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Abstract The reverse k-nearest neighbor (RkNN) problem,
i.e. finding all objects in a data set the k-nearest neigh-
bors of which include a specified query object, has received
increasing attention recently. Many industrial and scien-
tific applications call for solutions of the RkNN problem
in arbitrary metric spaces where the data objects are not
Euclidean and only a metric distance function is given
for specifying object similarity. Usually, these applica-
tions need a solution for the generalized problem where
the value of k is not known in advance and may change
from query to query. In addition, many applications re-
quire a fast approximate answer of RkNN-queries. For
these scenarios, it is important to generate a fast answer
with high recall. In this paper, we propose the first ap-
proach for efficient approximative RkNN search in arbitrary
metric spaces where the value of k is specified at query
time. Our approach uses the advantages of existing met-
ric index structures but proposes to use an approximation
of the nearest-neighbor-distances in order to prune the
search space. We show that our method scales significantly
better than existing non-approximative approaches while
producing an approximation of the true query result with
a high recall.
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E. Achtert · C. Böhm · P. Kröger · P. Kunath · A. Pryakhin ·
M. Renz (�)
Institute for Computer Science,
Ludwig-Maximilians-Universität München,
Oettingenstr. 67,
80538 Munich, Germany
e-mail: renz@dbs.ifi.lmu.de

Zusammenfassung In den letzten Jahren hat das Reverse
k-Nearest Neighbor (RkNN) Problem eine vermehrte Auf-
merksamkeit erfahren. Ziel ist es, alle Objekte in einer
Datenbank zu finden, in deren k-nächster Nachbarumgeb-
ung ein gegebenes Anfrageobjekt enthalten ist. Viele in-
dustrielle und wissenschaftliche Anwendungen benötigen
Lösungen des RkNN-Problems für beliebige metrische
Räume. Dabei sind die Datenobjekte nicht mehr notwend-
igerweise euklidisch, die Ähnlichkeit dery Objekte wird le-
diglich durch eine metrische Distanzfunktion beschrieben.
Üblicherweise benötigen diese Anwendungen eine Lö-
sung für das verallgemeinerte RkNN-Problem, bei dem der
Wert von k im voraus unbekannt ist und sich außerdem
von Anfrage zu Anfrage ändern kann. Zusätzlich erfor-
dern viele Applikationen eine schnelle, näherungsweise
Antwort auf RkNN-Anfragen. In diesen Fällen ist es von
besonderer Wichtigkeit, schnell eine Antwort mit hohem
Recall zurückzuliefern. Wir schlagen den ersten Ansatz
für eine effiziente, näherungsweise RkNN-Suche in be-
liebigen metrischen Räumen vor, wobei der Wert von k
erst zur Anfragezeit angegeben werden muss. Unser Ver-
fahren baut auf den Vorteilen existierender metrischer
Indexstrukturen auf und verwendet eine Abschätzung der
Nächsten-Nachbar-Distanzen, um den Suchraum zu be-
schränken. Wir zeigen, dass die von uns entwickelte Lö-
sung signifikant besser skaliert als existierende nicht-app-
roximative Verfahren und unsere Antwortmenge einen ho-
hen Recall aufweist.

Schlüsselwörter Reverse k-nächste Nachbarn ·
Approximation · Regression · Euklidischer Raum ·
Metrischer Raum

CR subject classification H.2.4 · H.2.8
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1 Introduction

A reverse k-nearest neighbor (RkNN) query returns the data
objects that have the query object in the set of their k-nearest
neighbors. It is the complementary problem to that of find-
ing the k-nearest neighbors (kNN) of a query object. The
goal of a reverse k-nearest neighbor query is to identify the
“influence” of a query object on the whole data set. Al-
though the reverse k-nearest neighbor problem is the com-
plement of the k-nearest neighbor problem, the relationship
between kNN and RkNN is not symmetric and the num-
ber of the reverse k-nearest neighbors of a query object is
not known in advance. A naive solution of the RkNN prob-
lem requires O(n2) time, as the k-nearest neighbors of all
of the n objects in the data set have to be found. Obviously,
more efficient algorithms are required, and, thus, the RkNN
problem has been studied extensively in the past few years
(cf. Sect. 2).

As we will discuss in Sect. 2 these existing methods for
RkNN search can be categorized into two classes, the hyper-
sphere-approaches and the Voronoi-approaches. Usually, it
is very difficult to extend Voronoi-approaches in order to ap-
ply them to general metric objects. Hypersphere-approaches
extend a multidimensional index structure to store each
object along with its nearest neighbor distance. Thus, al-
though most hypersphere-approaches are only designed for
Euclidean vectors, these methods can usually be extended
for general metric objects. In principle, the possible per-
formance gain of the search operation is much higher in
the hypersphere-approaches while only Voronoi-approaches
can be extended to the reverse k-nearest neighbor prob-
lem with an arbitrary k > 1 in a straightforward way. The
only existing hypersphere-approach that is flexible w.r.t.
the parameter k to some extend is limited by a parameter
kmax which is an upper bound for the possible values of k.
All these recent methods provide an exact solution for the
RkNN problem. However, in many applications, an approx-
imate answer for RkNN queries is sufficient especially if the
approximate answer is generated faster than the exact one.
Those applications usually need a solution for general met-
ric objects rather than a solution limited to Euclidean vector
data and, additionally, for handling RkNN queries for any
value of k which is only known at query time.

One such sample application is a pizza company that
wants to evaluate a suitable location for a new restaurant.
For this evaluation, a RkNN query on a database of residents
in the target district could select the set of residents that
would have the new restaurant as its nearest pizza restau-
rant, i.e. are potential customers of the new restaurant. In
addition, to keep down costs when carrying out an advertis-
ing campaign, it would be profitable for a restaurant owner
to send menu cards only to those customers which have his
restaurant as one of the k-nearest pizza restaurant. In both

cases, an approximate answer to the RkNN query is suffi-
cient. Usually, the database objects in such an application
are nodes in a traffic network (cf. Fig. 1). Instead of the Eu-
clidean distance, the network distance computed by graph
algorithms like Dijkstra is used.

Another important application area of RkNN search in
general metric databases is molecular biology. Researchers
all over the world rapidly detect new biological sequences
that need to be tested on originality and interestingness.
When a new sequence is detected, RkNN queries are applied
to large sequence databases storing sequences of biological
molecules with known function. To decide about the orig-
inality of a newly detected sequence, the RkNNs of this
sequence are computed and examined. Again, an approxi-
mate answer of the launched RkNN queries is sufficient. In
addition, it is much more important to get quick results in
order to enable interactive analysis of possible interesting
sequences. Usually, in this context, the similarity of bio-
logical sequences is defined in terms of a metric distance
function such as the Edit distance or the Levenstein distance.
More details on this application of RkNN search in metric
databases can be found in [7].

In general, the RkNN problem appears in many practical
situations such as geographic information systems (GIS),
traffic networks, adventure games, or molecular biology
where the database objects are general metric objects rather
than Euclidean vectors. In these application areas, RkNN
queries are frequently launched where the parameter k can

Fig. 1 Evaluation of potential customers (small circles) for a new
pizza restaurant (larger circles indicate competing pizza restaurants)
using RkNN queries
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change from query to query and is not known beforehand.
In addition, in many applications, the efficiency of the query
execution is much more important than effectiveness, i.e.
users want a fast response to their query and will even accept
approximate results (as far as the number of false drops and
false hits is not too high).

In this paper, we propose an efficient approximate so-
lution based on the hypersphere-approach for the RkNN
problem. Our solution is designed for general metric objects
and allows RkNN queries for arbitrary k. In contrast to the
only existing approach, the parameter k is not limited by
a given upper bounding parameter kmax. The idea is to use
a suitable approximation of the kNN distances for each k
of every object in order to evaluate database objects as true
hits or true drops without requiring a separate kNN search.
This way, we approximate the kNN distances of a single
object stored in the database as well as the kNN distances
of the set of all objects stored in a given subtree of our
metric index structure. To ensure a high recall of our re-
sult set we need an approximation of the kNN distances
with minimal approximation error (in a least square sense).
We will demonstrate in Sect. 3 that the k-nearest neighbor
distances follow a power law which can be exploited to
efficiently determine such approximations. Our solution re-
quires a negligible storage overhead of only two additional
floating point values per approximated object. The result-
ing index structure called AMRkNN (Approximate Metric
RkNN)-Tree can be based on any hierarchically organized,
tree-like index structure for metric spaces. In addition, it
can also be used for Euclidean data by using a hierar-
chically organized, tree-like index structure for Euclidean
data.

The remainder of this paper is organized as follows:
Sect. 2 introduces preliminary definitions, discusses related
work, and points out our contributions. In Sect. 3 we intro-
duce our novel AMRkNN-Tree in detail. Section 4 extends
the linear approximation approach of the previous section
to higher order functions. Section 5 contains a comparative
experimental evaluation. Section 6 concludes the paper.

2 Survey

2.1 Problem definition

Since we focus on the traditional reverse k-nearest neighbor
problem, we do not consider recent approaches for related
or specialized reverse nearest neighbor tasks such as the
bichromatic case, mobile objects, etc.

In the following, we assume that D is a database of n
metric objects, k ≤ n, and dist is a metric distance function
on the objects in D . The set of k-nearest neighbors of an ob-
ject q is the smallest set NNk(q) ⊆ D that contains at least k

objects from D such that

∀o ∈ NNk(q),∀ô ∈ D − NNk(q) : dist(q, o) < dist(q, ô) .

The object p ∈ NNk(q) with the highest distance to q is
called the k-nearest neighbor (kNN) of q. The distance
dist(q, p) is called k-nearest neighbor distance (kNN dis-
tance) of q, denoted by nndistk(q).

The set of reverse k-nearest neighbors (RkNN) of an ob-
ject q is then defined as

RNNk(q) = {p ∈ D | q ∈ NNk(p)} .

The naive solution to compute the reverse k-nearest neigh-
bor of a query object q is rather expensive. For each object
p ∈ D , the k-nearest neighbors of p are computed. If the k-
nearest neighbor list of p contains the query object q, i.e.
q ∈ NNk(p), object p is a reverse k-nearest neighbor of q.
The runtime complexity of one query is O(n2). It can be re-
duced to an average of O(n log n) if an index such as the
M-Tree [6] (or, if the objects are feature vectors, the R-
Tree [8] or the R∗-Tree [4]) is used to speed-up the nearest
neighbor queries.

2.2 Related work

An approximative approach for reverse k-nearest neighbor
search in higher dimensional space is presented in [11].
A two-way filter approach is used to generate the results.
Recently, in [14] two methods for estimating the kNN-
distance from one known κNN-distance are presented.
However, both methods are only applicable to Euclidean
vector data, i.e. D contains feature vectors of arbitrary di-
mensionality d (D ∈ Rd).

All other approaches for the RkNN search are exact
methods that usually produce considerably higher runtimes.
Recent approaches can be classified as Voronoi-approaches
or hypersphere-approaches.
Voronoi-approaches usually use the concept of Voronoi
cells to prune the search space. The above-mentioned, ap-
proximate solution proposed in [11] can be classified as
Voronoi-based approach. In [12], a Voronoi-based approach
for reverse 1-nearest neighbor search in a 2D data set is pre-
sented. It is based on a partition of the data space into six
equi-sized units where the gages of the units cut at the query
object q. The nearest neighbors of q in each unit are de-
termined and merged together to generate a candidate set.
This considerably reduces the cost for the nearest-neighbor
queries. The candidates are then refined by computing for
each candidate c the nearest neighbor. Since the number of
units in which the candidates are generated increases ex-
ponentially with d, this approach is only applicable for 2D
data sets. Recently, in [13] the first approach for RkNN
search was proposed, that can handle arbitrary values of k.
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The method uses any hierarchical tree-based index structure
such as R-Trees to compute a nearest neighbor ranking of
the query object q. The key idea is to iteratively construct
a Voronoi cell around q from the ranking. Objects that are
beyond k Voronoi planes w.r.t. q can be pruned and need
not to be considered for Voronoi construction. The remain-
ing objects must be refined, i.e. for each of these candidates,
a kNN query must be launched. In general, Voronoi-based
approaches can only be applied to Euclidean vector data
because the concept of Voronoi cells does not exist in gen-
eral metric spaces. Hypersphere-approaches use the obser-
vation that if the distance of an object p to the query q is
smaller than the 1-nearest neighbor distance of p, p can
be added to the result set. In [9] an index structure called
RNN-Tree is proposed for reverse 1-nearest neighbor search
based on this observation. The RNN-Tree precomputes for
each object p the distance to its 1-nearest neighbor, i.e.
nndist1(p). The objects are not stored in the index itself.
Rather, for each object p, the RNN-Tree manages a sphere
with radius nndist1(p), i.e. the data nodes of the tree contain
spheres around objects. The RdNN-Tree [15] extends the
RNN-Tree by storing the objects of the database itself rather
than circles around them. For each object p, the distance
to p’s 1-nearest neighbor, i.e. nndist1(p) is aggregated. In
general, the RdNN-Tree is a R-Tree-like structure contain-
ing data objects in the data nodes and MBRs in the directory
nodes. In addition, for each data node N, the maximum of
the 1-nearest neighbor distance of the objects in N is ag-
gregated. An inner node of the RdNN-Tree aggregates the
maximum 1-nearest neighbor distance of all its child nodes.
In general, a reverse 1-nearest neighbor query is processed
top down by pruning those nodes N where the maximum
1-nearest neighbor distance of N is greater than the dis-
tance between query object q and N, because in this case,
N cannot contain true hits anymore. Due to the materializa-
tion of the 1-nearest neighbor distance of all data objects,
the RdNN-Tree needs not to compute 1-nearest neighbor
queries for each object. Both, the RNN-Tree and the RdNN-
Tree, can be extended to metric spaces (e.g. by applying an
M-Tree [6] instead of an R-Tree). However, since the kNN
distance needs to be materialized, it is limited to a fixed
k and cannot be generalized to answer RkNN-queries with
arbitrary k. To overcome this problem, the MRkNNCoP-
Tree [2] has been proposed recently. The index is con-
ceptually similar to the RdNN-Tree but stores a conserva-
tive and progressive approximation for all kNN distances
of any data object rather than the exact kNN distance for
one fixed k. The only limitation is that k is upper-bounded
by a parameter kmax. For RkNN queries with k > kmax, the
MRkNNCoP-Tree cannot be applied [1]. The conservative
and progressive approximations of any index node are prop-
agated to the parent nodes. Using these approximations, the
MRkNNCoP-Tree can identify a candidate set, true hits, and

true drops. For each object in the candidate set, a kNN query
need to be launched for refinement.

2.3 Contributions

Our solution is conceptually similar to that in [2] but ex-
tends this work and all other existing approaches in several
important aspects. In particular, our method provides the
following new features:

1. Our solution is applicable for RkNN search using any
value of k because our approximation can be interpolated
for any k ∈ N. In contrast, most previous methods are
limited to RkNN queries with one predefined, fixed k or
k ≤ kmax.

2. Our distance approximation is much smaller than the ap-
proximations proposed in recent approaches and, thus,
produces considerably less storage overhead. As a con-
sequence, our method leads to a smaller index directory
resulting in significantly lower query execution times.

3. In contrast to several existing approaches, our method
does not need to perform kNN queries in an additional
refinement step. This also dramatically reduces query ex-
ecution times.

4. Our distance approximations can be generated from
a small sample of kNN distances (the kNN distances of
any k ∈ N can be interpolated from these approxima-
tions). Thus, the time for index creation is dramatically
reduced.

In summary, our solution is the first approach that can
answer RkNN queries for any k ∈ N in general metric
databases. Since our solution provides superior performance
but approximate results, it is applicable whenever efficiency
is more important than complete results. However, we will
see in the experimental evaluation that the loss of accuracy
is negligible.

3 Approximate metric RkNN search

As discussed above, the only existing approach to RkNN
search that can handle arbitrary values of k at query time
and can be used for any metric objects (not only for Eu-
clidean feature vectors) is the MRkNNCoP-Tree [2] that
extends the RdNN-tree by using conservative and progres-
sive approximations for the kNN distances. This approach,
however, is optimized for exact RkNN search and its flexi-
bility regarding the parameter k is limited by an additional
parameter kmax. This additional parameter must be speci-
fied in advance, and is an upper bound for the value of k at
query time. If a query is launched specifying a k > kmax, the
MRkNNCoP-Tree cannot guarantee complete results. In our
scenario of answering approximate RkNN queries, this is no

1 3



Efficient reverse k-nearest neighbor estimation 183

problem. However, since the MRkNNCoP-Tree constraints
itself to compute exact results for any query with k ≤ kmax,
it generates unnecessary overhead by managing conserva-
tive and progressive approximations. In general, an index for
approximate RkNN search does not need to manage conser-
vative and progressive approximations of the kNN distances
of each object but only needs one approximation.

Thus, for each object, instead of two approximations
(a conservative and a progressive) of the kNN distances
which is bound by a parameter kmax, we store one approx-
imation of the kNN distances for any k ∈ N. This approx-
imation is represented by a function, i.e. the approximated
kNN distance for any value k ∈ N can be calculated by ap-
plying this function. Similar to existing approaches, we can
use an extended M-Tree, that aggregates for each node the
one approximation of the approximations of all child nodes
or data objects contained in that node. These approxima-
tions are again represented as functions. At runtime, we can
estimate the kNN distance for each node using this approx-
imation in order to prune nodes analogously to the way we
can prune objects. Since the approximation does not ensure
completeness, the results may contain false positives and
may miss some true drops. As discussed above, this is no
problem since we are interested in an approximate RkNN
search scenario.

In the following, we introduce how to compute an ap-
proximation of the kNN distances for arbitrary k ∈N. After
that, we describe how this approximation can be integrated
into an M-Tree. At the end of this section, we outline our
approximate RkNN search algorithm.

3.1 Approximating the kNN distances

A suitable model function for the approximation of our kNN
distances for every k ∈N should obviously be as compact as
possible in order to avoid a high storage overhead and, thus,
a high index directory.

In our case, we can assume that the distances of the
neighbors of an object o are given as a (finite) sequence

NNdist(o) = 〈nndist1(o), nndist2(o), . . . , nndistkmax (o)〉 ,

for any kmax ∈ N and this sequence is ordered by increas-
ing k. Due to monotonicity, we also know that i < j ⇒
nndisti(o) ≤ nndistj(o). Our task here is to describe the
discrete sequence of values by some function fo : N→ R
with fo(k) ≈ nndistk(o). As discussed above, such a func-
tion should allow us to calculate an approximation of the
kNN distance for any k, even for k > kmax by estimating the
corresponding values.

From the theory of self-similarity [10] it is well-known
that in most data sets the relationship between the number of
objects enclosed in an arbitrary hypersphere and the scaling
factor (radius) of the hypersphere (the same is valid for other

solids such as hypercubes) approximately follows a power
law: encl(ε) ∝ εdf , where ε is the scaling factor, encl(ε) is
the number of enclosed objects and df is the fractal dimen-
sion. The fractal dimension is often (but not here) assumed
to be a constant which characterizes a given data set. Our
kNN sphere around any object o ∈ D can be understood to
be such a scaled hypersphere where the distance of the kNN
is the scaling factor and k is the number of enclosed objects.
Thus, it can be assumed that the kNN distances also follow
the power law, i.e. k ∝ nndistk(o)df . Transferred in log–log
space (for an arbitrary logarithmic basis, e.g. for basis e), we
have a linear relationship [10]:

log(nndistk(o)) ∝ 1

df
log(k) .

This linear relationship between k and the kNN distance in
log–log space is illustrated for different sample data dis-
tributions and a sample 2D real-world data set1 in Fig. 2.
Obviously this linear relationship is not perfect. However, as
it can be anticipated from Fig. 2, the relationship between
log(k) and log(nndistk(o)) for any object o in a database of
arbitrary distribution, exhibit a clear linear tendency.

From this observation, it follows that it is generally sen-
sible to use a model function which is linear in log–log
space – corresponding to a parabola in non-logarithmic
space – for the approximation. Obviously, computing and
storing a linear function needs considerably less overhead
than a higher order function. Since we focus in this sec-
tion on the approximation of the values of the kNN distance
over varying k in a log–log sense, we consider the pairs
(log(k), log(nndistk(o)) as points of a two-dimensional vec-
tor space (xk, yk). These points are not to be confused
with the objects stored in the database (e.g. the object o
the nearest neighbors of which are considered here) which
are general metric objects. Whenever we speak of points
(x, y) or lines ((x1, y1), (x2, y2)) we mean points in the two-
dimensional log–log space where log(k) is plotted along the
x-axis and log(nndistk(o)) for a given general metric object
o ∈ D is plotted along the y-axis.

Like in most other applications of the theory of self-
similarity, we need to determine a classical regression line
that approximates the true values of nndistk(o) with least
square error. A conventional regression line fo(x) = mo ·
x + to would find the parameters (mo, to) minimizing least
square error:

kmax∑

k=1

(yk − (mo log k + to))
2 → min ,

where yk = log nndistk(o), which evaluates the well known
formula of a regression line in 2D space. As indicated above,

1 The real-world data represents the spatial coordinates of landmarks
in Sacramento, CA. The data originates from: http://www.census.gov.
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Fig. 2 Illustration of the relationships between k and the kNN distance for different data distributions

since this line is the best approximation of a point set, it is
exactly the approximation of the kNN distances we want to
aggregate. In other words, for each object o ∈ D , we want
to calculate the function fo(x) = mox + to that describes the
regression line of the point set {(log k, log nndistk(o)) | 1 ≤
k ≤ kmax}.

From the theory of linear regression, the parameters mo

and to can be determined as

mo =

(
kmax∑
k=1

yk log k

)
− kmax ȳ 1

kmax

kmax∑
k=1

log k

(
kmax∑
k=1

(log k)2

)
− kmax

(
1

kmax

kmax∑
k=1

log k

)2 ,

where

ȳ = 1

kmax

kmax∑

k=1

log nndistk(o)

and

to = ȳ −mo
1

kmax

kmax∑

k=1

log k .

3.2 Aggregating the approximations

So far, we have shown how to generate an accurate ap-
proximation for each object of the database. When using
a hierarchically organized index structure, the approxima-
tion can also be used for the nodes of the index to prune
irrelevant sub-trees. Usually, each node N of the index is as-
sociated with a page region representing a set of objects in
the subtree which has N as root. In order to prune the sub-
tree of node N, we need to approximate the kNN distances
of all objects in this subtree, i.e. page region. If the distance
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between the query object q and the page region of N, called
MINDIST, is larger than this approximation, we can prune
N and thus, all objects in the subtree of N. The MINDIST
is a lower bound for the distance of q to any of the objects
in N. The aggregated approximation should again estimate
the kNN distances of all objects in the subtree representing
N with least squared error. This is a little more complex than
a simple regression problem.

Obviously, given a data node N with |N| data objects oi ∈
N, the parameters of the optimal regression line FN (x) =
mN x + tN that approximates the kNN distances of all objects
in N can be determined as follows:

mN =
∑

oi ∈N

(
kmax∑
k=1

yoi
k log k

)
− kmax

|N|
∑

oi∈N
ȳoi |N|

kmax

kmax∑
k=1

log k

|N|
(

kmax∑
k=1

(log k)2

)
− kmax

(
1

kmax

kmax∑
k=1

log k

)2

and

tN = 1

|N|
∑

oi∈N

ȳoi −mo
1

kmax

kmax∑

k=1

log k ,

where

yoi
k = log nndistk(oi)

and

ȳoi = 1

kmax

kmax∑

k=1

log nndistk(oi) .

Fig. 3 Visualization of the
aggregated approximation fN for
a node N containing objects
p1, p2, p3

The first equation can be reformulated as

mN =
∑

oi ∈N

(
kmax∑
k=1

yoi
k log k

)
− ∑

oi∈N
ȳoi

kmax∑
k=1

log k

|N|
(

kmax∑
k=1

(log k)2

)
− 1

kmax

(
kmax∑
k=1

log k

)2 .

Thus, in order to generate an optimal approximation fN for
any directory node N with child nodes Ci , we need to aggre-

gate
∑

oi∈Ci

kmax∑
k=1

yoi
k and

∑
oi ∈Ci

ȳoi for each Ci . Thus, we store for

each child nodes Ci two additional values

v1 =
∑

oi∈Ci

(

kmax∑

k=1

yoi
k log k)

and

v2 =
∑

oi∈Ci

ȳoi ,

in order to compute the distance approximation of the parent
node N. Obviously, the required storage overhead is neg-
ligible. On the other hand, we can now generate for each
node N in the tree the optimal regression line for the kNN
distances of all objects located in the subtree of N.

The idea of aggregating the kNN distance approxima-
tions for directory nodes is visualized in Fig. 3. The approx-
imation fN of a node N representing objects p1, p2, p3 is
depicted. The regression line fN approximates the kNN dis-
tances of p1, p2, p3 with least square error.
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We call the resulting index structure AMRkNN-Tree
(Approximate Metric Reverse kNN-Tree). The original con-
cepts of the AMRkNN-Tree presented here can be incorpo-
rated within any hierarchically organized index for metric
objects. Obviously, our concepts can also be used for RkNN
search in Euclidean data by integrating the approximation
into Euclidean index structures such as the R-tree [8], the
R∗-tree [4], or the X-tree [5].

3.3 RkNN search algorithm

The algorithm for approximate RkNN queries on our novel
AMRkNN-Tree is similar to the exact RkNN query algo-
rithms of the RdNN-Tree and the MRkNNCoP-Tree. How-
ever, our index structure can answer RkNN queries for any
k specified at query time. Let us point out that the value
of k is not bound by a predefined kmax parameter, although
the approximation of the kNN distances are computed by
using only the first kmax values, i.e. the kNN distances with
1 ≤ k ≤ kmax. The kNN distance for any k > kmax can be ex-
trapolated by our approximations in the same way as for
any k ≤ kmax. In addition, due to the use of a metric index
structure, our AMRkNN-Tree is applicable to general metric
objects.

Similar to the M-Tree concept, a node N of our index
is represented by its routing object No and the covering ra-
dius Nr . All objects represented by node N have a distance
less than Nr to No. The logarithm of the aggregated kNN
distance of a node N, denoted by kNNagg(N) can be de-
termined from the approximation fN (x) = mN x + tN of N
by

kNNagg(N) = mN log k + tN .

Note that the true (i.e. non-logarithmic) approximation of
the aggregated kNN distance of N is ekNNagg(N). To avoid un-
necessary complex computations, we adapt the definition of
the MINDIST between a node and a point to the logarith-
mic scale of kNNagg(N). Thus, we define the MINDIST of
a node N and a query point q, denoted by MINDIST(N, q),
as

MINDIST(N, q) = log(max{dist(q, No)− Nr, 0}) .

The pseudo code of the approximate RkNN query algorithm
is depicted in Fig. 4. A query q is processed by travers-
ing the index from the root of the index to the leaf level.
A node N needs to be refined if the MINDIST between q
and N is smaller than the aggregated kNN distance approx-
imation of n, i.e. MINDIST(q, N) ≤ kNNagg(N). Those
nodes, where the MINDIST to q is larger than their ag-
gregated kNN distance approximation are pruned, i.e. if
MINDIST(N, q) > kNNagg(N).

Fig. 4 Algorithm for approximate RkNN query

The traversal ends up at a data node. Then, all points
p inside this node are tested using their approximation
fp(x) = mpx + tp. A point p is a hit if

log(dist(N, q)) ≤ mN log k + tN .

Otherwise, if log(dist(N, q)) > mN log k + tN , point p is
a miss and should be discarded.

In contrast to other approaches that are designed for
RkNN search for any k, our algorithm directly determines
the results. In particular, we do not need to apply an ex-
pensive refinement step to a set of candidates. This further
avoids a significant amount of execution time.

4 Higher order approximations

In the previous section we have shown how to approximate
the kNN-distances using linear regression in the log–log
space. The question at issue is whether we can achieve more
accurate approximations using approximations of higher
order (i.e., by non-linear approximation). Another question
is when using higher order approximation do we still need
the log–log space or can we achieve a more suitable approx-
imation in the original space. In this section, we propose to
apply higher order approximations for kNN-distances. Fur-
thermore, we discuss if the log–log space is still required
when using higher order approximations.

4.1 Polynomial regression

In Sect. 3, we used for an object o a linear function of the
form

fo(x) = mox + to ,
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to describe the regression curve of the k-nearest-neighbor
distances in log-log space. Now, we show how to use more
complex regression curves of the form

fo(x) = bo,0 +bo,1x +bo,2x2 + . . .+bo,px p ,

where the vector bo = (bo,0, bo,1, ..., bo,p)
T denotes the pa-

rameter vector of the k-nearest-neighbor distance approxi-
mation of object o.

Similar to the linear regression, the polynomial regres-
sion requires to minimize the least square error of the ap-
proximation, which means

Σ
kmax
k=1 (yk − fo(xk))

2 → min .

Let yo = (yo,1, yo,2, ..., yo,kmax)
T be the vector of all kNN

distances according to object o ∈ D . Furthermore, let the
matrix X be defined as follows

X =

⎛
⎜⎜⎜⎝

1 log(1) log(1)2 . . . log(1)p

1 log(2) log(2)2 . . . log(2)p

...

1 log(kmax) log(kmax)
2 . . . log(kmax)

p

⎞
⎟⎟⎟⎠ .

From the theory of non-linear regression, the parameter vec-
tor of object o can be determined by means of the method of
least squares as follows:

bo = (XT X)−1 XT yo .

The general aim of the polynomial regression is to approx-
imate the unknown kNN distances preferably using a low
order polynomial without the expense of the approximation
error.

Based on the polynomial regression, we can now build
the kNN distance approximations for each object in the
database. When using the hierarchically organized index
structure we should propagate the approximations from
the data node level to the directory nodes. Since we use
non-linear polynomial approximations, this upward propa-
gation task is more complex than that of the linear ap-
proximation. In contrast to the linear regression based ap-
proximation, here we cannot simply use few aggregated
values to build exact approximations at higher tree lev-
els. Instead we propose to upward propagate aggregations
over the kNN distances for each single k value. Let us
consider the data node containing n objects o1, o2, . . . , on

for which the kNN distance approximations fo1(log(k)),
fo2(log(k)), . . . , fon (log(k)) are known. Then, we propa-
gate the average vector avg, where

avg = 1

n

n∑

i=1

yoi .

4.2 To log or not to log

After introducing approximations based on non-linear re-
gression, the motivation of using the log–log space might
be questionable, since polynomial regression lines can have
arbitrary complex shapes. Probably, trying to find approx-
imations based on the original space, approximations of
higher order are necessary. Thus, we need more expen-
sive parameter vectors for the data representation in the
directory nodes. Hence, using the original space instead
of the log–log space for the kNN distance approxima-
tions in the index structure only pays off in terms of
achieving higher approximation quality. To sum up, which
space should be finally used for the polynomial regression
based kNN distance approximations has to be evaluated
experimentally.

5 Evaluation

All experiments have been performed on Windows worksta-
tions with a 32-bit 4 GHz CPU and 2 GB main memory. We
used a disk with a transfer rate of 50 MB/s, a seek time of
6 ms and a latency delay of 2 ms. In each experiment we ap-
plied 100 randomly selected RkNN queries to the particular
dataset and reported the average results. The runtime is pre-
sented in terms of the elapsed query time including I/O and
CPU-time. All evaluated methods have been implemented in
Java.

We compared our AMRkNN-Tree with the index pro-
posed in [2] that is designed for exact RkNN search in
general metric spaces for any k ≤ kmax and the sequential
scan. The approach in [2] claims to outperform all other
approaches on general metric data as well as on Euclidean
data. We will show, that our AMRkNN-Tree is much more
efficient than this state-of-the-art approach on both general
metric data and Euclidean data.

5.1 Datasets

Metric RkNN search. Our experiments were performed us-
ing two real-world datasets. The first one is a road network
dataset derived from the city of San Juan, CA, which con-
tains 18 236 nodes and 23 874 edges. The average degree
of the nodes in this network is 2.61. The dataset is online
available2. The nodes of the network graph were taken as
database objects from which subsets of different size were
selected to form the test data set. For the distance com-
putation we used the shortest-path distance computed by
means of the Djikstra algorithm. The second dataset con-
sists of 10 000 protein sequences taken from SWISSPROT

2 www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/
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database3, the Levenstein distance was used as similarity
distance. For both datasets we used an M-Tree with a node
size of 4 KByte.
Euclidean RkNN search. We also integrated our concepts
into an X-Tree [5] in order to support RkNN search in
Euclidean data. We used three real-world datasets for our
experiments including a set of 5-dimensional vectors gen-
erated from the well-known SEQUOIA 2000 benchmark
dataset and two ”Corel Image Features” benchmark datasets
from the UCI KDD Archive4. The first Corel Image dataset
contains 9 values for each image (“ColorMoments”), the
second Corel Image dataset contains 16-dimensional tex-
ture values (“CoocTexture”). The underlying X-Tree had
a node size of 4 KByte. The characteristics of the real-world
datasets used for our evaluation are summarized in Table 1.

5.2 Comparison to competing approaches
in Euclidean space

In Euclidean space, there exist two competitors PDE and
kDE [14] as discussed in Sect. 2.2. In an initial setup, we
compare the performance of our approach to both com-
peting approaches by measuring the average kNN-distance
error. For all experiments, we set kmax = 100. The κ param-
eter for the competing techniques was set to 50. Figure 5a–c
depicts the error for varying parameter k. Because PDE and
kDE store the exact distance for k = κ, the error for both
techniques decreases when k converges to κ. For k �= κ, the
distance approximations of PDE and kDE are significantly
worse than those of our approach. For the 16-dimensional
Corel Image dataset, our AMRkNN approach outperforms
the competing techniques by a factor between 4 and 6, for
k ≤ 30 resp. k ≥ 70. In a next experiment, we evaluated
the error for varying database size, as depicted in Fig. 5d.
The results show that the quality of the distance approxi-
mations for all three techniques is almost independent from
the database size, i.e. is not affected by the density of the
dataset.

Because the quality of the distance approximations of the
AMRkNN-Tree clearly outperforms the distance approxi-
mations of PDE and kDE for varying parameter k and vary-
ing database size, we do not take PDE and the kDE into
account in the remaining experiments.

5.3 Runtime w.r.t. database size

We altered the number of database objects in order to eval-
uate the scalability of the competing methods w.r.t. the
database size. Throughout all experiments, we set k = 50
and kmax = 100.

3 http://www.expasy.org/sprot/
4 http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html

Metric datasets
Name # objects

Road network 18.236
Sequence 10.000

Euclidean datasets

Name # objects dimension

SEQUOIA 100.000 5
ColorMoments 68.040 9
CoocTexture 68.040 16

Table 1 Real-world datasets used for our experiments

Metric RkNN search. A comparison of our novel index
structure with the state-of-the-art approach applied to our
real-world metric datasets is shown in Fig. 6. It can be seen
that our AMRkNN-Tree clearly outperforms the competing
MRkNNCoP-Tree on the road network dataset (cf. Fig. 6a).
The performance gain of our approach over the existing
method also grows with increasing database size. Both ap-
proaches show a linear scalability w.r.t. the number of data
objects, but the increase of runtime of our AMRkNN-Tree
is smaller than the increase of runtime of the MRkNNCoP-
Tree. The runtime of the sequential scan also grows linear
with increasing number of database objects. It is not shown
in Fig. 6a for clearness reasons. In fact, we observed that the
performance gain of our AMRkNN-Tree over the sequen-
tial scan grows with increasing database size from a factor
of 150 to about 850. A similar observation can be made on
the dataset containing biological sequences. The results are
illustrated in Fig. 6b. Again, the sequential scan is not shown
due to clarity reasons.
Euclidean RkNN search. In Fig. 7 a comparison of our
novel index structure with the state-of-the-art approach ap-
plied to our real-world Euclidean datasets is presented. As
it can be observed, our AMRkNN-Tree clearly outperforms
the competing MRkNNCoP-Tree on all three datasets. In
addition, the performance gain of our approach over the ex-
isting method also grows with increasing database size on
all datasets. Both competing approaches show a linear scal-
ability w.r.t. the number of data objects, but the increase of
runtime of our AMRkNN-Tree is significantly smaller than
the increase of runtime of the MRkNNCoP-Tree. The su-
periority of our AMRkNN-Tree is even more obvious on
Euclidean data. The runtime of the sequential scan is also
not shown in the charts presented in Fig. 7 for clearness rea-
sons. In fact, the sequential scan is outperformed by both
methods by a factor of clearly over 100.

5.4 Runtime w.r.t. parameter k

We executed RkNN queries on a database with varying k
and compared the scalability of both competing methods
with the sequential scan. The parameter kmax was set to 100
for both approaches in all experiments.
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Fig. 5 Average kNN-distance error of competing methods w.r.t. parameter k (a, b, c) and database size (d) on Euclidean data

Fig. 6 Scalability of competing methods w.r.t. the number of database objects on metric data (sequential scan is not shown for clarity reasons)

Metric RkNN search. The results of these experiments on
the metric datasets are depicted in Fig. 8. Applied to the road
network dataset with 10 000 nodes, our novel AMRkNN-
Tree clearly outperforms the current state-of-the-art ap-

proach (cf. Fig. 8a). With increasing k, the performance gain
of our method over the competitor further grows. The run-
time of the sequential scan is independent of the choice of
k and was observed at 140 s per query for any k. It is not

1 3



190 Achtert et al.

Fig. 7 Scalability of competing methods w.r.t. parameter k on Euclidean data (sequential scan is not shown for clarity reasons)

Fig. 8 Scalability of competing methods w.r.t. parameter k on metric data (sequential scan is not shown for clarity reasons).

shown in Fig. 8a for clearness reasons. A similar observa-
tion can be made when applying the competing methods
to the dataset of 10 000 biological sequences. The results

are illustrated in Fig. 8b. For clarity reasons, the runtime
of the sequential scan (≈ 100 s) is again not shown. It
can be observed that with increasing k, the performance
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gain of our method over the competitor is even stronger
rising.
Euclidean RkNN search. The results of these experiments
on the Euclidean datasets are depicted in Fig. 9. All three
datasets contained 50 000 objects. Applied to the SEQUOIA
data, it can be seen that our approach scales linear with a very
low slope. On the other hand, the MRkNNCoP-Tree exhibits
a stronger rise of runtime. Similar observations can be made
on the Corel Image datasets (cf. Fig. 9b and c). In summary,
in almost all parameter settings, our novel AMRkNN-Tree
is at least 4 times faster than the MRkNNCoP-Tree. The se-
quential scan scales constant for any value of k. The reported
runtimes on the three Euclidean datasets of this naive solution
are between 450 and 500 s. Those runtimes are not shown in
Fig. 9a–c for clearness reasons.

5.5 Effectivness

The two probably most widespread concepts for measur-
ing the effectivness are the recall and the precision. The

Fig. 9 Scalability of competing methods w.r.t. parameter k on Euclidean data (sequential scan is not shown for clarity reasons).

recall measures the relative number of true hits reported as
result, whereas precision measures the relative number of
reported objects that are true hits. Usually, a user does not
care so much about false positives, i.e. objects reported as
hits that are true drops, as far as no true hits are missing.
Thus, for measuring the quality of our approximate results,
we focused on the recall. This measurement is the most im-
portant measurement to judge the quality of approximate
results.
Metric RkNN search. We evaluated the effectiveness of
our approximate RkNN search on our metric datasets. In
this experiment, we set kmax = 100 and executed several
RkNN queries for 10 ≤ k ≤ 200. The results are depicted
in Fig. 10a. As it can be seen, in almost all experiments,
the recall is clearly above 90%. On the sequence dataset,
the recall falls below 80% for low k values but rises sig-
nificantly over 90% at about k = 60. This very accurate
effectiveness is complemented by a rather high precision of
the reported queries (between 80%–97%). It is worth men-
tioning, that the recall does not decrease significantly when
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answering RkNN queries with k > kmax. This observation
confirms the claim that our AMRkNN-Tree is applicable to
any k ∈ N.
Euclidean RkNN search. A similar observation can be
made when evaluating the recall of our method on the Eu-
clidean datasets. Again we set kmax = 100 and executed
several RkNN queries for 10 ≤ k ≤ 200. The results are
depicted in Fig. 10b. As it can be seen, for most param-
eter settings, the recall is clearly above 90%. Again we
observed a rather high precision (between 80%–98%).
We also want to point out that the recall does not de-
crease significantly when answering RkNN queries with
k > kmax. Once again, this observation confirms the
claim that our AMRkNN-Tree is applicable to any
k ∈ N.

5.6 Higher order approximations

Moreover, we evaluate the potentials of higher order ap-
proximations of the kNN distances. In particular, we com-

Fig. 10 Recall of our method on real-world datasets

Fig. 11 Accuracy of higher order approximations on different data sets

pare our approach of using a linear regression model in
log–log space with the approaches sketched in Sect. 4,
i.e. using higher order polynomials to approximate the
kNN distances. In addition, we evaluate if it is better
to approximate the distances in the native (non loga-
rithmic) space or in log–log space. Last but not least,
we pay special attention to the capabilities of the dif-
ferent methods for estimating the kNN distances for any
k ≤ kmax (interpolation) and for any k ≥ kmax

(extrapolation).
The accuracy of higher order approximations in log–

log space and in the native space w.r.t. the degree of
the used polynomial is visualized in Fig. 11. The y-axis
measures the adjusted R-squared which is a statistically
well-founded measurement for the determination of the
approximation error. As it can be seen in Fig. 11a, the
approximation error on the road network data in non-
logarithmic space is slightly worse compared to the ap-
proximation in log–log space. With increasing degree of
the approximating polynomial, the discrepancy becomes
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Fig. 12 Recall of higher order approximations on metric (road network) data

Fig. 13 Recall of higher order approximations on vector (ColorMoments) data

still smaller. The difference between log–log space and na-
tive space is much more significant on the ColorMoments
data set (cf. Fig. 11b). The approximation in the log–log
space is much more accurate. Again, the difference becomes
smaller with increasing degree of the polynomial. How-
ever, it is obviously much more accurate to approximate the
kNN distances in log–log space rather than in the native
space.

A much more drastic difference between the approxi-
mations in log–log space and in native space can be ob-
served when evaluating the recall (cf. Figs. 12 and 13).
While we get very low recall values when using ap-
proximations in the native space (cf. Figs. 12b and 13b),
we get rather accurate recall values when approximat-
ing the kNN distances in log–log space (cf. Figs. 12a
and 13a). In the native space, the recall is decreasing
with increasing k. We observed that the approximation
in native space tends to underestimate the kNN distance
when k increases causing this decreasing recall. When
using approximations in log–log space, it can be seen

that for interpolation (k ≤ kmax), it is slightly better to
use a higher order approximation, i.e. a higher degree
for the polynomial. On the other hand, for extrapolation
(k ≥ kmax), it is considerably better to use a linear (p = 1)
approximation.

Obviously, our experiments confirm that it is in general
more accurate to approximate the kNN distances in log–
log space rather than in the native space. In addition, as
it can be observed, the superiority of higher order approx-
imations (p > 1) over the linear approximations (p = 1)
is not rather significant. Especially for extrapolation, i.e.
when k > kmax, it is more accurate to use a linear approx-
imation model. Our last experiment shows that the lin-
ear model is superior over higher order approximations in
terms of runtime. Figure 14 depicts the average elapsed
runtimes of sample RkNN queries where we varied the
value of k. The reason for this behavior is that when in-
creasing the degree of the approximating polynomial p, we
need to store more information for the approximation for
each point and index node. As a consequence, the num-
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Fig. 14 Runtime of higher order approximations (in log–log space) on different data sets

ber of entries per page decreases and the index height in-
creases.

In summary, our experiments in this subsection suggest
that using linear approximation models is the best trade-off
between approximation accuracy and runtime.

6 Conclusions

In this paper, we proposed the first solution for approxi-
mate RkNN search in general metric spaces for any k ∈ N.
Our approach is based on the observation known from
the theory of self-similarity that the relationship between
k and the kNN distance of any object is linear in log–
log space. We proposed to calculate an approximation of
the kNN distances of any database object by means of
a regression line in the log–log space from a set of sam-
ple kNN distances. The kNN distance of any k can then
be interpolated from this approximation. We showed how
these approximations can be integrated into any hierar-
chically organized index structure (e.g. the M-Tree for
metric objects or the R-Tree for Euclidean vectors) by
propagating the approximations of child nodes into par-
ent nodes. Our resulting index called AMRkNN-Tree has
achieved significant performance boosts compared to ex-
isting approaches. In addition, our experiments showed
that our performance gain caused only a negligible loss in
accuracy.

For future work, we will examine parallel and distributed
solutions to the RkNN problem.
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