure 7,
our medoid clustering approach seems to be more suitable
than the approach based on the distance expectation values.
Although in Figure 7a it might be possible that one sample
clustering would decide that o is a core object, the majority of
the samplings would decide that o is no core object. There-
fore, it is very likely that the resulting medoid clustering
would classify o correctly, i.e. assign it to noise. Similar, in
Figure 7b it is very likely that our medoid clustering approach
would decide that o is a core object, and, again, would classify
the object correctly.

In the following, we will present an approach which helps
us to compute the medoid clustering efficiently, if we assume
that several slave computers are available.

4.3.1. Parallelization. If we assume that L different slave
computers are available, we can easily parallelize the compu-
tation of the s sample clusterings. Obviously, each slave has
at most clusterings to compute. Each slave can inde-
pendently compute its clusterings and send the final results to
all the other slaves. So all slaves have the final s clusterings
before the computation of the medoid clustering based on the
s sample clusterings starts.

As the computation of the distance measures between the
clusterings can be very time consuming, we propose an ap-
proach which parallelizes the execution of the
distance computations between our s sample clusterings.

The idea is that a master triggers the computation of the
clustering distances which are then carried out by the avail-
able slaves. Thus, one of the primary goals is that all slaves
have an equal workload. To achieve that, the master keeps an
s x s matrix M which indicates which distance computations
between clusterings have already taken place. Furthermore,
the master maintains an ordered list of the clusterings. The
clusterings are ordered ascendingly according to their current
clustering ranking values. Initially, all ranking values are set
to zero. If a slave has computed a distance between two clus-
terings Cli and Clj, the master updates the corresponding rank-
ing values Ri and Rj of these two clusterings and reorganizes
the sorted list of clusterings. Furthermore, the master indi-
cates in the matrix that the distance between Cli and Clj has
been computed.

After initializing the matrix and the sorted list of cluster-
ings, the master continuously checks whether there exist a
slave S which is out of work. If this is the case, the master
takes the first clustering Clfirst from the sorted list and checks
by means of the matrix M whether all distances between Clfirst
and the other s-1 clusterings have already been computed. If
there is still one distance computation missing, the master
asks the slave S to carry out this distance computation. If we

Figure 7. Determination of the core object property
based on the distance expectation value

(MinPts=4).

a)
ε

b)

core object according to the ap-
proach based on the distance
expectation values Ed.

ε

no core object according to the ap-
proach based on the distance
expectation values Ed.

o
o

Ri d Cli Clj,()
j 1=
j i≠

s

∑=

j 1…s:Ri Rj≤∈∀

s L⁄

s s 1–() 2⁄⋅

assume that the distance d between the clusterings is a metric,
i.e. holds, the algorithm terminates if
all s-1 distance computations of Clfirst have already been com-
puted. Then, the master knows that Clfirst is the searched me-
doid clustering without any further distance computations.
Note that the ranking value of all the other clusterings can
only increase but never decrease if we carry out further dis-
tance computations. Obviously, if the user is not only inter-
ested in the clustering having the smallest ranking value, the
master continues with the above described ranking process.

The approach presented in this section is applicable to ar-
bitrary distance functions between clusterings. In the follow-
ing section, we introduce concrete distance functions be-
tween clusterings which are used throughout our
experimental evaluation.

5. Similarity Measures between Clusterings

In the literature there exist some approaches for compar-
ing partitioning [5, 17] and hierarchical [9] clusterings to
each other. All of these approaches do not take noise objects
into consideration which naturally occur when using densi-
ty-based clustering algorithms such as DBSCAN [7] or OP-
TICS [1]. In [13] similarity measures are introduced which
are suitable for generally measuring the similarity between
partitioning and hierarchical clusterings even if noise is con-
sidered. In this section, we adapt these measures to our needs.
We introduce distance functions between clusterings which
can be used for computing medoid clusterings from sample
clusterings. Based on the similarity measures for clusterings,
we introduce quality measures which allow us to compare
fuzzy clustering approaches to reference clusterings. In our
experimental evaluation, we use these quality measures to
compare the approaches presented in Section 4 to a reference
clustering which is computed based on the exact positions of
the moving objects1.

Let us first introduce some basic terms necessary for de-
scribing clusterings. The following definitions are rather ge-
neric and can be applied to both reference clusterings and ap-
proximated fuzzy clusterings.

Definition 5 (cluster)
A cluster C is a non-empty subset of objects from a database
DB, i.e. C ⊆ DB and C ≠ ∅.
Definition 6 (partitioning clustering)
Let DB be a database of arbitrary objects. Furthermore, let C1,
..., Cn be pairwise disjoint clusters of DB, i.e. ∀ i, j ∈ 1, ..., n:
i ≠ j ⇒ Ci ∩ Cj = ∅. Then, we call CLp ={C1, ..., Cn} a parti-
tioning clustering of DB.

Note that due to the handling of noise, we do not demand
from a partitioning clustering CLp ={C1, ..., Cn} that C1 ∪ ...
∪ Cn = DB holds. Each hierarchical clustering can be repre-

sented by a tree. Even the density-based hierarchical cluster-
ing algorithm OPTICS which computes a hierarchical clus-
tering order can be transformed into a tree structure by means
of suitable cluster recognition algorithms [1, 4, 20].

Definition 7 (hierarchical clustering)
Let DB be a database of arbitrary objects. A hierarchical clus-
tering is a tree troot where each subtree t represents a cluster
Ct, i.e. t = (Ct, (t1, ...,tn)), and the n subtrees ti of t represent
non-overlapping subsets Cti

, i.e. ∀i, j ∈1, ..., n: i ≠ j ⇒
Cti

∩ Ctj
= ∅ ∧ Ct1

∪ ... ∪ Ctn
 ⊆ Ct. Furthermore, the root

node troot represents the complete database, i.e. Ctroot
= DB.

Again, we do not demand from the n subtrees ti of t = (Ct,
(t1, ..., tn)) that Ct1

∪ ... ∪ Ctn
 = Ct holds.

5.1. Similarity Measure for Clusters

As outlined in the last section, both partitioning and hier-
archical clusterings consist of flat clusters. In order to com-
pare flat clusters to each other we need a suitable distance
measure between sets of objects. The similarity of two clus-
ters depends on the number of identical objects contained in
both clusters which is reflected by the symmetric set differ-
ence.

Definition 8 (symmetric set difference)
Let C1 and C2 be two clusters of a database DB. Then the sym-
metric set difference d∆: 2DB × 2DB → [0..1] and the normal-
ized symmetric set difference d∆

norm: 2DB × 2DB → [0..1] are
defined as follows:

Note that (2DB, d∆) and (2DB, d∆
norm) are metric spaces.

5.2. Similarity Measure for Partitioning Clusterings

In this section, we will introduce a suitable distance mea-
sure between sets of clusters. Several approaches for com-
paring two sets S and T to each other exist in the literature. In
[8] the authors survey the following distance functions: the
Hausdorff distance, the sum of minimal distances, the
(fair-)surjection distance and the link distance. All of these
approaches rely on the possibility to match several elements
in one set to just one element in the compared set which is
questionable when comparing clusterings to each other.

A distance measure on sets of clusters that demonstrates
to be suitable for defining similarity between two partition-
ing clusterings is based on the minimal weight perfect match-
ing of sets. This well known graph problem can be applied
here by constructing a complete bipartite graph G =

 between two clusterings Cl and Cl’. The weight
of each edge in this graph G is defined
by the distance d∆ (Ci, C’j) introduced in the last section be-
tween the two clusters Ci ∈ Cl and C’j ∈ Cl’. A perfect
matching is a subset that connects each clus-

1. In order to follow the main idea of this paper, you do not
have to understand all details presented in this section. Thus,
you might continue reading with Section 6.

Cl Cl': d Cl Cl',() 0≥(),∀

d∆ C1 C2,() C1 C2∪ C1 C2∩–= and

d∆
norm

C1 C2,()
C1 C2∪ C1 C2∩–

C1 C2∪
---=

Cl Cl’ E, ,()
Ci C’j,() Cl Cl’×∈

M Cl Cl’×⊆

ter Ci ∈ Cl to exactly one cluster C’j ∈ Cl’ and vice versa. A
minimal weight perfect matching is a matching with maxi-
mum cardinality and a minimum sum of weights of its edges.
Since a perfect matching can only be found for sets of equal
cardinality, it is necessary to introduce weights for un-
matched clusters when defining a distance measure between
clusterings. We propose to penalize each unmatched cluster
by its cardinality. Thereby, large clusters which cannot be
matched are penalized more than small clusters which is a
desired property for an intuitive similarity measure between
partitioning clusterings.

Definition 9 (partitioning clustering distance)

Let DB be a database. Let Cl = {C1, ..., C|Cl|} and Cl’ = {C’1,
..., C’|Cl’|} be two clusterings. We assume w.l.o.g. |Cl| ≤ |Cl’|.
Let be a mapping that assigns to all C’ ∈ Cl’ a unique num-
ber , denoted by .
The family of all possible permutations of Cl’ is called

. Then the partitioning clustering distance
: is defined as follows:

Let us note that the partitioning clustering distance is a
specialization of the metric netflow distance [19]. The parti-
tioning clustering distance can be
computed in O(max(|Cl|,|Cl’|)3) time using the algorithm pro-
posed in [18].

Based on Definition 9, we can define our final quality cri-
terion which helps to assess the quality of partitioning fuzzy
clusterings to reference clusterings. We compare the costs
for transforming the fuzzy clustering Clfuzzy into a reference
clustering Clref, to the costs piling up when transforming
Clfuzzy first into ∅, i.e. a clustering consisting of no clusters,
and then transforming ∅ into Clref.

Definition 10 (fuzzy partitioning clustering quality QFPC)

Let Clfuzzy be a fuzzy partitioning clustering and Clref be the
corresponding reference clustering. Then, the fuzzy parti-
tioning clustering quality QFPC (Clfuzzy, Clref) is equal to 1 if
Clref = Clfuzzy, else it is defined as

Note that our quality measure QFPC is between 0 and 1. If
Clfuzzy and Clref are identical, QFPC (Clfuzzy, Clref) = 1 holds. On
the other hand, if the clusterings are not identical and the
clusters from Clfuzzy and Clref have no objects in common,
i.e. holds,
then QFPC (Clfuzzy, Clref) is equal to 0.

5.3 Similarity Measure for Hierarchical Clusterings

In this section, we first present a similarity measure be-
tween hierarchical clusterings. Based on these distance func-
tions, we then introduce a quality criterion suitable for mea-
suring the quality of fuzzy hierarchical clusterings. As
already outlined, a hierarchical clustering can be represented
by a tree (cf. Definition 7). In order to define a meaningful
quality measure for fuzzy hierarchical clusterings, we need a
suitable distance measure for describing the similarity be-
tween two trees t and t’. Note that each node of the trees re-
flects a flat cluster, and the complete trees represent the entire
hierarchical clusterings.

A common and successfully applied approach to measure
the similarity between two trees is the degree-2 edit distance
[24]. It minimizes the number of edit operations necessary to
transform one tree into the other using three basic operations,
namely the insertion and deletion of a tree node and the
change of a node label.

Definition 11 (cost of an edit sequence)
An edit operation e is the insertion, deletion or relabeling of
a node in a tree t. Each edit operation e is assigned a non-neg-
ative cost c(e). The cost c(S) of a sequence of edit operations
S = 〈e1, …, em〉 is defined as the sum of the cost of each edit
operation, i.e. c(S) = c(e1)+…+ c(em).

Definition 12 (degree-2 edit distance)
The degree-2 edit distance is based on degree-2 edit sequenc-
es which consist only of insertions and deletions of nodes n
with degree(n) ≤ 2, and of relabelings. Then, the degree-2
edit distance between two trees t and t’, ED2(t, t’), is the min-
imum cost of all degree-2 edit sequences that transform t into
t’ or vice versa: ED2(t, t’) = min{c(S)| S is a degree-2 edit se-
quence transforming t into t’}.

Our final distance measure between two hierachical clus-
terings is based on the degree-2 edit distance.

Definition 13 (hierarchical clustering distance)
Let DB be a database. Let Cl and Cl’ be two hierarchical clus-
terings represented by the trees t and t’. Then, the hierarchi-
cal clustering distance is defined by:

(Cl, Cl’) = ED2(t, t’)

It is important to note that the degree-2 edit distance is well
defined. Two trees can always be transformed into each other
using only degree-2 edit operations. This is true because it is
possible to construct any tree using only degree-2 edit opera-
tions. As the same is true for the deletion of an entire tree, it
is always possible to delete t completely and then build t’
from scratch resulting in a distance value for this pair of trees.
In [24] Zhang, Wang, and Shasha presented an algorithm
which computes the degree-2 edit distance in O()
time, where D denotes the maximum fanout of the trees, and
|t| and |t’| denote the number of tree nodes.

We propose to set the cost c(e) for each insert and delete
operation e to 1. Furthermore, we propose to use the normal-

dclustering
 partitioning

π
i 1 ..., Cl’,{ }∈ π Cl’() C’1 ...,C’ Cl’,()=

Π Cl’()
dclustering

 partitioning 22DB
22DB

IR→×

dclustering
 partitioning Cl Cl’,() =

min
π Π Cl’()∈

d∆ Ci C’π i(),() C’π i()
i Cl 1+=

Cl'

∑+
i 1=

Cl

∑ 
 
 

dclustering
 partitioning Cl Cl’,()

1 dclustering
 p art i t ion in g Cl fuzzy Clref,()

dclustering
 par t i t ion ing Cl fuzzy ∅,() dclustering

 p ar t i t ion in g ∅ Clref,()+
--–

Cj
ref Clref∈∀ Ci

 fuzzy Cl
 f uz zy

:Cj
ref Ci

 fuzzy ∩∈∀, ∅=

dclustering
hierarchical

dclustering
hierarchical

dclustering
hierarchical

t t' D⋅ ⋅

ized symmetric set difference d∆
norm as introduced in Defini-

tion 8 to weight the relabeling cost. Using the normalized
version allows us to define a well-balanced trade-off be-
tween the relabeling cost and the other edit operations, i.e.
the insert and delete operations.

Based on the described similarity measure between hier-
archical clusterings, we can define a quality measure for
evaluating fuzzy hierarchical clustering algorithms. We
compare the costs for transforming a fuzzy hierarchical clus-
tering Cl fuzzy modelled by a tree t fuzzy into a reference clus-
tering Clref modelled by a tree tref, to the costs piling up when
transforming t fuzzy first into an “empty” tree tnil, which does
not represent any hierarchical clustering, and then transform-
ing tnil into tref.

Definition 14 (fuzzy hierarchical clustering quality QFHC)
Let tref be a tree representing a hierarchical reference cluster-
ing Clref, and tnil a tree consisting of no nodes at all, repre-
senting an empty clustering. Furthermore, let t fuzzy be a tree
representing a fuzzy hierarchical clustering Cl fuzzy. Then, the
fuzzy hierarchical clustering quality QFHC (Clfuzzy, Clref) is
equal to 1 if Clref = Clfuzzy, else it is defined as:

As the hierarchical clustering distance is a
metric [24], the fuzzy hierarchical clustering quality QFHC is
between 0 and 1.

6. Evaluation

In this section, we present a detailed experimental evalua-
tion which demonstrates the characteristics and benefits of
our new approach.

6.1. Settings
As test data sets for the effectiveness evaluation we used

1.000 2-dimensional points arbitrarily distributed in a data
space [0..1] x [0..1]. For the efficiency evaluation, we used
10.000 of these points. The points moved at each timetick
with an arbitrary velocity v ∈ [0..vmax] in an arbitrary direc-
tion. Figure 8 shows that the higher the value of vmax is, the
more uncertain is the position of the object after one timetick.
Each position within the circular uncertainty area of the ob-
ject is equally likely. As parameter for the experiments we
used the radius rU of the uncertainty area U.

In order to evaluate the quality of the various algorithms,
we arbitrarily distributed the points in the data space. The ref-
erence clustering, was created by letting the points move as
described above. A sample clustering was created by choos-
ing one point arbitrarily from the uncertainty area of the ob-
ject. From the resulting s sample clusterings we computed the
medoid clustering by using the distance function of Defini-
tion 9 and 13 between clusterings. For the fuzzy clustering
based on the distance expectation values, we used also the

sample positions in the uncertainty areas. The distance be-
tween two moving objects is then equal to the average dis-
tance between their sample points.

The qualities of the fuzzy clusterings w.r.t. the exact clus-
terings were measured by the quality criterions introduced in
Section 5. For DBSCAN [7] and for k-means [16], we used
the one introduced in Definition 10, and for OPTICS [1] and
for Single-Link [12], we used the one introduced in
Definition 14.

If not otherwise stated, we used a sample rate s=10
throughout our experiments. For all clustering algorithms, we
used a parameter setting which created a clustering according
to intuition. For DBSCAN, for instance, we used a parameter
setting so that we approximately detected 20 clusters contain-
ing 80% of all objects.

All clustering algorithms, the used quality measures, and
the heuristic to accelerate the computation of the reference
clustering were implemented in Java 1.4. The experiments
were run on a Windows laptop with a 730 MHz processor and
512 MB main memory.

6.2. Experiments

6.2.1. Sample-Clusterings. In a first set of experiments, we
investigated the maximum and minimum quality resulting
from sampling w.r.t. the reference clustering. We compared
these quality values to the quality achieved by the medoid
clustering. Figure 9 shows clearly, that for all clustering algo-
rithms the quality decreases with an increasing uncertainty
area. Furthermore, we can see that there exist quite noticeable
quality differences between the best and the worst sample
clustering. This is especially true for interesting uncertainty
values U which are neither too small nor too large. If the un-
certainty area is too large, the quality is around zero for all
sample clusterings, which means that the sample clusterings
and the reference clustering are quite different from each oth-
er. On the other hand, if the uncertainty area is very small, all
sample clusterings are almost identical to the reference clus-
tering resulting in high quality values. Furthermore, the fig-
ure shows that the quality of the medoid clustering is some-
where in between the best and the worst sample clustering,
and often quite close to the best sample clustering. Obviously,
using the medoid clustering instead of an arbitrary sample

1
dclustering

hierarchical C
 fuzzy

C
ref,()

dclustering
hierarchical C

 fuzzy ∅,() dclustering
hierarchical ∅ C

ref,()+
--–

dclustering
hierarchical

Figure 8. Test data set.

x

last position
of the object

vmax

v’max

uncertainty area U
related to vmax

uncertainty area U’
related to v’max > vmaxradius rU’ of

the uncertainty area U’

x

current position
of the object

clustering reduces the probability that the determined cluster-
ing is very dissimilar to the reference clustering. Further-
more, let us note that Figure 9 also indirectly demonstrates the
suitability of the distance functions and quality measures pre-
sented in Section 5.

As the partitioning density based clustering paradigm
seems to be the most important and adequate clustering ap-
proach for moving objects [21], we concentrate in the follow-
ing on the flat density-based clustering algorithm DBSCAN.

Figure 10 shows that the quality of the medoid clustering
increases with increasing sampling rate s. This holds espe-
cially for small values of s. For values of s higher than 10 the
increase of the quality is only marginal indicating that rather
high values of s are not necessary to produce good clustering
results. Furthermore, we can see that the quality of the worst
sample clustering decreases with increasing sample rate s.
Likewise, the quality of the best sample clustering increases.
Obviously, the higher the sample rate is, the more likely it is
that we generate a clustering which has a very small or a very
high distance to the reference clustering. For the other clus-
tering algorithms we made basically the same observations.

6.2.2. Distance Expectation Values. In Figure 11, the re-
sults of the clustering approaches based on the distance ex-
pectation value and the medoid clustering are compared to
each other. Figure 11a shows clearly, that for high uncertainty
values the quality achieved by the medoid clustering ap-
proach is much higher than the quality achieved by a DB-

SCAN run based on the distance expectation values. It is
noteworthy, that in this case often the worst sample clustering
achieved higher quality values than the distance expectation
approach. The explanation for the bad performance of the dis-
tance expectation approach can be found in Figure 11b. Al-
though the precision of the detected core objects is very high,
the recall is very low, i.e. the approach fails to detect many
core objects. Thus we have very often the situation depicted
in Figure 7b. Let us note that for small uncertainty values the
difference between the two approaches is less significant.

6.2.3. Other Comparison Partners. In [14] a density-based
approach for clustering multi-represented objects was pro-
posed which is based on DBSCAN. The authors propose for
sparse data sets, the union-method which assumes that an ob-
ject is a core object if MinPts objects are found within the
union of all ε-neighborhoods of all representations. Further-
more, the intersection method was introduced where an ob-
ject is a core-object, if it is a core object in each representa-
tion. We used these two approaches as comparison partners
where a representative corresponds to a sample value. Figure
12 shows again that our medoid clustering approach outper-
forms the union and intersection method by far.

6.2.4. Efficiency. In a last set of experiments, we investigated
the efficiency of our approaches. In all tests we did not use
any index structure and all data was kept in main memory.
Figure 13 shows clearly that if only one slave is available the
single sampling approach is by far the most efficient ap-
proach. Obviously, the distance expectation approach is
much slower due to the much more expensive distance com-
putation between two objects. Note that the runtimes of the
union/intersection approach are similar to the ones of the ex-
pectation approach. When using only one slave, the medoid

0,0
0,2
0,4
0,6
0,8
1,0

0,
01 0,

1 1 10 10
0

0,0
0,2
0,4
0,6
0,8
1,0

0,
01 0,

1 1 10 10
0

0,0
0,2
0,4
0,6
0,8
1,0

0,
01 0,

1 1 10 10
0

a) DBSCAN

qu
al

it
y

Figure 9. Sample Clusterings.

0,0
0,2
0,4
0,6
0,8
1,0

0,
01 0,

1 1 10 10
0

b) k-means

rU[1/1000]

c) OPTICS

qu
al

it
y

rU[1/1000]

d) Single-Link

qu
al

it
y

rU[1/1000]

worst sample clustering best sample clustering
medoid clustering

qu
al

it
y

rU[1/1000]

0,5
0,6

0,7
0,8

0,9
1,0

1 10 100

qu
al

ity

s

worst sample clustering

best sample clustering

medoid clustering

Figure 10. Medoid Clustering (DBSCAN) (rU = 0.001).

0

20

40

60

80

100

Figure 11. Distance Expectation Value (DBSCAN).
a) quality b) core-object classification (rU=0.01)

0,0

0,2

0,4

0,6

0,8

1,0

0 10 20 30 40 50

qu
al

it
y

medoid
expectation

rU[1/1000]

a) b)

medoid expectation

P
re

ci
si

on
/R

ec
al

l [
%

]

precision
recall

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10

medoid
intersection
union

Figure 12. Union / Intersection Approach (DBSCAN).

qu
al

it
y

rU[1/1000]

approach is even slower than the distance expectation ap-
proach because we have to determine the medoid clustering
from the sample clusterings. The more slave computers are
available, the more benefits our medoid approach. If s (=sam-
ple rate) slave computers are available, we can carry out a
sample clustering on each slave. Therefore, we have an al-
most linear speed-up until s slaves are used. For a higher num-
ber of slaves, we can only parallelize the computation of the
medoid clusterings from the sample clusterings, but not the
generation of the sample clusterings. Therefore, we suggest
to use s slaves for the computation of the medoid clustering.

In all our tests, we noticed that the heuristic introduced in
Section 4.3.1 saves on average 12% of all distance computa-
tions between two clusterings. The ratio between the runtimes
needed for the determination of the sample clusterings and the
runtimes needed for the determination of the medoid cluster-
ing from these sample clusterings depends on the ratio of ob-
jects to be clustered and on the detected number of clusters.
If we detect only a small number of clusters, the computation
of the distances between two clusterings can be done effi-
ciently when using the distance measures introduced in
Section 5. On the other hand, distance computations between
clusterings containing many clusters are rather expensive.

To sum up, the medoid approach is the method of choice
for clustering fuzzy moving objects, especially if several
slaves are available.

7. Conclusions
In this paper, we tackeled the complex problem of cluster-

ing moving object with uncertain positions. In order to do this
effectively, we introduced the concept of medoid clusterings.
We showed that these medoid clusterings are more suitable to
cluster fuzzy moving objects than other approaches which are
purely based on sampling or which are based on the distance
expectation values between the fuzzy objects.

In our future work, we will show that density probability
functions describing the positions of fuzzy moving objects
can also beneficially be used in the context of location-based
services.

References
[1] Ankerst M., Breunig M., Kriegel H.-P., Sander J.: OPTICS:
Ordering Points To Identify the Clustering Structure. SIGMOD’99,
pp. 49-60.

[2] Bracewell, R. The Impulse Symbol. Ch. 5 in The Fourier
Transform and Its Applications, 3rd ed. : McGraw-Hill, 1999.
[3] Behr T., Güting R.H.: Fuzzy Spatial Objects: An Algebra
Implementation in SECONDO. To appear at ICDE 2005.
[4] Brecheisen S., Kriegel H.-P., Kröger P., Pfeifle M.: Visually
Mining Through Cluster Hierarchies. Proc. SIAM Int. Conf. on
Data Mining (SDM'04), 2004, pp. 400-412.
[5] Banerjee A., Langford J.: An Objective Evaluation Criterion
for Clustering. Proc. 10th ACM SIGKDD, 2004, pp. 515-520.
[6] Chudova D., Gaffney S., Mjolsness E., Smyth P.: Transla-
tion-invariant mixture models for curve clustering. Proc. 9th ACM
SIGKDD, 2003.
[7] Ester M., Kriegel H.-P., Sander J., Xu X.: A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. KDD’96, pp. 226-231.
[8] Eiter, T., Mannila, H.: Distance Measures for Point Sets and
Their Computation. Acta Informatica 34 (1997), pp. 103–133.
[9] Fowlkes E., Mallows C.: A method for comparing two hierar-
chical clusterings. Journal of American Statistical Association, 78,
1983, pp.553-569.
[10] Har-Peled S.: Clustering Motion. Discrete and Computational
Geometry, 31(4):545-565, 2003.
[11] Höppner F., Klawonn F., Kruse R., Runkler T: Fuzzy Cluster
Analysis. Wiley (1999).
[12] Jain A. K., Murty M. N., Flynn P. J.: Data Clustering: A
Review. ACM Computing Surveys, Vol. 31, No. 3, Sep. 1999, pp.
265-323.
[13] Kriegel H.-P., Pfeifle M.: Measuring the Quality of Approxi-
mated Clusterings. BTW 2005.
[14] Kriegel H.-P., Kailing K., Pryakin A., Schubert M.: Cluster-
ing Multi-Represented Objects with Noise. Proc. 8th PAKDD
20004, pp. 394-403.
[15] Li Y., Han J., Yang J.: Clustering Moving Objects. Proc. 10th
ACM SIGKDD, 2004.
[16] McQueen J.: Some Methods for Classification and Analysis of
Multivariate Observation. Proc. 5th Berkeley Symp. on Math. Sta-
tist. and Prob., Vol. 1, 1965.
[17] Meila M.: Comparing Clusterings by the Variation of Infor-
mation. Proc. 16th Annual Conference on Computational Learning
Theory (COLT’03), pp. 173-187.
[18] Munkres, J.: Algorithms for the assignment and transporta-
tion problems. Journal of the SIAM 6 (1957) 32–38.
[19] Ramon J., Bruynooghe M.: A polynomial time computable
metric between point sets. Acta Informatica 37 (2001), pp. 765–780.
[20] Sander J., Qin X., Lu Z., Niu N., Kovarsky A.: Automatic
Extraction of Clusters from Hierarchical Clustering Representa-
tions. Proc. 7th PAKDD, 2003, pp 75-87.
[21] Yiu M. L., N. Mamoulis N.: Clustering Objects on a Spatial
Network. Proc. 23th ACM SIGMOD, 2004, pp. 443-454.
[22] Zhang Q., Lin X.: Clustering Moving Objects for Spatio-Tem-
poral Selectivity Estimation. Proc 15th Australasian Database Con-
ference (ADC), 2004 pp. 123-130.
[23] Zhang T., Ramakrishnan R., Livny M.: BIRCH: An efficient
data clustering method for very large databases. Proc. 15th ACM
SIGMOD, 1996, pp. 104-114.
[24] Zhang K., Wang J., Shasha D.: On the editing distance
between undirected acyclic graphs. International Journal of Founda-
tions of Computer Science, 7(1):43–57, 1996.

10

100

1000

10000

1 2 5 10 20 50

number of slavesru
nt

im
e

[s
ec

.]

distance expectation

single sampling

medoid clustering

value

Figure 13. Efficiency Evaluation (DBSCAN).
sampling rate s = 10, uncertainty radius rU = 0.001

