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Abstract

Larger and larger amounts of data are collected and stored in databases, increasing the

need for efficient and effective analysis methods to make use of the information con-

tained implicitly in the data. The extraction of such potentially useful information is

called data mining.

In the thesis, it is shown that numerous data mining methods such as density based

clustering, k-means clustering, outlier detection, or k-nearest neighbor classification can

be based on the similarity join as a database primitive. By such a reformulation, the

identical result can be achieved at a drastically improved efficiency. 

The similarity join becomes an important basic operation of advanced database man-

agement systems. For a given set of feature vectors, the similarity join determines those

object pairs which are similar according to some appropriate similarity measure, in SQL

style 

SELECT * FROM R, S WHERE distance (R.point, S.point) ≤ ε.

In this thesis, we concentrate on both aspects of the similarity join applications as well

as algorithms. For the first aspect we show how typical algorithms of data analysis and

data mining can be reformulated such that they are exclusively based on the similarity

join. According to several example applications, we demonstrate the enormous perfor-

mance potential of this database primitive.

We also introduce several different kinds of similarity join. The most important vari-

ant which corresponds to the SQL statement above is based on the range search as a join
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predicate. But we also introduce two similarity join operations which are based on the

paradigm of the k-nearest neighbor search.

The main part of the thesis is dedicated to the efficient algorithms for the different

kinds of similarity join. First we introduce a new cost model for index based similarity

join algorithms. Starting from this cost model, we develop an innovative index architec-

ture which takes into account that similarity join algorithms require a separate optimiza-

tion of CPU and I/O cost.

Next, we develop a similarity join algorithm which is particularly suited for massive

data sets. It is based on a particular sort order for high dimensional data. Then we pro-

pose a novel algorithm for the similarity join upon a nearest neighbor join condition.

Finally, we present a technique for the reduction of CPU cost which is universally appli-

cable in index based and non-index-based similarity join methods.

A perspective on future research directions in the area of database primitives for

similarity search, data analysis, and data mining concludes our thesis.



Abstract (In German)

Immer größere Datenmengen werden gesammelt und in Datenbanken gespeichert. Hier-

durch wird die Notwendigkeit nach effektiven und effizienten Analysemethoden, die

das in den Daten implizit vorhandene Wissen nutzbar machen, immer dringender. Die

Extraktion von solchen potentiell nützlichen Informationen bezeichnet man als Data

Mining.

In dieser Arbeit wird gezeigt, daß sich zahlreiche Data-Mining-Verfahren wie z.B.

dichtebasiertes Clustering, die Ermittlung von Ausreißern oder die simultane Klassifi-

kation auf der Basis des Similarity Join (Ähnlichkeitsverbund) als Datenbank-Grund-

operation abstützen lassen. Es wird nachgewiesen, daß sich durch eine entsprechende

Umformulierung dieser Verfahren das identische Ergebnis mit einer deutlich erhöhten

Effizienz erzielen läßt. 

Der Similarity Join wird hierdurch zu einer wichtigen Basisoperation von Multime-

dia-Datenbanksystemen. Innerhalb einer Menge von Multimedia-Objekten ermittelt der

Similarity Join diejenigen Objekt-Paare, die einander bezüglich eines featurebasierten

Abstandsmaßes am ähnlichsten sind, in SQL-Notation

SELECT * FROM R, S WHERE distance (R.point, S.point) ≤ ε.

Diese Arbeit konzentriert sich gleichermaßen auf beide Aspekte des Similarity Join,

Anwendungen sowie Algorithmen. Für den Anwendungs-Aspekt wird gezeigt, wie ty-

pische Aufgaben der Datenanalyse und des Data Mining mit Hilfe des Similarity Join

gelöst werden können. Es wird aufgezeigt, daß typische Standard-Algorithmen dieser

Bereiche reformuliert werden können so daß sie ausschließlich auf dem Similarity Join
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aufsetzen. Anhand verschiedener Beispielanwendungen wird das enorme Effizienzpo-

tenzial demonstriert, das sich durch die Verwendung dieser Datenbank-Grundoperation

ergibt.

In dieser Arbeit beschäftigen wir uns mit verschiedenen Arten von Similarity-Join-

Operationen. Die wichtigste Variante, die auch dem oben aufgeführten SQL-Komman-

do entspricht, basiert auf der Bereichssuche als Join-Prädikat. Es werden aber auch zwei

Join-Operationen eingeführt, die auf dem Paradigma der k-nächsten-Nachbar-Suche be-

ruhen.

Der Hauptteil dieser Arbeit ist den effizienten Algorithmen für die verschiedenen

Arten des Similarity Join gewidmet. Zunächst wird ein Kostenmodell für die indexba-

sierte Anfragebearbeitung des Similarity Join eingeführt. Ausgehend von diesem Mo-

dell wird eine innovative Indexstruktur entwickelt, die einer speziellen Anforderung des

Similarity Join, CPU- und I/O-Kosten getrennt zu optimieren, Rechnung trägt.

Dann wird ein Similarity Join Algorithmus entworfen, der sich speziell für massive

Datenmengen eignet. Er basiert auf einer speziellen Sortierordnung für hochdimensio-

nale Daten. Als nächstes wird ein neuartiger Algorithmus für den Similarity Join auf

einer Join-Bedingung gemäß der k-nächsten-Nachbar-Suche vorgeschlagen. Schließlich

entwickeln wir eine generische Technik zur Reduktion der CPU-Kosten, die universell

bei Index-basierten wie nicht-Index-basierten Similarity-Join-Algorithmen eingesetzt

werden kann.

Ein Ausblick auf mögliche zukünftige Forschungsrichtungen im Bereich Basisopera-

tionen für Ähnlichkeitssuche, Datenanalyse und Data Mining schließt die Arbeit ab.
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Chapter 1
Introduction

Since the beginning of the information age, human society is facing a rapid and even

accelerating growth of the available information. Both the number of databases as well

as the amount of stored data per database is fast increasing, making it infeasible to eval-

uate the data manually. To cope with this information overkill will undoubtedly be one

of the most important challenges of the 21st century.

Traditionally, data in databases are collected for dedicated applications which process

the data in a relatively simple way such as booking systems, accounting and billing,

storage and transportation planning etc. Companies, however, have also strong interest

to exploit their databases for supporting complex decisions. 

Therefore, it is necessary to find interesting patterns in the data such as clusters of

similar database objects [McQ 67], outliers [KN 98], i.e. untypical database entries

which could indicate fraudulent behavior, to assign the database objects to different

meaningful classes [Mit 97], to detect associations (if-then-rules) [AS 94] etc. Such de-

tected patterns are commonly referred to as knowledge and the search for these patterns

is called Knowledge Discovery in Databases (KDD). 
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The most widespread definition for this notion has been given by Fayyad et al.:

Definition 1 Knowledge Discovery in Databases [FPS 96]

Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying

• valid

• novel

• potentially useful

• and ultimately understandable

patterns in data.

The KDD process is an interactive and iterative process, involving numerous steps in-

cluding preprocessing of the data set, applying a data mining algorithm to generate pat-

terns from it, and the evaluation of the results [BA 96]:

• Creating a target data set:

Selecting a subset of the data or focusing on a subset of attributes or data sam-

ples on which discovery is to be performed.

Figure 1: The KDD process
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3

• Data reduction:

Finding useful features to represent the data (i.e. dimensionality reduction) or

transformation methods to reduce the number of variables under consideration

or to find invariant representations of the data.

• Data mining:

Searching for patterns of interest in the particular representation of the data:

Classification rules or classification trees, association rules, regression, cluster-

ing etc.

• Interpretation of results:

Visualization of the extracted patterns or visualization of the data giving the

extracted models. Possibly the user has to return to previous steps in the KDD

process if the results are unsatisfactory.

The KDD process is depicted in figure 1. The core step of knowledge discovery in data-

bases is data mining. Data mining algorithms can be classified according to the kind of

knowledge or pattern which is mined [FPS 96], [MCP 93], [FPM 91], [San 98],

[Bre 01]:

• Classification (supervised learning):

Learning a function that maps data records into one of several predefined

classes which capture the common properties among a set of objects in the data-

base. Each data record contains one dedicated attribute, the class label. The

objective of classification is to analyze this training data and to construct a

model for each class, which can than be used to classify newly arriving data

records (not containing the class label attribute). Example algorithms include

decision tree classifiers [Qui 86] and bayesian classifiers [Mit 97]. 

• Clustering (unsupervised learning): 

Identifying a finite set of clusters to describe the data, such that similar data

records are assigned the same clusters and dissimilar ones different clusters.

Typical algorithms are k-means [Sib 72] and its variants.

• Data generalization: 

Finding a compact description for a subset of the data. Examples of such a

description are association rules, typically generated by the apriori-algorithm
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[AS 94] and its variants, attribute oriented induction [CH 98], or spatial charac-

terization [EFKS 98].

• Regression and dependency modeling: 

Learning a function which maps data records to real-valued variables and dis-

covering functional relationships between variables. Well-known algorithms

from the statistical domain include linear regression with error minimization.

• Change and Deviation Detection: 

Discovering significant changes in the data from previous or normative values.

Time series analysis methods fall into this category.

1.1 High Performance Data Mining

Typically, knowledge detected in databases can be applied for

• marketing

• fraud detection

• customer segmentation and scoring

• strategic decisions including the orientation of a complete enterprise.

In these applications, the common purpose is to make important, domain-specific deci-

sions based on the gained knowledge. For decision making, it is important, that the

detected knowledge is valid and accurate. Therefore, validity and accuracy are the most

important requirements of all methods of knowledge discovery and data mining. Since

algorithms which do not fulfill these requirements are generally not effectively useful,

we call these requirements the effectivity requirements.

For decision making based on knowledge from large databases, however, a second

requirement is becoming of equally high importance: Efficiency. On the one hand, users

are interested in a just-in-time analysis of their data to base their decisions on the newest

available information. On the other hand, knowledge discovery involves complex algo-

rithms for data analysis. It is difficult to gain valid and accurate knowledge fast, partic-

ularly when databases continue to rapidly increase in size.
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There is a number of well-known approaches to tackle the performance problems of

KDD algorithms such as

• sampling [BKKS 98]

• approximation of attributes, e.g. grid approximations [HK 98]

• dimensionality reduction [FL 95].

All these approaches serve their purpose in accelerating the applied algorithms but have

also their limitations when considering the quality of the result (i.e. the effectivity of the

algorithm) because it is not always obvious that the result of an algorithm on a reduced

data set is comparable to the result on the original data set.

Therefore, the focus of our work was on approaches to accelerate data mining algo-

rithms in a quality preserving way. Our objective is to reformulate standard algorithms

of knowledge discovery in databases to gain efficiency but at the same time to prove that

the result of the reformulated algorithm is identical to the result of the original algorithm.

Our intention was not to propose any new data mining algorithm, because it is difficult

to asses a new approach if in a comparison with competitive approaches both categories,

effectivity and efficiency are different. The superiority of an approach is demonstrated in

a more convincing way if it can be shown that the quality of the result is not affected at

all (neither positively nor negatively) but the efficiency is considerably improved.

Lossy acceleration techniques like sampling, approximations, and dimensionality re-

duction can then be additionally applied to achieve further performance gains without

quality guarantees. 

1.2 Feature Databases

Our main focus is on data mining algorithms operating on feature databases which are

prevalent in similarity search systems for various application domains such as multime-

dia [FBF+ 94, SK 97], CAD [Jag 91, GM 93, BKK 97], medical imaging [KSF+ 96],

time sequence analysis [AFS 93, ALSS 95], molecular biology [KS 98b], etc. The prin-

ciple of a feature transformation is demonstrated in figure 2.
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To capture similarity of complex domain-specific objects, the feature transformation

extracts important, characterizing properties from the objects. Examples of such proper-

ties (for the domain of CAD objects) are the length, width, and perimeter of a CAD

object but also more complex features such as parameters describing the curvature of the

border of such an object. The sequence of features is interpreted as a vector from a

multidimensional vector space (the feature space). These vectors can be effectively and

efficiently managed using some multidimensional index structure such as an R-tree

[Gut 84], [BKSS 90] or a similar structure [GG 98].

Most feature databases are high-dimensional which causes particular performance

problems for usual indexing structures. Therefore, a number of dedicated index struc-

tures for high-dimensional indexing and similarity search has been proposed such as the

X-tree [BKK 96], the TV-tree [LJF 95], the SS-tree [WJ 96], the pyramid technique

[BBK 98b], the VA-file [WSB 98], and the IQ-tree [BBJ+ 00]. A survey of the problems

of high-dimensional spaces and the most important solutions to them can be found in

[Böh 98].

The most important property of a feature transformation is that similarity in the object

space corresponds to spatial proximity in the feature space. I.e. whenever two of the

complex application objects are similar, the associated feature vectors have a small dis-

tance according to an appropriate distance metric (often the Euclidean metric). There-

fore, the similarity search is naturally translated into a neighborhood query in the feature

space.

Feature-
Transform.

Insert,
Query

high-
dimens.
Index

Figure 2: Basic Idea of Feature Databases

Complex Objects Feature Vectors ε-/nn-Search

Dow Jones



Feature Databases 7

The two most important types of neighborhood queries in feature databases are:

• Range Query:

The user specifies a query object q and a query radius ε. The system retrieves all

objects from the database that have a feature distance from q not exceeding ε.

• k-Nearest Neighbor Query

The user specifies a query object q and the result cardinality k. The system

retrieves those k objects from the database that have least distance from q.

Both types of queries are depicted in figure 3. Often a multi-step architecture for query

processing is required. From the users’ perspective, the k-Nearest Neighbor query is

easier to handle because the result cardinality k is more intuitive than the query radius ε.

To determine a suitable ε such that a useful set of result objects is retrieved (i.e. a set

which is not empty and not almost equal to the set of all database objects) is sometimes

difficult.

Numerous algorithms of knowledge discovery and data mining use similarity queries.

Examples are the distance based outlier detection algorithm RT [KN 98], the density based

outliers LOF [BKNS 00], the clustering algorithms DBSCAN [EKSX 96], DenClue

[HK 98], OPTICS [ABKS 99], k-means [McQ 67] and k-medoid clustering [KR 90], near-

est-neighbor clustering [HT 93], single-link clustering [JD 88], nearest neighbor classifica-

tion [Mit 97], spatial association rules [KH 95], proximity analysis [KN 96], etc.

q qε
k = 3

Figure 3: Usual Similarity Queries

(a) Range Query (b) k-nn Query
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Conceptually, the execution of the similarity query is performed by the database man-

agement system while the data mining algorithm itself runs as a database client applica-

tion. The similarity query is provided by the database system as a basic operation or a

database primitive. The advantage of this concept is physical data independence. The

implementor of the data mining algorithm needs no knowledge about the actual algo-

rithm for similarity search. Index structures can be seamlessly replaced by other, more

efficient structures without affecting the implementation of the data mining algorithm.

The similarity search algorithm is a black box to the data mining algorithm.

1.3 The Similarity Join

Another database primitive for feature databases which has recently gained attention is

the similarity join. Like the relational join, the similarity join combines two data sets into

one set such that the new set contains pairs of objects of the two original sets. The join

condition involves some similarity predicate, i.e. some range-query based predicate or

some nearest-neighbor based predicate.

Well known applications of the similarity join are e.g. catalogue matching, duplicate

detection, or the search for pairwise similar items in large sets. For such applications, the

similarity join has already been considered to serve as a database primitive.

ε
Point of R
Point of S
Join result

Figure 4: The Similarity Join (Distance Range Join)
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For usual similarity queries, there exist several different definitions such as range

queries, k-nearest neighbor queries, inverse nearest neighbor queries, etc. Likewise,

there exist different definitions for the similarity join. The most common and most elab-

orated similarity join operation is the distance range join in which the user defines a

query radius ε, and the system retrieves all point pairs the distance of which does not

exceed ε (cf. figure 4). But there are also two further similarity join operations which are

based on the principle of nearest neighbor search. We will formally introduce these

definitions in chapter 2 and further elaborate later in this thesis.

1.4 High Performance Data Mining Based on the Similarity Join

The central idea of this thesis is that the similarity join is a powerful database primitive

to support a number of data mining algorithms. The typical approach of many KDD

algorithms is to evaluate similarity queries for a high number of query objects. Some

Figure 5: Database Primitives for Data Mining

Database Database

KDD Algorithm

q1 q2 q3 qm...

KDD Algorithm

Similarity
Queries

Similarity
Join

(a) single similarity queries (b) similarity join
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data mining algorithms such as the clustering algorithm DBSCAN even evaluate a sim-

ilarity query for each database point.

Our approach is to reformulate these KDD algorithms such that the high number of

single similarity queries is replaced by a single run of the similarity join (cf. figure 5).

This goal is reached for numerous important algorithms of knowledge discovery and

data mining such as the density based clustering algorithms DBSCAN [EKSX 96] and

OPTICS [ABKS 99] the outlier detection methods RT [KN 98] and LOF [BKNS 00], k-

means [McQ 67] and k-medoid clustering [KR 90], nearest neighbor clustering [HT 93],

nearest neighbor classification [Mit 97] and several others.

For some of these techniques, we show theoretically that the result of the modified

algorithms is identical to the result of the original KDD algorithms. In other cases, this

is obvious. In all cases, it is guaranteed that the reformulation is quality preserving.

Replacing the high number of similarity queries by a single similarity join also greatly

affects the performance of these algorithms, even if relatively simple similarity join

algorithms are applied. This will be shown in some of the experimental evaluations in

this thesis.

Our principle of algorithm reformulation has a second advantage. The reformulated

KDD algorithm operates upon a more powerful database primitive than before. Gener-

ally, the algorithm that implements a database primitive is a black box to the algorithm

that uses this database primitive. Therefore, the implementing algorithm can be replaced

by another solution without affecting the result (quality) of data mining. 

Compared to usual similarity queries, the similarity join is a more complex and pow-

erful database primitive. The similarity join yields more potential for performance im-

provements. 

Our principle of powerful database primitives allows us to participate from future

progress in the similarity join algorithms. Outdated algorithms can be replaced by newer

ones with higher performance and different properties. E.g. new index and data struc-

tures can be used very efficiently.
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1.5 Outline of the Thesis

Our thesis is built up from 4 large parts. The first part gives the motivation, introduces

the similarity join formally, and reviews the related work. Our second, and largest build-

ing block is dedicated to a similarity join operation called distance range join where a

query radius ε is given. We give a number of applications and show how this database

primitive can be efficiently implemented. Then, the third part describes another type of

similarity join which is based on a nearest neighbor join predicate. We give again numer-

ous applications from the KDD domain and show how the basic operation of the k-

nearest neighbor join can be efficiently implemented. The last part is dedicated to CPU

optimization which can be applied to all kinds of similarity join. The remainder of our

thesis consists of the following chapters:

• Chapter 2. Defining the Similarity Join

In this chapter, we first introduce our basic notions. After that, we give the for-

mal definition of a general similarity join which is a join of two multidimen-

sional point sets based on some join predicate involving similarity of two

objects. This definition leaves some degree of freedom how the similarity predi-

cate actually looks like. After that basic definition of similarity joins, we intro-

duce three different kinds of similarity join operations of which one is based on

the paradigm of range queries and the others are based on the paradigm of near-

est neighbor queries. The first operation, the distance range join operates on a

given similarity threshold ε. As this similarity threshold is difficult to handle for

the user, we also define our two nearest neighbor based similarity join opera-

tions. The first called k-distance join fetches those k pairs from the cross-prod-

uct of the two point sets which have minimum distance. The other called k-

nearest neighbor join combines each of the database points from the first set

with its k nearest neighbors in the other point set.

• Chapter 3. Related Work

This chapter is dedicated to previous approaches to the similarity join. Most of

the fundamentals of the similarity join are based on the spatial join which is

prevalent in spatial databases supporting geographic information systems (GIS).
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Many algorithms for the spatial join can be adopted for the similarity join which

is relatively simple. In our presentation of these approaches we show the neces-

sary modifications to take the similarity join into account. As far as these modi-

fications are concerned, this chapter contains also original work and not only a

classification and survey over well-known techniques.

• Chapter 4. Density Based Clustering on the Distance Range Join

In this chapter we show how density based clustering algorithms can be trans-

formed such that they operate on top of the distance range join rather than on top

of single similarity queries. In particular, we demonstrate such a transformation

for the density based clustering method DBSCAN and for a density based anal-

ysis method for the hierarchical cluster structure of a data set called OPTICS.

For these two methods, the transformation is particularly challenging because in

contrast to some other methods presented in this thesis, DBSCAN and OPTICS

in their original definitions enforce a certain order in which similarity queries

are evaluated. Therefore it is not straightforward to replace the similarity que-

ries by the similarity join. We propose two methods of transformation: The first,

called semantic rewriting first transforms the clustering algorithm semantically

to ensure that it is independent of the order in which join pairs are generated.

This is done by assigning cluster IDs tentatively, and with a complex action

table which handles inconsistent tentative results. The other technique is called

join result materialization. The join result is predetermined prior to the run of

the clustering algorithm and similarity queries are efficiently answered by look-

ups to the materialized join result. We can show for both techniques that the

result of the clustering algorithms is identical to that of the original algorithms.

Our experimental evaluation yields performance advances of up to a factor of 50

by our techniques.

• Chapter 5. Further Applications of the Range Distance Join

After the complex case of the transformation of DBSCAN and OPTICS, we

sketch in this chapter a few algorithms for which the evaluation on top of the

similarity join is easier. The applications presented here are robust similarity

search in sequence data where the join leads in particular to robustness with
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respect to noise and scaling. We also present a few generalizations of this tech-

nique to similarity of multidimensional sequences (i.e. raster or voxel data) and

to partial similarity. We also present applications like catalogue matching and

duplicate detection.

• Chapter 6. A Cost Model for Index Based Similarity Join Algorithms

This and the following chapters are dedicated to algorithms and index structures

for the distance range join. We start in this chapter with a cost model for index

based join evaluation. The concept used in this cost model is the Minkowski

sum which is here modified to estimate the number of page pairs from the corre-

sponding index structures which have to be considered. In contrast to usual sim-

ilarity search, the concept of the Minkowski sum must be applied twice for the

similarity join in order to estimate the number of page pairs which must be

joined. We use this cost model to analyze the index with respect to the page

capacity and show how this parameter can be optimized. Our analysis, however,

reveals a serious optimization conflict between disk I/O and CPU optimization.

While large pages optimize the I/O, the CPU performance benefits from small

pages. This results in the observation that in traditional index structures only

one of these performance factors can be optimized.

• Chapter 7. MuX: An Index Architecture for the Similarity Join

This chapter is dedicated to the solution of the optimization conflict detected in

the analysis of chapter 6. Our objective is to develop an index architecture

which allows a separate optimization for CPU and I/O performance. Therefore,

we basically need two separate page capacities, one for CPU and one for I/O.

This goal is achieved by the multipage index (MuX). This index structure con-

sists of large data and directory pages which are subject to I/O operations.

Rather than directly storing points and directory records an these large pages,

these pages accommodate a secondary search structure which is used to speed

up the CPU operations. To facilitate an effective and efficient optimization, this

secondary search structure has again an R-tree like structure with a (flat) direc-

tory and with data pages. Thus, the page capacity of the secondary search struc-

ture can be optimized by the cost functions developed in chapter 6, however, for
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the CPU trade-off. We show that the CPU performance of MuX is similar (equal

up to some small additional management overhead) to the CPU performance of

a traditional index which is purely CPU optimized. Likewise, we show that the

I/O performance resembles that of an I/O optimized traditional index. Our

experimental evaluation confirms this and demonstrates the clear superiority

over the traditional approaches.

• Chapter 8. Joining Massive High-Dimensional Data

We develop the ε Grid Order, a sort order which is founded on a virtual grid par-

tition of the data space. This method is based on the observation that for the dis-

tance range join with a given distance parameter ε, a grid partition with a grid

distance of ε is an effective means to reduce the search space for join partners of

a point p. Due to the curse of dimensionality, however, the number of grid cells

in which potentially joining points are contained explodes with the data space

dimension (O(3d) cells). To avoid considering the grid cells one by one, we

introduce the grid partition only in a virtual way as the basis of a particular sort

order, the ε grid order, which orders points according to grid cell containment.

The ε grid order serves as the ordering criterion in an external memory sort

operator. Later, the ε grid order supports effective and efficient algorithms for

CPU and I/O processing, particularly for large data sets which cannot be joined

in main memory.

• Chapter 9. k-Nearest Neighbor Joins: Turbo Charging the KDD Process

The next two chapters are dedicated to the k-Nearest Neighbor Join (k-nn join)

which combines each point of a point set R with its k nearest neighbors in

another point set S. This chapter gives the applications of this database primi-

tive. Many standard tasks of data mining evaluate k-nearest neighbor queries for

a large number of query points. Examples are clustering algorithms such as k-

means, k-medoid and the nearest neighbor method, but also data cleansing and

other pre- and postprocessing techniques e.g. when sampling plays a role in data

mining. Our list of applications covers all stages of the KDD process. In the pre-

processing step, data cleansing algorithms are typically based on k-nearest

neighbor queries for each of the points with NULL values against the set of



Outline of the Thesis 15

complete vectors. The missing values can be computed e.g. as the weighted

means of the values of the k nearest neighbors. Then, the k-distance diagram is a

technique for a suitable parameter selection for data mining. In the core step, i.e.

data mining, many algorithms such as clustering and classification are based on

k-nn queries. In all these algorithms, it is possible to replace a large number of k-

nn queries which are originally issued separately, by a single run of a k-nn join.

Therefore, the k-nn join gives powerful support for all stages of the KDD pro-

cess. In this chapter, we show how some of these standard algorithms can be

based on top of the k-nearest neighbor join.

• Chapter 10. Processing k-Nearest Neighbor Joins Using MuX

In this chapter, we show how the operation of a k-nearest neighbor similarity

join can be efficiently implemented on top of a multidimensional index struc-

ture. In chapter 6 we have shown for the distance range join that it is necessary

to optimize index parameters such as the page capacity separately for CPU and

I/O performance. We have proposed a new index architecture (Multipage Index,

MuX) (cf. chapter 7) which allows such a separate optimization. The index con-

sists of large pages which are optimized for I/O efficiency. We have shown that

the distance range join on the Multipage Index has an I/O performance similar

to an R-tree which is purely I/O optimized and has a CPU performance like an

R-tree which is purely CPU optimized. We believe that also the k-nn join clearly

benefits from the separate optimization, because the optimization trade-offs are

very similar. We give an algorithm to efficiently compute the similarity join on

MuX. This algorithms applies two strategies, the loading and processing strat-

egy. We propose strategies that clearly optimize query processing.

• Chapter 11. Optimizing the Similarity Join.

Our 11th chapter is devoted to an optimization technique which can be applied

on top of all join algorithms proposed in this thesis and also on most algorithms

described in the related work chapter. The most important cost factor with

respect to CPU operations are the finalizing distance calculations between the

feature vectors. Our optimization technique accelerates these distance calcula-

tions by selecting the dimension with the highest selectivity and sorting the
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points along this optimal dimension. Therefore, we call this technique the opti-

mal dimension order. To select an optimal dimension our technique considers

the regions which are assigned to the considered partitions. It is not restricted to

index based processing techniques but can also be applied on top of hashing

based methods or grid based approaches such as the size separation spatial join,

the ε-kdB-tree or our ε Grid Order.

Finally, chapter 12 concludes our thesis. We will summarize our contributions to the

research field of applications and algorithms for the similarity join. We believe that we

have illustrated this field both in its broadness as well as in its depth. Nevertheless,

several research issues also remain for future work, in particular approximate join algo-

rithms and the similarity join on non-vector metric data. We will indicate the most prom-

ising research directions.



Chapter 2
Defining the Similarity Join

In the current literature, there are several different kinds of similarity join known, found-

ing on the concepts of range-queries and nearest neighbor queries. Further definitions

may follow in future work. Therefore, we will first give an intuitive definition of what

we understand to be a similarity join in general (which is informal by nature), and then

give the precise formal definitions of the known approaches.

2.1 General Notion of Similarity Joins

We postulate three requirements for a similarity join. First, the similarity join is a join in

the sense of the relational database model i.e. two sets R and S are combined into one

such that the new set contains pairs of objects of R and S that fulfill a join condition.

Every join can also be expressed as a selection operation (which corresponds to the join

condition) on the cartesian product R × S. 

The second property of a similarity join is that the sets R and S are not regular rela-

tions, i.e. sets of tuples of an arbitrary record type but are either sets of points in a

multidimensional vector space (or at least that some point information is contained in

each tuple) or sets of multimedia objects with a distance metric defined upon. The third
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property of a general similarity join is that the join condition must involve the similarity

between the objects in R and S. In the case of multidimensional point sets, the join

condition involves the Euclidean distance or some other distance metric for vector spac-

es. For general multimedia objects, analogously the defined similarity metric is used.

Note that, to the best of our knowledge, currently there is no publication dealing with

joins on non-vector metric spaces. The concepts, however, are directly transferable and

there are numerous applications of the similarity join upon non-vector multimedia ob-

jects.

The way in which similarity is involved in the join may vary. As we will see, there are

join definitions which postulate that the object pairs in the result set have a distance

(dissimilarity) not exceeding a given join parameter ε (cf. sections 2.2). Other join defi-

nitions combine exactly those objects which are most similar to each other

(cf. section 2.3). Summarizing, we give the following

Definition 2 General Similarity Join

A similarity join R S of two finite sets R and S has the following properties:

• the join result is a subset of the cartesian product

R S  ⊆  R × S

• each tuple of the sets R and S contains either

− point data from a multidimensional vector space or

− a multimedia object with an associated similarity metric

• a vector space metric or the associated similarity metric is used in the join pred-

icate.

2.2 Distance Range Based Similarity Join

The most prominent and most evaluated similarity join operation is the distance range

join. Therefore, the notions similarity join and distance range join are often used inter-

changably. Unless otherwise specified, when speaking of the similarity join, often the

distance range join is meant by default. For clarity in this thesis, we will not follow this

convention and always use the exact notions.

sim

sim
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As depicted in figure 6, the distance range join R S of two multidimensional or

metric sets R and S is the set of pairs where the distance of the objects does not exceed

the given parameter ε. Formally:

Definition 3 Distance Range Join (ε-Join)

The distance range join R S of two finite multidimensional or metric sets R and S is

the set

R S := {(ri,sj) ∈  R × S: ||ri − sj|| ≤ ε}

The distance range join can also be expressed in a SQL like fashion:

SELECT * FROM R, S WHERE ||R.obj − S.obj|| ≤ ε

In both cases, ||·|| denotes the distance metric which is assigned to the multimedia ob-

jects. For multidimensional vector spaces, ||·|| usually corresponds to the Euclidean dis-

tance.

As we will point out later, the distance range join can be applied in density based

clustering algorithms which often define the local data density as the number of objects

in the ε-neighborhood of some data object. This essentially corresponds to a self-join

using the distance range paradigm. In the following we note that

Lemma 1. the distance range self join is symmetric i.e.

(ri,rj) ∈  R R ⇔ (rj,ri) ∈  R R

ε
Points of R
Points of S

Figure 6: The Distance Range Join (ε-Join)
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Proof follows from the symmetry of any distance metric: ||ri−rj|| ≤ ε ⇔ ||rj−ri|| ≤ ε for

any distance metric 

Like for plain range queries in multimedia databases, a general problem of distance

range joins from the users’ point of view is that it is difficult to control the result cardi-

nality of this operation. If ε is chosen too small, no pairs are reported in the result set (or

in case of a self join: each point is only combined with itself). In contrast, if ε is chosen

too large, each point of R is combined with every point in S which leads to a quadratic

result size and thus to a time complexity of any join algorithm which is at least quadratic;

more exactly o ( |R | · |S | ). The range of possible ε-values where the result set is non-trivial

and the result set size is sensible is often quite narrow, which is a consequence of the

curse of dimensionality. Provided that the parameter ε is chosen in a suitable range and

also adapted with an increasing number of objects such that the result set size remains

approximately constant, the typical time asymptote of advanced join algorithms is better

than quadratic.

2.3 Nearest Neighbor Based Similarity Join

It is possible to overcome the problems of a selectivity which is difficult to control by

replacing the range query based join predicate by a (k-)nearest neighbor based condition.

In contrast to range queries which retrieve potentially the whole database, the selectivity

of a (k-)nearest-neighbor query is (up to tie situations) clearly defined. There are two

ways in which the concept of the nearest neighbor queries can be integrated into the

similarity join. Both methods inherit from the nearest neighbor query the advantage that

the size of the result set is (unless ties occur) previously known. 

2.3.1  (k-) Closest Pair Queries

The first nearest neighbor based similarity join is the k-closest pair query. This operation

retrieves those k pairs from R × S having minimum distance. Closest pair queries do not
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only play an important role in the database research but have also a long history in

computational geometry [PS 85]. In the database context, the operation has been intro-

duced by Hjaltason and Samet [HS 98] using the term distance join. The (k-)closest pair

query can be defined as follows:

Definition 4 (k-) Closest Pair Query R S

R S is the smallest subset of R × S that contains at least

k pairs of points and for which the following condition holds:

∀ (r,s) ∈  R S, ∀ (r’,s’) ∈  R × S \ R S: ||r−s|| < ||r’−s’||

This definition directly corresponds to the definition of (k-) nearest neighbor queries,

where the single data object o is replaced by the pair (r,s). Here, tie situations are broken

by enlargement of the result set. It is also possible to change definition 4 such that the tie

is broken non-deterministically by a random selection. [HS 98] defines the closest pair

query (non-deterministically) by the following SQL statement:

SELECT * FROM R, S

ORDER BY ||R.obj − S.obj||

STOP AFTER k

We give two more remarks regarding self joins. Obviously, the closest pairs of the self-

join R R are the n pairs (ri,ri) which have trivially the distance 0 (for any distance

metric), where n = |R| is the cardinality of R. Usually, these trivial pairs are not needed,

and, therefore, they should be avoided in the WHERE clause. Like the distance range

Points of R
Points of S

Figure 7: The k-Closest Pair Query (for k = 4)
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selfjoin, the closest pair selfjoin is symmetric (unless nondeterminism applies). Applica-

tions of closest pair queries (particularly self joins) include similarity queries like 

• find all stock quota in a database that are similar to each other

• find music scores which are similar to each other

• noise-robust duplicate elimination of any multimedia application

For plain similarity search in multimedia-databases, it is often useful to replace k-nearest

neighbor queries by ranking queries which retrieve the first, second, third,... nearest

neighbor in a one-by-one fashion. The actual number k of nearest neighbors to be

searched is initially unknown. The user (or some application program on top of the

database) decides according to a criterion which is unknown to the DBMS whether or

not further neighbors are required. This kind of processing can also be defined on top of

the closest pair query, e.g. by cancelling the STOP AFTER clause in the SQL statement

above. The query results are passed to the application program using some cursor con-

cept. It is important to avoid computing the complete ranking in the initialization phase

of the cursor, because determining the complete ranking is unnecessarily expensive if

the user decides to stop the ranking after retrieving only a few result points. 

2.3.2  (k-) Nearest Neighbor Join

Even more important is the last kind of similarity join operation which does not find the

best ones among all arbitrary pairs of points but rather combines each point of R with its

nearest neighbor (or its k nearest neighbors) in S. In computational geometry, this oper-

ation is called the all nearest neighbor search. In contrast to the closest pair query, here

Points of R
Points of S

Figure 8: The k-Nearest Neighbor Join (for k = 2)
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it is guaranteed that each point of R appears in the result set exactly once (or exactly k

times, respectively). Points of S may appear once, more than once (if a point is the

nearest neighbor of several points in R) or not at all (if a point is the nearest neighbor of

no point in R). Formally, we define the k-NN-join as follows:

Definition 5 k-NN-Join R S

R S is the smallest subset of R × S that contains for each point of R at least k points

of S and for which the following condition holds:

∀ (r,s) ∈  R S, ∀ (r,s’) ∈  R × S \ R S: ||r−s|| < ||r−s’||

Here, the notion of k-nearest neighbor queries has been transformed to point sets on a

basis “per point of R.” Again, in this definition, tie situations are broken deterministical-

ly by enlarging the result set. Another possibility is random selection. Hjaltason and

Samet define the k-NN-Join in SQL style as follows:

SELECT * FROM R, S

GROUP BY R.obj

ORDER BY ||R.obj − S.obj|| 

STOP AFTER k

For the selfjoin, we have again the situation that each point is combined with itself which

can be avoided using the WHERE clause. Unlike ε-join and k-CP query, the k-NN self-

join is not symmetric as the nearest neighbor relation is not symmetric (cf. the simple

counterexample in figure 9). The k-NN-Join can be successfully applied in simultaneous

k-NN

k-NN

k-NN k-NN

Points of R

Figure 9: The NN-Join (k = 1) is not symmetric
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nearest neighbor classification of a high number of query objects which is usual for

domains such as

• Astronomical observation:

A high number of newly detected objects is compared to a very high number of 

known reference objects

• Online customer scoring:

Some thousand new customers are probed against some millions of known pat-

terns.



Chapter 3
Related Work

This chapter is dedicated to the previous approaches to the similarity join. Most of the

fundamentals of the similarity join base on the spatial join which is prevalent in spatial

databases supporting geographic information systems (GIS). Many algorithms for the

spatial join can be adopted for the similarity join which is relatively simple. In our pre-

sentation of these approaches we show the necessary modifications to take the similarity

predicate into account. 

3.1 Preliminaries: Indexing High-Dimensional Spaces

We begin with a short description of the index structures used to organize feature spaces

and the corresponding query processing techniques. The interested reader is referred to

more elaborate surveys of multidimensional and high dimensional indexing techniques

such as [GG 98, BBK 01]. In this section, we give only a short introduction to make the

needed material readily available and to make this thesis more self-contained. We con-

centrate on techniques which are needed later in this text. We put some emphasis on

algorithms for plain similarity queries, especially nearest neighbor queries, because

these algorithms will be later (cf. section 3.3 and chapter 10) used as building blocks for

join algorithms upon nearest neighbor join predicates.
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3.1.1  Structure of High-Dimensional Indexes

High-dimensional indexing methods are based on the principle of hierarchical clustering

of the data space. Structurally, they are similar to the B+-tree [BM 77, Com 79]: The data

vectors are stored in data nodes such that spatially adjacent vectors are likely to reside in

the same node. Each data vector is stored in exactly one data node, i.e. there is no object

duplication among the data nodes. The data nodes are organized in a hierarchically struc-

tured directory. Each directory node points to a set of subtrees. Usually, the structure of

the information stored in data nodes is completely different from the structure of the

directory nodes. In contrast, the directory nodes are uniformly structured among all lev-

els of the index. There is a single directory node which is called the root node. It serves

as an entry point for query and update processing. The index structures are height-bal-

anced. That means, the lengths of the paths between the root and all data pages are

identical, but may change after insert or delete operations. The length of a path from the

root to a data page is called the height of the index. The length of the path from a random

node to a data page is called the level of the node. Data pages are on level zero.

3.1.1.1  Management

The high-dimensional access methods are designed primarily for the secondary storage.

Data pages have a data page capacity Cmax,data, defining how many data vectors can be

stored in a data page at most. Analogously, the directory page capacity Cmax,dir gives an

upper limit to the number of subnodes in each directory node. The original idea was to

Data Pages

Directory Pages

Root:

Figure 10: Hierarchical Index Structures. 
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choose Cmax,data and Cmax,dir such that data and directory nodes fit exactly into the pages

of the secondary storage. However, in modern operating systems, the page size of a disk

drive is considered as a hardware detail hidden from programmers and users. Even

though, consecutive reading of contiguous data on disk is by orders of magnitude less

expensive than reading at random positions. It is a good compromise to read data contig-

uously from disk in portions between a few kilobytes and a few hundred kilobytes. This

is a kind of artificial paging with a user-defined logical page size. 

All index structures presented here are dynamic, i.e. they allow insert and delete

operations in O (log n) time. To cope with dynamic insertions, updates and deletes, the

index structures allow data and directory nodes to be filled under their capacity Cmax. In

most index structures the rule is applied that all nodes up to the root node must be filled

to about 40% at least. This threshold is called the minimum storage utilization sumin. The

root is generally allowed to break this rule. 

For B-trees, it is possible to derive an average storage utilization analytically, called

the effective storage utilization sueff. In contrast, for high-dimensional index structures,

the effective storage utilization is influenced by the specific heuristics applied in insert

and delete processing. Since these indexing methods are not amenable to an analytical

derivation of the effective storage utilization, it has to be determined experimentally. 

For comfort, we will denote the product of the capacity and the effective storage

utilization as the effective capacity Ceff of a page:

.

3.1.1.2  Regions

For efficient query processing it is important that the data is well clustered into the pages,

i.e. that data objects which are close to each other are likely to be stored in the same data

page. Assigned to each page is a so-called page region which is a subset of the data

space. The page region can be a hypersphere, a hypercube, a multidimensional cuboid, a

multidimensional cylinder or a set-theoretical combination (union, intersection) of these

possibilities. For most, but not all high-dimensional index structures the page region is a

contiguous and convex subset of the data space without holes. For most index structures,

Ceff,data sueff,data Cmax,data⋅= Ceff,dir sueff,dir Cmax,dir⋅=
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regions of pages in different branches of the tree may overlap, although overlaps lead to

bad performance behavior and have to be avoided if possible or at least minimized.

The regions of hierarchically organized pages always have to be completely con-

tained in the region of their parent node. Analogously, all data objects stored in a subtree

are always contained in the page region of the root page of the subtree. The page region

is always a conservative approximation for the data objects and the other page regions

stored in a subtree.

In query processing, the page region is used to exclude branches of the tree from

further processing. For example, in case of range queries if a page region does not inter-

sect with the query range, it is impossible that any region of a hierarchically subordered

page intersects with the query range. Neither is it possible that any data object stored in

this subtree intersects with the query range. Only pages where the corresponding page

region intersects with the query have to be investigated further. Therefore, a suitable

algorithm for range query processing can guarantee that no false drops occur.

For nearest neighbor queries a related but slightly different property of conservative

approximations is important. Here, distances to a query point have to be determined or

estimated. It is important that distances to approximations of point sets are never greater

Figure 11: Corresponding Page Regions of an Indexing Structure. 
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than the distances to the regions of subordered pages and never greater than the distances

to the points stored in the corresponding subtree. This is commonly known as the lower

bounding property.

Page regions have always a representation that is an invertible mapping between the

geometry of the region and a set of values storable in the index. For example, spherical

regions can be represented as center point and radius using d + 1 floating point values if

d is the dimension of the data space. For efficient query processing, it is necessary that

the test for intersection with a query region and the distance computation to the query

point in case of nearest neighbor queries can be performed efficiently.

3.1.2  Algorithms for Insert, Delete and Update

In this section, we will present some basic algorithms on high-dimensional index struc-

tures for index construction and maintenance in a dynamic environment as well as for

query processing. Although some of the algorithms are published for a specific indexing

structure, here they are presented in a more general way.

Insert, delete and update are the operations which are most specific to the correspond-

ing index structures. Even though, there are basic algorithms capturing all actions which

are common to all index structures. Inserts are generally handled as follows:

• Search a suitable data page dp for the data object do.

• Insert do into dp.

• If the number of objects stored in dp exceeds Cmax,data, then split dp into two

data pages

• Replace the old description (the representation of the region and the background

storage address) of dp in the parent node of dp by the descriptions of the new

pages

• If the number of subtrees stored in the parent exceeds Cmax,dir, split the parent

and proceed similarly with the parent. It is possible that all pages on the path

from dp to the root have to be split.
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• If the root node has to be split, let the height of the tree grow by one. In this

case, a new root node is created pointing to two subtrees resulting from the split

of the original root.

Individual heuristics for the specific indexing structure are applied to handle the follow-

ing subtasks:

• The search for a suitable data page (commonly called the PickBranch proce-

dure). Due to the overlap between regions and as the data space is not necessar-

ily completely covered by page regions, there are generally multiple alternatives

for the choice of a data page in most multidimensional index structures.

• The choice of the split, i.e. which of the data objects/subtrees are aggregated

into which of the newly created nodes.

Some index structures try to avoid splits by a concept named forced re-insert. Some data

objects are deleted from a node having an overflow condition and reinserted into the

index. The details are presented later in this chapter.

The choice of heuristics for insert processing may affect the effective storage utiliza-

tion. For example, if a volume-minimizing algorithm allows unbalanced splitting in a

30:70 proportion, then the storage utilization of the index is decreased and the search

performance is negatively affected. On the other hand, the presence of forced reinsert

operations increases the storage utilization and the search performance.

Until now, few have been done to handle deletions from multidimensional index

structures. Underflow conditions can generally be handled by three different actions: 

• Balancing pages by moving objects from one page to another

• Merging pages

• Deleting the page and reinserting all objects into the index.

For most index structures it is a difficult task to find a suitable mate node for balancing

or merging actions. 

An update-operation is viewed as a sequence of a delete-operation followed by an

insert-operation. No special procedure has been suggested, yet.
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3.1.3  Exact Match and Range Query 

Exact match queries are defined as follows: Given a query point q, determine whether q

is contained in the database or not. Query processing starts with the root node which is

loaded into the main memory. For all regions containing point q the function Exact-

MatchQuery is called recursively. Since an overlap between page regions is allowed in

most index structures presented in this chapter, it is possible that several branches of the

indexing structure have to be examined for processing an exact match query. The result

of ExactMatchQuery is true if any of the recursive calls returns true. For data pages, the

result is true if one of the points stored on the data page fits. If no point fits, the result is

false.

The algorithm for range query processing returns a set of points contained in the query

range as result to the calling function. The size of the result set is previously unknown

and may reach the size of the entire database. The algorithm is formulated independently

from the applied metric. Any Lp metric including metrics with weighted dimensions

(ellipsoid queries, [Sei 97, SK 97]) can be applied if there exists an effective and effi-

cient test for the predicates IsPointInRange and RangeIntersectRegion. Also partial

range queries, i.e. range queries where only a subset of the attributes is specified, can be

considered as regular range queries with weights (the unspecified attributes are weighted

with zero). Also window queries can be transformed into range-queries using a weighted

Lmax metric.

The algorithm for the range search performs a recursive self-call for each child-page

the page region of which intersects the query range. The union of the results of all recur-

sive calls is built and passed to the caller.

3.1.4  Nearest Neighbor Query

There are two different approaches to process nearest neighbor queries on multidimen-

sional index structures. One was published by Roussopoulos, Kelley and Vincent

[RKV 95] and is in the following called RKV algorithm. The other algorithm (‘HS algo-

rithm’), was published by Hjaltason and Samet [HS 95]. Due to their importance for our

further work, these algorithms are presented in detail.
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We start with the description of the RKV algorithm because it is more similar to the

algorithm for range query processing in the sense that a depth-first traversal through the

index is performed. RKV is an algorithm of the type “branch and bound”. In contrast, the

HS algorithm loads pages from different branches and different levels of the index in an

order induced by the proximity to the query point.

Unlike range query processing, there is no fixed criterion, known a priori, to exclude

branches of the indexing structure from processing in nearest neighbor algorithms. Ac-

tually, the criterion is the nearest neighbor distance but the nearest neighbor distance is

not known until the algorithm has terminated. To cut branches, nearest neighbor algo-

rithms have to use pessimistic (conservative) estimations of the nearest neighbor dis-

tance which will change during the run of the algorithm and will approach the nearest

neighbor distance. A suitable pessimistic estimation of the nearest neighbor distance is

the closest point among all points visited at the current state of execution (the so-called

closest point candidate cpc). If no point has been visited yet, it is also possible to derive

pessimistic estimations from the page regions visited so far.

3.1.4.1  The RKV Algorithm

The authors of the RKV algorithm define two important distance functions, MINDIST

and MINMAXDIST. MINDIST is the actual distance between the query point and a

page region in the geometrical sense, i.e. the nearest possible distance of any point inside

the region to the query point. The definition in the original proposal [RKV 95] is limited

to R-tree like structures where regions are provided as multidimensional intervals I (i.e.,

minimum bounding rectangles, MBR) with

.

Then, MINDIST is defined as follows:

Definition 6 MINDIST. The distance of a point q to region I, denoted MINDIST (q, I) is:

I lb0 ub0,[ ] ... lbd 1– ubd 1–,[ ]××=

MINDIST2 q I,( )
lbi qi–     if    qi lbi<

0     otherwise

qi ubi–     if    ubi qi<
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
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
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 
 
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i 0=
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An example of MINDIST is presented on the left side of figure 12. In page regions pr1

and pr3, the edges of the rectangles define the MINDIST. In page region pr4 the corner

defines MINDIST. As the query point lies in pr2, the corresponding MINDIST is 0. A

similar definition can also be provided for differently shaped page regions, such as

spheres (subtract the radius from the distance between center and q) or combinations. A

similar definition can be given for L1 and Lmax metric, respectively. For a pessimistic

estimation, some specific knowledge about the underlying index structure is required.

One assumption which is true for all known index structures is that every page must

contain at least one point. Therefore, we could define the following MAXDIST function

determining the distance to the farthest possible point inside a region:

MAXDIST is not defined in the original paper as it is not needed in R-tree like struc-

tures. An example is shown on the right side of figure 12. Being the greatest possible

distance from the query point to a point in a page region, the MAXDIST is not equal to

0 even if the query point is located inside the page region pr2.
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Figure 12: MINDIST and MAXDIST. 
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In R-trees, the page regions are minimum bounding rectangles (MBR), i.e. rectangu-

lar regions where each surface hyperplane contains one data point at least. The following

MINMAXDIST function provides a better (i.e. lower) but still conservative estimation

of the nearest neighbor distance:

,

where:

 and .

The general idea is that every surface hyperarea must contain a point. The farthest point

on every surface is determined and among those the minimum is taken. For each pair of

opposite surfaces, only the nearer surface can contain the minimum. Thus, it is guaran-

teed that a data object can be found in the region having a distance less than or equal to

MINMAXDIST (q, I). MINMAXDIST (q, I) is the smallest distance providing this

guarantee. The example on figure 13 shows on the left side the considered edges. Among
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each pair of opposite edges of an MBR, only the edge closer to the query point is consid-

ered. The point yielding the maximum distance on each considered edge is marked with

a circle. The minimum among all marked points of each page region defines the MIN-

MAXDIST as shown on the right side of figure 13.

This pessimistic estimation cannot be used for spherical or combined regions because

no property similar to the MBR property is fulfilled. In this case, MAXDIST (q, I) which

is an estimation worse than MINMAXDIST has to be used. All definitions presented

with the L2-metric in the original paper [RKV 95] can easily be adapted to L1 or Lmax

metrics as well as to weighted metrics.

The algorithm proposed by Roussopoulos et al. performs accesses to the pages of an

index in a depth-first order (“branch and bound”). A branch of the index is always com-

pletely processed before the next branch starts. Before child nodes are loaded and recur-

sively processed, they are heuristically sorted according to their probability of contain-

ing the nearest neighbor. For the sorting order, the optimistic or pessimistic estimation or

a combination thereof may be chosen. The quality of sorting is critical for the efficiency

of the algorithm because for different sequences of processing the estimation of the

nearest neighbor distance may approach more or less fast to the actual nearest neighbor

distance. The paper [RKV 95] reports advantages for the optimistic estimation. The list

of child nodes is pruned whenever the pessimistic estimation of the nearest neighbor

distance changes. Pruning means to discard all child nodes having a MINDIST larger

than the pessimistic estimation of the nearest neighbor distance. It is guaranteed that

these pages do not contain the nearest neighbor because even the closest point in these

pages is farther away than an already found point (lower bounding property). The pessi-

mistic estimation is the lowest among all distances to points processed so far and all

results of the MINMAXDIST (q, I) function for all page regions processed so far.

To extend the algorithm to k-nearest neighbor processing is a difficult task. Unfortu-

nately, the authors make it easy by discarding the MINMAXDIST from path pruning,

sacrificing the performance gains obtainable from the MINMAXDIST path pruning.

The k-th lowest among all distances to points found so far must be used. Additionally

required is a buffer for k points (the k closest point candidate list, cpcl) which allows an

efficient deletion of the point with the highest distance and an efficient insertion of a
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random point. A suitable data structure for the closest point candidate list is a priority

queue (also known as semi-sorted heap [Knu 75]).

Considering the MINMAXDIST imposes some difficulties, since the algorithm has

to assure that k points are closer to the query than a given region is. For each region, we

know that at least one point must have a distance less than or equal to MINMAXDIST.

If the k-nearest neighbor algorithm would prune a branch according to MINMAXDIST,

it would assume that k points must be positioned on the nearest surface hyperplane of the

page region. The MBR property only guarantees one such point. We further know that m

points must have a distance less than or equal to MAXDIST where m is the number of

points stored in the corresponding subtree. The number m could be, for example, stored

in the directory nodes or could be estimated pessimistically by assuming minimal stor-

age utilization if the indexing structure provides storage utilization guarantees. A suit-

able extension of the RKV algorithm could use a semi-sorted heap with k entries. Each

entry is either a cpc or a MAXDIST estimation or a MINMAXDIST estimation. The

heap entry with the greatest distance to the query point q is used for branch pruning. It is

called the pruning element. Whenever new points or estimations are encountered, they

are inserted into the heap if they are closer to the query point than the pruning element.

Whenever a new page is processed, all estimations based on the according page region

have to be deleted from the heap. They are replaced by the estimations based on the

regions of the child pages (or the contained points if it is a data page). This additional

deletion implies additional complexities because a priority queue does not efficiently

support the deletion of elements other than the pruning element. All these difficulties are

neglected in the original paper [RKV 95].

3.1.4.2  The HS Algorithm

The problems arising from the need to estimate the nearest neighbor distance are ele-

gantly avoided in the HS algorithm [HS 95]. The HS algorithm does not access the pages

in an order induced by the hierarchy of the indexing structure such as depth-first or

breadth-first. Rather, all pages of the index are accessed in the order of increasing dis-

tance to the query point. The algorithm is allowed to jump between branches and levels

for processing pages.
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The algorithm manages an active page list (APL). A page is called active if its parent

has been processed but not the page itself. Since the parent of an active page has been

loaded, the corresponding region of all active pages is known and the distance between

region and query point can be determined. The APL stores the background storage ad-

dress of the page as well as the distance to the query point. The representation of the page

region is not needed in the APL. A processing step of the HS algorithm comprises the

following actions:

• Select the page p with the lowest distance to the query point from the APL.

• Load p into the main memory.

• Delete p from the APL.

• If p is a data page: Determine whether one of the points contained in this page is

closer to the query point than the closest point found so far (called the closest

point candidate cpc).

• Otherwise: Determine the distances to the query point for the regions of all child

pages of p and insert all child pages and the corresponding distances into APL.
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Figure 14: The HS Algorithm for Finding the Nearest Neighbor. 
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The processing step is repeated until the closest point candidate is closer to the query

point than the nearest active page. In this case, no active page is able to contain a point

closer to q than cpc due to the lower bounding property. Likewise, no subtree of any

active page may contain such a point. As all other pages have already been looked upon,

processing can stop. Again, the priority queue is the suitable data structure for APL. 

For k-nearest neighbor processing, a second priority queue with fixed length k is

required for the closest point candidate list.

3.1.4.3  Ranking Query

Ranking queries can be seen as generalized k-nearest neighbor queries with a previously

unknown result set size k. A typical application of a ranking query requests the nearest

neighbor first, then the second closest point, the third and so on. The requests stop ac-

cording to a criterion which is external to the index-based query processing. Therefore,

neither a limited query range nor a limited result set size can be assumed before the

application terminates the ranking query.

In contrast to the k-nearest neighbor algorithm, a ranking query algorithm needs an

unlimited priority queue for the candidate list of closest points (cpcl). A further differ-

ence is that each request of the next closest point is regarded as a phase that ends report-

ing the next resulting point. The phases are optimized independently. In contrast, the k-

nearest neighbor algorithm searches all k points in a single phase and reports the com-

plete set.

In each phase of a ranking query algorithm, all points encountered during the data

page accesses are stored in the cpcl. The phase ends if it is guaranteed that unprocessed

index pages cannot contain a point closer than the first point in cpcl (the corresponding

criterion of the k-nearest neighbor algorithm is based on the last element of cpcl). Before

beginning the next phase, the leading element is deleted from the cpcl.

It does not appear very attractive to extend the RKV algorithm for processing ranking

queries due to the fact that effective branch pruning can be performed neither based on

MINMAXDIST or MAXDIST estimates nor based on the points encountered during the

data page accesses.
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In contrast, the HS algorithm for nearest neighbor processing needs only the modifi-

cations described above to be applied as a ranking query algorithm. The original propos-

al [HS 95] contains these extensions.

The major limitation of the HS algorithm for ranking queries is the cpcl. It can be

proven that the length of the cpcl is of the order O (n). In contrast to the APL, the cpcl

contains the full information of possibly all data objects stored in the index. Thus, its size

is bounded only by the database size questioning the applicability not only theoretically,

but also practically. From our point of view, a priority queue implementation suitable for

background storage is required for this purpose.

3.1.5  R-tree, R*-tree, and X-tree

The R-tree [Gut 84] uses solid minimum bounding rectangles (MBR) as page regions.

An MBR is a multidimensional interval of the data space, i.e. axis-parallel multidimen-

sional rectangles. MBRs are minimal approximations of the enclosed point set. There

exists no smaller axis-parallel rectangle also enclosing the complete point set. Therefore,

every ( )-dimensional surface area must contain at least one data point. Space par-

titioning is neither complete nor disjoint. Parts of the data space may be not covered at

all by data page regions. Overlapping between regions in different branches is allowed,

although overlaps deteriorate the search performance especially for high-dimensional

data spaces [BKK 96]. The region description of an MBR encompasses for each dimen-

sion a lower and an upper bound. Thus, 2 d floating point values are required. This

description allows an efficient determination of MINDIST, MINMAXDIST and

MAXDIST using any Lp metric.

R-trees have originally been designed for spatial databases, i.e. for the management

of 2-dimensional objects with a spatial extension (e.g., polygons). In the index, these

objects are represented by the corresponding MBR. In contrast to point objects, it is

possible that no overlap-free partition for a set of such objects exists at all. The same

problem occurs also when R-trees are used to index data points but only in the directory

part of the index. Page regions are treated like spatially extended, atomic objects in their

parent nodes (no forced split). Therefore, it is possible that a directory page cannot be

split without creating an overlap among the newly created pages [BKK 96].

d 1–
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According to our framework of high-dimensional index structures, two heuristics

have to be defined to handle the insert operation: The choice of a suitable page to insert

the point and the management of page overflow. When searching for a suitable page, one

out of three cases may occur:

• The point is contained in exactly one page region.

In this case, the corresponding page is used.

• The point is contained in several different page regions.

In this case, the page region with the smallest volume is used.

• No region contains the point.

In this case, the region is chosen which yields the smallest volume enlargement.

If several such regions yield a minimum enlargement, the region with the small-

est volume among them is chosen.

The insert algorithm starts with the root and chooses in each step a child node by apply-

ing the rules above. Therefore, the suitable data page for the object is found in O (log n)

time by examining a single path of the index.

Page overflows are generally handled by splitting the page. Four different algorithms

have been published for the purpose of finding the right split dimension (also called split

axis) and the split hyperplane. They are distinguished according to their time complexity

with varying page capacity C:

• The exponential algorithm [Gut 84]:

This algorithm encounters all 2C distributions and determines the distribution

with the lowest volume.

• The quadratic algorithm [Gut 84]:

Here, the distribution process starts with the two objects which would waste the

largest volume put in one group (the seeds). Iteratively, two groups are built by

determining the volume enlargement in group 1 and group 2 (ve1 and ve2,

respectively) for each object not yet assigned to a group. The element where the

difference between ve1 and ve2 reaches its maximum is assigned to the group

with the smaller enlargement.
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• The linear algorithm [Gut 84]:

The linear algorithm is identical with the quadratic algorithm up to the seed

determination. For each dimension, the rectangle with the smallest lower bound-

ary and the rectangle with the highest upper boundary are chosen. The distance

is normalized by the sum of the extensions of all rectangles. The pair having the

largest normalized distance is used as seed.

• Greene’s algorithm [Gre 89]:

First, the split axis is chosen. Then, the objects are distributed into two equally

sized groups by sorting according to the lower boundary of the object in the cor-

responding dimension. The choice of the split axis is handled similar to the

determination of the seeds in the quadratic algorithm.

While Guttman [Gut 84] reports only slight differences between the linear and the qua-

dratic algorithm, an evaluation study performed by Beckmann, Kriegel, Schneider and

Seeger [BKSS 90] reveals disadvantages for the linear algorithm. The quadratic algo-

rithm and Greene’s algorithm are reported to yield similar search performance.

The R*-tree [BKSS 90] is an extension of the R-tree based on a careful study of the

R-tree algorithms under various data distributions. In contrast to Guttman who optimiz-

es only for a small volume of the created page regions, the authors of the R*-tree identify

the following optimization objectives:

• minimize overlap between page regions

• minimize the surface of page regions

• minimize the volume covered by internal nodes

• maximize the storage utilization.

The heuristic for the choice of a suitable page to insert a point is modified in the third

alternative: No page region contains the point. In this case, the distinction is made

whether the child page is a data page or a directory page. If it is a data page, then the

region is taken which yields the smallest enlargement of the overlap. In case of a tie,

further criteria are the volume enlargement and the volume. If the child node is a direc-

tory page, the region with the smallest volume enlargement is taken. In case of doubt, the

volume decides.
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Like in Greene’s algorithm, the split heuristic has two phases. In the first phase, the

split dimension is determined as follows:

• For each dimension, the objects are sorted according to their lower bound and

according to their upper bound.

• A number of partitionings with a controlled degree of asymmetry is encoun-

tered.

• For each dimension, the surface areas of the MBRs of all partitionings are

summed up and the least sum determines the split dimension.

In the second phase, the split plane is determined, minimizing the following criteria:

• overlap between the page regions

• in doubt, least coverage of dead space.

Splits can often be avoided by the concept of forced re-insert. If a node overflow occurs,

a defined percentage of the objects with the highest distances from the center of the

region are deleted from the node and inserted into the index again, after the region has

been adapted. By this means, the storage utilization will grow to a factor between 71 %

and 76 %. Additionally, the quality of partitioning improves because unfavorable deci-

sions in the beginning of the index construction can be corrected in this way.

Performance studies report improvements between 10 % and 75 % over the R-tree. In

higher-dimensional data spaces, the split algorithm proposed in [BKSS 90] leads to a

deteriorated directory. Therefore, the R*-tree is not adequate for these data spaces, rather

it has to load the entire index in order to process most queries. A detailed explanation of

this effect is given in [BKK 96].

The R-tree and the R*-tree have primarily been designed for the management of spa-

tially extended 2-dimensional objects, but also been used for high-dimensional point

data. Empirical studies [BKK 96, WJ 96], however, showed a deteriorated performance

of the R*-trees for high-dimensional data. The major problem of R-tree-based index

structures in high-dimensional data spaces is the overlap. In contrast to low-dimensional

spaces, there exists only few degrees of freedom for splits in the directory. In fact, in

most situations there exists only a single “good” split axis. An index structure that does
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not use this split axis will produce highly overlapping MBRs in the directory and thus

show a deteriorated performance in high-dimensional spaces. Unfortunately, this specif-

ic split axis might lead to unbalanced partitions. In this case, a split should be avoided in

order to avoid underfilled nodes. 

The X-tree [BKK 96] is an extension of the R*-tree which is directly designed for the

management of high-dimensional objects and based on the analysis of problems arising

in high-dimensional data spaces. It extends the R*-tree by two concepts:

• overlap-free split according to a split-history

• supernodes with an enlarged page capacity

If one records the history of data page splits in an R-tree based index structure, this

results in a binary tree: The index starts with a single data page A covering almost the

whole data space and inserts data items. If the page overflows, the index splits the page

into two new pages A’ and B. Later on, each of these pages might be split again into new

pages. Thus, the history of all splits may be described as a binary tree, having split

dimensions (and positions) as nodes and having the current data pages as leave nodes.

Figure 15 shows an example for such a process. In the lower half of the figure, the

according directory node is depicted. If the directory node overflows, we have to divide

Figure 15: Example for the Split History. 
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the set of data pages (the MBRs A”, B”, C, D, E) into two partitions. Therefore, we have

to choose a split axis first. Now, what are potential candidates for split axis in our exam-

ple? Say, we choose dimension 5 as a split axis. Then, we had to put A” and E into one

of the partitions. However, A” and E have never been split according to dimension 5.

Thus, they span almost the whole data space in this dimension. If we put A” and E into

one of the partitions, the MBR of this partition in turn will span the whole data space.

Obviously, this leads to a high overlap with the other partition, regardless of the shape of

the other partition. If one looks at the example in figure 15, it becomes clear that only

dimension 2 may be used as a split dimension. The X-tree generalizes this observation

and uses always the split dimension with which the root node of the particular split tree

is labeled. This guarantees an overlap free directory. However, the split tree might be

unbalanced. In this case it is advantageous not to split at all because splitting would

create one underfilled node and another almost overflowing node. Thus, the storage

utilization in the directory would decrease dramatically and the directory would degen-

erate. In this case the X-tree does not split and creates an enlarged directory node instead

– a supernode. The higher the dimensionality, the more supernodes will be created and

the larger the supernodes become. To operate on lower-dimensional spaces efficiently,

the X-tree split algorithm also includes a geometric split algorithm. The whole split

algorithm works as follows: In case of a data page split, the X-tree uses the R*-tree split

algorithm or any other topological split algorithm. In case of directory nodes, the X-tree

first tries to split the node using a topological split algorithm. If this split would lead to

highly overlapping MBRs, the X-tree applies the overlap-free split algorithm based on

the split history as described above. If this leads to a unbalanced directory, the X-tree

simply creates a supernode. 

The X-tree shows a high performance gain compared to the R*-trees for all query

types in medium-dimensional spaces. For small dimensions, the X-Tree shows a behav-

ior almost identical to the R-trees, for higher dimensions the X-tree also has to visit such

a large number of nodes that a linear scan is less expensive. It is impossible to provide

the exact values here because many factors such as the number of data items, the dimen-

sionality, the distribution, and the query type have a high influence on the performance

of an index structure.
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3.1.6  SS-tree and TV-tree

In contrast to all previously introduced index structures, the SS-tree [WJ 96] uses

spheres as page regions. For efficiency, the spheres are not minimum bounding spheres.

Rather, the centroid point (i.e. the average value in each dimension) is used as center for

the sphere and the minimum radius is chosen such that all objects are included in the

sphere. Therefore, the region description comprises the centroid point and the radius.

This allows an efficient determination of the MINDIST and the MAXDIST, but not of

the MINMAXDIST. The authors suggest using the RKV algorithm, but they do not

provide any hints how to prune the branches of the index efficiently.

For insert processing, the tree is descended choosing the child node whose centroid is

closest to the point, regardless of volume or overlap enlargement. Meanwhile, the new

centroid point and the new radius is determined. When an overflow condition occurs, a

forced reinsert operation is raised, like in the R*-tree. 30% of the objects with the highest

distances from the centroid are deleted from the node, all region descriptions are updat-

ed, and the objects are reinserted into the index.

The split determination is merely based on the criterion of variance. First, the split

axis is determined as the dimension yielding the highest variance. Then, the split plane

is determined by encountering all possible split positions which fulfill the space utiliza-

tion guarantees. The sum of the variances on each side of the split plane is minimized.

Figure 16: Situation in the SS-tree where no Overlap-Free Split is Possible. 
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The general problem of spheres is that they are not amenable to an easy, overlap-free

split as depicted in figure 16. Therefore, the SS-tree outperforms the R*-tree by a factor

of 2, however, it does not reach the performance of the LSDh-tree and the X-tree.

The TV-tree [LJF 95] is designed especially for real data that is subject to the Kar-

hunen-Loève-Transform (also known as principal component analysis), a mapping

which preserves distances and eliminates linear correlations. Such data yield a high vari-

ance and therefore, a good selectivity in the first few dimensions while the last few

dimensions are of minor importance for query processing. Indexes storing KL-trans-

formed data tend to have the following properties:

• The last few attributes are never used for cutting branches in query processing.

Therefore, it is not useful to split the data space in the corresponding dimen-

sions. 

• Branching according to the first few attributes should be performed as early as

possible, i.e. in the topmost levels of the index. Then, the extension of the

regions of lower levels (especially of data pages) is often zero in these dimen-

sions.

Regions of the TV-tree are described by so-called Telescope Vectors (TV), i.e. vectors

which may be dynamically shortened. A region has k inactive dimensions and  active

dimensions. The inactive dimensions form the greatest common prefix of the vectors

stored in the subtree. Therefore, the extension of the region is zero in these dimensions.

In the  active dimensions, the region has the form of an Lp-sphere where p may be 1, 2

or . The region has an infinite extension in the remaining dimensions which are sup-

posed either to be active in the lower levels of the index or to be of minor importance for

query processing. Figure 17 depicts the extension of a telescope vector in space.

The region description comprises  floating point values for the coordinates of the

center point in the active dimensions and one float value for the radius. The coordinates

of the inactive dimensions are stored in higher levels of the index (exactly in the level

where a dimension turns from active into inactive). To achieve a uniform capacity of

directory nodes, the number  of active dimensions is constant in all pages. The concept

of telescope vectors increases the capacity of the directory pages. It was experimentally
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determined that a low number of active dimensions ( ) yields the best search per-

formance.

The insert-algorithm of the TV-tree chooses the branch to insert a point according to

the following criteria (with decreasing priority):

• minimum increase of the number of overlapping regions

• minimum decrease of the number of inactive dimensions

• minimum increase of the radius

• minimum distance to the center.
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To cope with page overflows, the authors propose to perform a re-insert operation, like

in the R*-tree. The split algorithm determines the two seed-points (seed-regions in case

of a directory page) which have the least common prefix or (in case of doubt) the maxi-

mum distance. The objects are then inserted into one of the new subtrees using the above

criteria for the subtree choice in insert processing while the storage utilization guaran-

tees are considered. 

The authors report a good speed-up in comparison to the R*-tree when applying the

TV-tree to data that fulfills the precondition stated in the beginning of this section. Other

experiments [BKK 96] however show that the X-tree and the LSDh-tree outperform the

TV-tree on uniform or other real data (not amenable to the KL transformation). 

3.2 Algorithms for the Distance Range Join 

After this short introduction to index structures for the usual similarity search we can

turn ourselves to the similarity join algorithms. First we start with a few very simple

algorithms following the nested loop paradigm. Due to their simplicity such algorithms

can be applied to the vast majority of join predicates. Then we introduce the more so-

phisticated approaches applying index structures. Most of these algorithms have not

been proposed for the similarity join but for the spatial join which is prevalent in the map

overlay operation of a geographical information system. We show how these algorithms

can be transformed for high-dimensional data spaces and for distance based join predi-

cates rather than the polygon intersection.

3.2.1  Nested Loop Join

In relational join processing, the simplest approaches are several algorithms following

the nested loop approach [Ull 89]. Due to their simplicity these algorithms can also be

used for complex join predicates such as distance range joins, and also for k-closest pair

queries and k-nearest neighbor joins. 

Pure nested loop joins generate the complete set of point pairs (the cartesian product

R × S) and evaluate the join predicate for each point pair (r,s) ∈  R × S. Both point sets are
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not organized by index structures, hashing or similar concepts but are stored in flat files

without any specific order. Nested loop joins are thus the analogon of the sequential scan

for simple similarity queries.

From the point of view of CPU, these algorithms are quite similar, as each point pair

is generated and evaluated (i.e. the distance between the points is computed and com-

pared to ε). A few optimizations of the CPU operations are possible but most optimiza-

tions of the nested loop join are concerned with I/O processing. Nested loop joins can be

distinguished according to the strategy of the traversal of the two files.

3.2.1.1  The Simple Nested Loop Join

The simple nested loop join iterates in a first loop over all elements of R (therefore called

the outer relation/point set) and in a second loop, nested in the first one, over all elements

of S:

foreach r ∈  R do

read (r) ;

foreach s ∈  S do

read (s) ;

if ||r − s|| ≤ ε then output (r,s) ;

Thus, the inner point set S is scanned |R| times where |R| denotes the cardinality of the set

R. This is usually not acceptable. Although most similarity join algorithms are clearly

CPU bound on today’s architectures, the simple nested loop join is I/O bound as reading

of one point of S is usually more expensive than the corresponding distance calculation.

An improvement of the simple nested loop join is described in the following.

3.2.1.2  Nested Block Loop Join

Rather than reading the outer set point by point and scanning the inner relation for each

R-point, we can reserve a large block of the cache for the outer set R, read the outer set

blockwise and scan the inner set S for each such block. This corresponds to the following

algorithm:

foreach block rb ⊆ R do

read (rb) ;
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foreach block sb ⊆ S do

read (sb) ;

foreach r ∈  rb do

foreach s ∈  sb do

if ||r − s|| ≤ ε then output (r,s) ;

In contrast to the simple nested loop join the nested block loop join scans the inner data

set S only |R| / |rb| times. As we will show in chapter 7 it is beneficial to optimize the

block capacities |rb| and |sb| carefully. Generally, the block capacity |rb| of the outer set

should be chosen larger (or in case of standard page sizes, rb should consist of more

physical/logical pages) than the inner block capacity, because the larger the outer block

is the fewer scans of S are due. However, if the remaining block capacity of sb is too

small, the corresponding accesses become too expensive as for each access we have to

take a rotational delay of the disk drive into account.

From a CPU point of view, the nested block loop join is equally expensive as the

simple nested loop join as the number of distance calculations also corresponds to

|R| · |S| and the management overhead is negligible. Typically, the nested block loop join

is CPU bound. It may be competitive or even superior to more sophisticated methods

whenever the selectivity of the join result is bad or whenever the applied indexing or

sorting methods yield a bad performance (bad index selectivity) due to the curse of

dimensionality).

3.2.1.3  Indexed Nested Loop Join

The indexed nested loop join needs a multidimensional index structure for the inner

point set S. Therefore, it can also be classified as a join method upon preconstructed

indexes (section 3.2.2). The term nested loop is additionally misleading as we have only

one loop iterating over the points of R and performing an index based similarity query

(in this case, range query) which does not simply correspond to a loop but is a more

complex database primitive. However, due to its simplicity and flexibility (it can be
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easily transformed into an algorithm for other join predicates such as k-closest pairs or

k-nearest neighbors) we describe it here. The corresponding algorithm is given below:

foreach r ∈  R do

read (r) ;

sresult := RangeQuery (r, S, ε) ;

foreach s ∈  sresult do

output (r,s) ;

As the outer set is not ordered, typically a cache (which could be applied in the range

query processor) does not exhibit any locality. Depending on the index structure and

algorithm which is applied to process the range queries, the indexed nested loop join is

typically I/O bound as the range query is I/O bound. Typically the indexed nested loop

join is not competitive with other more sophisticated methods (including nested block

loops). The only exception are situations where the index yields a very good perfor-

mance and the outer point set is small, such that simultaneous processing of several

similarity queries cannot bear any improvement, anyway.

3.2.1.4  Multiple Queries

The general idea of the Multiple Queries approach [BEKS 00] is to select a number of

points of R and to evaluate the corresponding queries simultaneously while traversing

the index structure (R-tree) constructed for S. This way, many different types of similar-

ity joins can be implemented, the distance range join as well as join operations with

nearest neighbor based join predicates. The authors of the multiple queries technique

were not conscious about the fact that this technique can efficiently support the similar-

ity join operation. Rather, they directly supported algorithms of similarity search and

data mining by the simultaneous execution of queries. From this point of view, the mul-

tiple queries technique is a competitor of the similarity join as a database primitive for

high performance data mining. A comparative evaluation [Bra 00] of this aspect had the

result that it is often easier to implement data mining algorithms on top of the multiple

queries paradigm than on top of the similarity join. The efficiency potential of the mul-

tiple queries technique, however, is much more limited.
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Besides the general idea to evaluate similarity queries simultaneously while travers-

ing the index structure, [BEKS 00] also proposes a technique to accelerate and partially

avoid the distance computations between point pairs. The idea is to exploit the triangle

inequality to avoid distance calculations between feature vectors.

The following algorithm in pseudocode describes the general idea of the implemen-

tation of the distance range join using the multiple queries paradigm. In contrast to the

algorithm in section 3.2.1.3 (indexed nested loop join) the outer loop iterates over the

blocks of R. Instead of the usual range query, the multiple query version is called.

foreach block rb ⊆ R do

read (rb) ;

sresult := MultipleRangeQuery (rb, S, ε) ;

foreach (r,s) ∈  sresult do

output (r,s) ;

To evaluate the multiple range query, we give a recursive schema which performs a

depth-first index traversal similarly to a single range search. In detail we list only the

recursive part (directory pages):

function MultipleRangeQuery (rb, pg, ε): set of pair of Point

var match: bool:= false ;

var result: set of pair of Point := ∅ ;

foreach r ∈  rb do

if mindist (r, pg) ≤ ε then

match := true ;

if match then

read (pg) ;

if IsDirectoryPage (pg) then

foreach p ∈  pg.children do

result := result ∪  MultipleRangeQuery (rb, p, ε) ;

else

....
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3.2.2  Algorithms upon Preconstructed Indexes

In this section, we describe the R-tree spatial join (RSJ) [BKS 93] and a few variants of

this algorithm. Generally, RSJ is not an algorithm for the similarity join but for the

spatial join which is primarily used in geographical applications for the map overlay

operation. There, the joined objects are 2D polygons and the join predicate is the inter-

section of the polygons. However, RSJ can be easily generalized to higher dimensions

and to distance based predicates for points rather than intersection predicates for spatial-

ly extended objects.

The most obvious way of this generalization is to approximate the points of the two

sets by hypercubes of side length ε (cf. figure 18). This way, we get a conservative

approximation, because if two points have a distance of no more than ε, the associated

hypercubes must intersect. In higher dimensions, the selectivity of this filter step deteri-

orates because a cube is a quite coarse approximation. Moreover, if the distance param-

eter ε changes, it would be necessary to construct a new index.

A better idea is to store the points without approximation in a multidimensional index

and to consider the distance predicate in join processing. In the leaf level of the index,

obviously the distances between points must be computed as usual. More complex is the

determination of the distance between page regions to decide whether or not a pair of

pages must be considered. We need a distance measure which considers a pair of pages

Figure 18: Cube approximation of points

Points of R
Points of S
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if and only if it is possible to contain a pair of matching points. For plain similarity

search, a suitable distance measure for that purpose is the MINDIST between the query

point and the page region which is defined below and depicted on the left side of

figure 19. This distance measure forms a sum over the dimensions. In each dimension,

the distance between the corresponding coordinate of the query point qi and the interval

of the page region [R.lbi, R.ubi] is determined:

This principle can be generalized for the distance between two page regions by summing

up the squared differences between the intervals. The MINDIST between two page re-

gions is visualized on the right side of figure 19.

3.2.2.1  R-tree Spatial Join

The R-tree Spatial Join (RSJ) [BKS 93] performs a strict depth first traversal of the two

index structures. Both trees are descended simultaneously, in the most basic form of RSJ
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Figure 19: MINDIST for similarity search (l.) and join (r.)
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without any prioritization. Provided that both indexes are of equal height, the algorithm

proceeds as follows: First the two roots are considered. If the two page regions associat-

ed with the roots have a distance (MINDIST) of no more than ε, then the roots are loaded

from disk and the algorithm considers all pairs of child pages. For each pair of child

pages, the MINDIST is determined, and, provided this distance does not exceed ε, the

algorithm is called recursively. The corresponding pseudocode is given below.

procedure rtree_similarity_join (R, S: page)

load (R) ;

load (S) ;

if is_data_page (R) and is_data_page (S) then

foreach r ∈  R do

foreach s ∈  S do

if ||r − s|| ≤ ε then output (r,s) ;

else (* both pages directory pages *)

foreach r ∈  R do

foreach s ∈  S do

if MINDIST (r, s) ≤ ε then

rtree_similarity_join (r, s) ;

As in general, each page is paired with several pages of the other set, it is often necessary

to load a page more than once from disk. A cache is intended to avoid or shadow many

of these redundant accesses. In order to exhibit a high cache hit ratio, it is possible to

apply some strategy to determine the order in which the pairs of child pages are generat-

ed. The authors of RSJ propose the local application of a plane sweep algorithm instead

of the two simple nested loops in the else-branch of the algorithm above (cf. figure 20).

It has been shown by Huang et al. [HJR 97] that global optimization yields a higher

optimization potential than the local plane sweep algorithm (cf. section 3.2.2.3).

3.2.2.2  Parallel RSJ

The parallel version of RSJ [BKS 96] consists of three phases,

• task creation (non parallel),

• task assignment to processors (non parallel), and
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• task execution (completely executed in parallel).

The notion of a task is here defined as a pair of (joining) subtrees which are generated at

a very high level, i.e. typically the first or second level underneath of the root. The level

is chosen such that the number of tasks is high enough to allow good load balancing but

not too high to keep the management overhead for task creation and assignment low. In

the following example depicted in figure 21 we have 5 tasks corresponding to 5 pairs of

regions which are associated for instance with the nodes of the first tree level following

the root.
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Figure 20: Plane sweep as a local optimization of RSJ
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Figure 21: Task definition and static range assignment
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The tasks are generated by a plane-sweep algorithm as shown before in figure 20 to

preserve locality among subsequent tasks. The authors define several strategies for the

assignment of tasks to processors:

• Static range assignment (cf. figure 21):

Each of the p processors receives n / p ± 1 subsequent tasks where n is the num-

ber of tasks. This strategy preserves most locality for the processors, i.e. least

effort for data redistribution.

• Static round robin assignment:

Tasks are dispatched in a round robin fashion. Locality is not preserved, but a

better load balancing is achieved.

• Dynamic task assignment:

The processors request a new task (i.e. basically round robin) whenever they are

idle. Best load balancing.

In the experiments, the authors report for spatial data a near-linear speed-up if the num-

ber of disks is scaled up together with the number of processors.

3.2.2.3  Breadth-First R-tree Join

Like RSJ, the breadth-first R-tree join (BFRJ) [HJR 97] has been proposed for spatial

databases and an intersection join predicate but can be generalized for similarity predi-

cates in a straightforward way. The authors address shortcomings of RSJ which are

caused by its strict depth-first traversal. As in a depth-first strategy each pair of tree

branches must be processed to its end before a new pair of branches can be started it is

not possible to apply global optimization strategies for ordering of the pairs. It is merely

possible to apply local ordering strategies which are applied when determining the pairs

of child pages for a single pair of parent pages. The optimization potential, however, is

higher if in the access strategy a larger set is considered, e.g. the set of pairs of a complete

R-tree level.

To organize a breadth-first traversal of a tree index structure, the authors propose a so-

called intermediate join index (IJI), a list of all joining page pairs of an index level. The

algorithm starts with IJI = 〈(rootR,rootS)〉 . Then in each step, all entries of the IJI are

expanded, i.e. the corresponding pages are retrieved from disk and replaced by the join-
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ing pairs of child pages until the leaf level of both indexes is reached. This concept is

visualized in figure 22 for the first three levels of the R-trees: First, the two roots (with

ID=0) are joined (level-0 join). The result is the intermediate join index with the two

pairs (2,1) and (2,2) which is the basis for the level-1 join.

Global optimization strategies are applied by sorting the entries of the IJI. For suitable

ordering criteria, the corresponding MBRs of the pages can be used. The authors pro-

pose 5 different strategies:
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Figure 22: Breadth-first traversal and intermediate join index
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• No particular order

Note that this does not correspond to a random order but is influenced by the

hierarchical order of the tree. Nodes in a common branch of the tree are always

adjacent in the IJI without any particular order.

• Lower x-coordinate (r.lb0) of the nodes of R

• The sum of the centers of the x-coordinates of R and S:

(r.lb0 + r.ub0) / 2 + (s.lb0 + s.ub0) / 2

• The x-coordinate of the center of the common MBR of R and S:

(min {r.lb0, s.lb0} + max {r.ub0, s.ub0}) / 2

• The Hilbert-value of the center of the common MBR of R and S.

The authors present only experiments on 2d polygon data which are not representative

for high-dimensional similarity joins. In these experiments, the simple strategy of order-

ing only according to the lower x-coordinate of R is the winner. The more sophisticated

strategies are even outperformed by the strategy no particular order which takes the

child pairs in the order in which they are generated. The standard RSJ algorithm is

outperformed but only by a small factor.

3.2.3  Index Construction on-the-Fly

If no preconstructed index for the two joining sets exist, it is possible to construct the

corresponding index structures temporarily for the join. The usual R-tree construction

methods by repeated call of the INSERT operation for each data object, however, turns

out to be too expensive. During the last years a few methods for a fast bottom-up con-

struction of R-tree like index structures have been proposed which do not in every case

generate an index of high quality (e.g. Hilbert-R-trees are typically outperformed by

original R-trees or R*-trees). In most cases, the quality of bottom-up constructed index

structures is high enough to speed up join operations such that the index construction

cost is amortized. Well-known index construction methods are:

• Hilbert R-trees [KF 94] sort the data points according to a space-filling curve

(the Hilbert curve) and pack sequences of adjacent points into pages which are

then grouped into directory pages. For each page, the MBR is determined.
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• Buffer trees [BSW 97] are a generic technique for any kind of index structure.

The idea is to delay insert operations by additional buffers for data records

which are associated to non-leaf nodes of the tree. Points are propagated to the

next deeper level on buffer overflows.

• Repeated partitioning [JW 96, BBK 98] sort the data set according to different

dimensions and partition thus the data set until the data page capacity is reached.

In contrast to these methods for the fast construction of general purpose index structures

for similarity search and similar applications, also a few methods have been proposed

that construct specialized index structures which are particularly suited for spatial joins

and similarity joins. These approaches are introduced in this section.

3.2.3.1  Seeded Trees

The general assumption of the idea of seeded trees [LR 94] is that only one of the two

joined sets (say R) is supported by an index. If neither of the two sets is indexed, the

index for R can be constructed bottom-up. The idea is then to exploit the knowledge

about the partitioning of R to construct an index for S which can be efficiently matched

with the other tree. An obvious observation is that two index structures can be particu-

larly efficiently matched if both partition the data set in a similar way (cf. figure 23). On

the left side, we show the partitions of the index of set R denoted by R1 to R4 and a few

objects of the set S (small squares). In the middle, a typical partitioning for S is shown

which is generated by a dead space minimization of the R*-tree. In this scenario, each of

the R-partitions is joined with two partitions of S (assuming a spatial intersection join or

a similarity join with a small parameter ε). On the right side, S is partitioned such that the

R-partitions are used as templates. Although these S-partitions cover more space than the

partitioning depicted in the middle, considerably fewer pairs must be formed.

The idea of seeded trees is, therefore, to use the first few levels of the index for R as a

template for the index S. Instead of beginning the index construction with an empty root

node, we begin with a template tree the leaf nodes of which are empty. For this purpose,

the first levels of R are simply copied (seeding phase). The template tree with the empty

leaves is called the seed level of the seeded tree. The empty leaves which are associated

with a minimum bounding rectangle but not stored on disk (represented by empty point-
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ers) are called slots. During the tree construction (the growing phase) this seed level is

not changed. The points are inserted to the tree by applying the choose_subtree strategy

of the R-tree. Whenever an inserted object reaches an empty slot, a new node is generat-

ed which is further treated like the root node of a usual R-tree, i.e. it is not forced to have

a certain storage utilization and upon an overflow of this node, a new “root” is allocated

and the complete subtree grows by one level. As depicted in figure 24, the corresponding

subtrees are called grown subtrees and the levels of the tree are called grown levels.

Although each grown subtree is balanced the seeded tree as a whole is unbalanced. Note

that the property of balance is actually not needed for join processing.
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Figure 23: Matching of similar and dissimilar partitions
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Figure 24: The seeded tree
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3.2.3.2  Epsilon-kdB-tree

The general idea of the ε-kdB-tree [SSA 97] is to apply a grid partitioning of the data

space where the distance of the partitioning planes exactly corresponds to the query

parameter ε (cf. figure 25). The general advantage of such a grid approach is that the part

of the data space in which a join partner of a point may be positioned is well restricted to

neighboring grid cells (shaded area). With increasing dimension, however, the number

of neighboring grid cells increases drastically to 3d − 1. Therefore, it is no good idea to

consider the grid cells one by one or even to retrieve them separately from disk. Grid

based approaches have to apply more sophisticated ideas to avoid this problem. The

approach of the ε-kdB-tree is to use only a part of the dimensions for partitioning. As we

will describe later, it uses as many dimensions for partitioning as are needed to achieve

a suitable number of points per cell. 

In order to do I/O processing, even only one dedicated dimension is used for partition-

ing. The authors assume that the data file is already sorted according to this dedicated

dimension. Therefore, for this first partitioning step, no further sorting is necessary. The

file can be partitioned into stripes by simply reading as many points until the next stripe

boundary is reached (cf. figure 26). As the authors further assume that each pair of

neighboring stripes fits into main memory, no external sorting step is needed at all.

Once a pair of stripes has been loaded into main memory, for each of the stripes a

main memory data structure called ε-kdB-tree is constructed (cf. figure 27). The ε-kdB-

ε

Figure 25: Grid partitioning of the ε-kdB-tree
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tree is an unbalanced tree where each inner node partitions the data set according to a

selected dimension. The fan-out of a node corresponds to 1/ε provided that the data

space is normalized to [0..1]d. Some of the child pointers may be NULL if the corre-

sponding grid cell does not contain any data point. Leaf nodes are data nodes and have a

defined capacity to store data points. The ε-kdB-tree is constructed top-down by repeat-

edly sorting and partitioning of the data set until the defined node capacity is reached.

Each ε-kdB-tree must be matched with itself and with the two trees for the neighboring

tree
matching

tree
matching

tree
matching

Figure 26: Join algorithm of the ε-kdB-tree

root

leaf leaf leaf

leaves

ε

ε

Figure 27: Structure of the ε-kdB-tree
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stripes. This is done in a straightforward way. Matching of ε-kdB-trees performs very

efficiently and is a filter step with a relatively good selectivity. After processing a pair of

stripes, the data structure of the first stripe is discarded and replaced by the tree for the

next stripe. The file is processed in a strictly linear way never accessing any part more

than once.

The most important limitation of the approach is the assumption that any pair of

stripes fits into the main memory, which may be unrealistic for skewed and high-dimen-

sional data sets. Skew may lead to the situation that one data stripe contains considerably

more points than the rest. But even for uniformly distributed points it has been shown

[BK 01a] that ε = 0.3 is a typical situation for high-dimensional data spaces. Therefore,

a pair of stripes contains about 60% of all database points. For such situations, the ε-

kdB-tree approach is not really scalable. To solve this problem, the authors propose to

partition the data space according to more than one dimension in the first step. This

solution, however, removes most of the advantages of the approach. The file must be

explicitly sorted according to two dimensions at the beginning. And later, there is no

strictly linear access pattern but a complex one which reads parts of the file multiple

times. Finally, the problem of a high memory requirement is not really solved, because

for our running example (ε = 0.3) our algorithm must simultaneously hold 4 adjacent

cells which contain approximately 0.32 = 9% of the data points each. A total of 36% of

the data must be held simultaneously in main memory.

3.2.3.3  Parallel ε-kdB-trees

Shafer & Agrawal [SA 97] have also proposed a parallel version of the ε-kdB-tree. As

both the construction of the ε-kdB-tree as well as matching of two trees are expensive,

both is parallelized. The assumption is that the data set is randomly distributed over all

processors each of which has approximately N / p points. Each processor constructs an

ε-kdB-tree of its own set. During this construction the processors exchange information

about their splits to enforce that all constructed trees have the same structure as depicted

in figure 28 where the gray lines indicate splits which are introduced by this split broad-

cast. Finally a union operation for all trees of the processors is executed and if node sizes

are still too large, the leaf nodes of the resulting tree are further split. Then, the workload
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for tree matching is statically distributed according to the estimated cost. The cost of a

leaf node is estimated by the following formulas:

• |r| · |s| for the join of different leaves

• |r| · (|r| + 1) / 2 for the self join of a leaf.

The join units are clustered to preserve locality and minimize the redistribution effort

and replication. Data redistribution is performed asynchronously to avoid network

flooding.

3.2.3.4  Plug & Join

Plug & Join [BSS 00] is a generic technique which is suitable for several different join

operations including spatial join and similarity join. The idea is to construct a main

memory R-tree template from a sample of R. Instead of data nodes, the leaves are asso-

ciated with partitions on the disk and with main memory buffers. After construction of

the tree template, the set R is partitioned by inserting points into the tree (i.e. actually,

only the choose_subtree procedure is called). At the leaf level, the points are inserted

into the buffers which are flushed to disk on overflow (cf. figure 29). After this first

partitioning phase, some of the partitions are flushed to disk, others may still lie com-

pletely in the buffer. In the next phase, S is also partitioned according to the template R-

tree. The difference, however, is now that partitioning of S introduces object replication.

Each object is dispatched to every joining partition. If the joining partition has never

been flushed to disk, then the corresponding pairs can be immediately answered from the

split broadcast

CPU1 CPU2

Figure 28: Enforcing equal structures for all ε-kdB-trees
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buffer. Otherwise, the S-object is stored in the buffer. Upon buffer overflow, all buffered

objects are joined with the corresponding partition on disk. 

3.2.4  Join Algorithm Based on Object Replication

In 1996 and 1997, two groups proposed spatial join algorithms based on spatial hashing.

Both of approaches involve object replication. 

3.2.4.1  Spatial Hash Join

The general method proposed by Lo and Ravishankar in [LR 96] is to partition the set R

without any replication. Then, the object set S is partitioned according to the buckets of

R. This second step involves object replication whenever an S-object intersects more

than one bucket region of R. Finally, only pairs of corresponding buckets must be joined. 

To generate the initial partitioning of R, the idea of the seeded tree [LR 94] is reused

(cf. section 3.2.3.1). The initial process of generating the slots of the seed level is called

bootstrap seeding: A suitable number ns of slots is determined. Then, the set R is sam-

pled with a sample size of c times the number of slots with some small constant c. Using

some simple clustering method, in the set R a number of ns cluster centers are deter-

mined which are used as slots in the seeded tree (initially without spatial extension).

Figure 29: Plug & Join
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Then the seeded tree grows by applying the criterion of minimum slot enlargement (cf.

figure 30).

For partitioning of S, the seeded tree of R with all bucket extents is copied. In the

original proposal for the spatial intersection join each object s of S is assigned to all

buckets b which are intersected by s. This approach can be generalized for the similarity

join which has to assign each object s ∈ S to all buckets b with

mindist (b,s) ≤ ε.

This step involves the object replication.

All corresponding bucket pairs (r, s) are joined by constructing a quadratic split R-tree

on r. Each object in s is probed to the R-tree on r. 

3.2.4.2  Partition Based Spatial Merge Join

The other spatial join method called Partition Based Spatial Merge Join (PBSM) also

uses object replication. Originally, it has also been proposed as a join method for the

intersection join predicate of spatial polygon sets and can be extended to the similarity

join. In contrast to the spatial hash join, PBSM does not construct any hierarchical index

but decomposes the data space regularly into tiles of the same size. The partitions either

directly correspond to such tiles or are determined from the tiles using hashing (cf.

slots
slot

ns slots are
determined
by clustering

Figure 30: Bootstrap Seeding of the Spatial Hash Join
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figure 31 where the tiles are canonically numbered and the partitions are assigned by the

“modulo 3” hashing function applied to the tile number).

The Partition Based Spatial Merge Join potentially replicates both the outer set R as

well as the inner set S. A spatially extended objects is assigned to every partition which

is intersected by it. Consequently, for the similarity join, we assign each object to all

partitions to which it has a distance (mindist) not exceeding ε/2. This is done for the

objects of R and S. The advantage of this approach is that each partition of R must be

joined with exactly one other partition of S. In contrast, for the Spatial Hash Join, it is

possible that an S partition intersects with more than one R partitions. The disadvantage,

however, is that both sets are subject to object replication. The consequence is in partic-

ular that also the object pairs which are generated by the join algorithm may contain

some duplicate pairs. This is even a frequent condition because whenever an object pair

is hashed to the same two partitions, the join result contains such duplicates. These

duplicates must be eliminated e.g. by sorting or hashing according to the pair of object

identifiers (OIDr,OIDs).

Tile 0/Part 0 Tile 1/Part 1 Tile 2/Part 2 Tile 3/Part 0

Tile 4/Part 1 Tile 5/Part 2 Tile 6/Part 0 Tile 7/Part 1

Tile 8/Part 2 Tile 9/Part 0 Tile 10/Part 1 Tile 11/Part 2

Figure 31: Partition Based Spatial Merge Join)
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The initial numbers of partitions is determined according to the following formula:

initial = 

This formula intends to choose the number of buckets such that each pair of correspond-

ing buckets fits into the main memory. However, it does not take into account

• object replication

• and data skew

for the estimation which clearly limits the value of this formula.

3.2.5  Join Algorithms Based on Sorting

3.2.5.1  Z-Order

Several approaches are based on the concept of space filling curves such as the Z-order,

Gray codes or the Hilbert curve. The principle of space filling curves is depicted on

figure 32 (left side). First we start with the data space which must have fixed space

boundaries. The complete data space is associated with an empty bitstring 〈〉 . In the 2-

dimensional case, the data space is regularly decomposed into 4 quadrants which are

associated with the 4 bitstrings 〈00〉 , 〈01〉 , 〈10〉 , and 〈11〉 . The exact order of the 4 quad-

rants depends on the type of the space filling curve (the Z-order has a different assign-

ment of bitstrings than Hilbert or Gray-codes). Each of these quadrants can be further

decomposed in a recursive way, which generates longer bitstrings. In the case of a gen-

eral dimensionality (d), the data space is decomposed into 2d cells in each step which are

described by bit strings of length d. The decomposition stops when a specified resolution

is reached.

If space-filling curves are used for the similarity join, it is necessary to consider the

points as extended objects (spheres of radius ε/2) which are approximated by the grid

cells. Obviously, if two such objects are completely contained in different cells as depict-

ed in the leftmost example in figure 33, then they are guaranteed to have a distance of

more than ε and are thus not a join result. Therefore, candidates can be efficiently gener-

R S+( ) size_point
size_memory
--------------------------------⋅
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ated by grouping together objects by cell identifiers, e.g. by sorting according to the bit

strings (i.e. a sort-merge join).

Unfortunately, the spheres are not often completely contained in a grid cell. Typically,

the grid cell boundaries are intersected as in the second and all following examples of

figure 33. In this case, the join partners could be in all cells which are intersected by the

sphere. One solution to this problem could be to replicate the objects and store them once

for each intersected cell. Note, however, that the number of intersected cells is exponen-

tial in the data space dimension. 

0000 0001
0010 0010

1000 1001
1010 1011

0100 0101
0110 0111
1100 1101
1110 1111

00 01

10 11

〈〉

Z-Order Gray-Code Hilbert

Figure 32: Space filling curves

0001

0011
00 00

0011

Figure 33: Joins on space-filling curves with and without replication



Algorithms for the Distance Range Join 71

Another possible solution is depicted in the third example on figure 33. Not only grid

cells at the basic resolution are considered as approximations but at every resolution

which is generated by the recursive decomposition process. Each sphere is approximat-

ed by the smallest cell in which the sphere is completely contained. In the extreme case

where a sphere is intersected by the first split line, only the complete data space 〈〉  can be

used. As depicted on the right side of figure 33 two points can be join mates if they are

in the same cell or if one of the cells is contained in the other. In terms of bit strings, a

cell c1 is contained in c2 if the bitstring which is associated with c2 is a prefix of that of

c1. Therefore, our filter has to match the files such that each bitstrings b(r) of R are

matched with all bitstrings of S which are either prefixes of b(r) or of which b(r) is a

prefix.

The algorithm of Orenstein [Ore 91] sorts each of the files R and S according to the

bit strings in lexicographical order and performs basically a sort merge join. To find not

only exact matches between the bit strings but also prefix matches, the algorithm ex-

ploits the property of the lexicographical order that a prefix p(b) of a bitstring b appears

in the sequence before the bitstring b. When performing the sort merge join, all elements

of R and S the bitstrings of which are prefixes of the current element of R and S, respec-

tively, are stored temporarily in a suitable data structure. They are deleted from the data

structure as soon as they lose the prefix property of the current element. When an ele-

ment is deleted from the data structure, the files will not contain any further join partners

of the deleted element. A suitable data structure is depicted in figure 34. A stack orga-

nizes all prefixes of the current element of R and S, respectively. The points which are

associated with the corresponding bit strings are stored by linked lists. Whenever the

current element changes, the algorithm checks which prefixes have changed (only bit

operations are needed for that check) and the corresponding linked lists are discarded.

Orenstein also proposed methods to optimize replication in his algorithm [Ore 89]. An-

other method which is based on a cost model is GESS [DS 01].

3.2.5.2  Multidimensional Spatial Join

Koudas and Sevcik proposed the Size Separation Spatial Join (SSSJ) for 2D polygon

databases [KS 96] and the Multidimensional Spatial Join (MSJ) for the similarity join
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[KS 97]. Both algorithms are also based on the Z-order of the associated bit strings. In

contrast to Orenstein’s algorithm, their algorithm first dispatches the points into so-

called level files. A level file contains all points where the associated bit strings have a

defined length, e.g. the level-0 file contains all points which are associated with the bit

string of length 0, etc. Then, a multiway sort merge join is performed over all level files

of R and S to match all bitstrings with their prefixes in the other data set.

It has been pointed out in [BK 01] that both MSJ as well as Orenstein’s algorithm

suffer from similar performance problems as the ε-kdB-tree in high-dimensional data

spaces. E.g. for uniformly distributed points of an 8-dimensional data space with ε = 0.3,

the probability that the first intersection line is intersected, corresponds to 30%. Of the

remaining 70%, another 30% intersects the second partitioning line, and so on. This

leads to a total expected value of 46% of the data files to be held in main memory. These

results could also be experimentally confirmed for real data of a CAD application which

needed 26% of all data simultaneously in main memory.

3.3 Nearest Neighbor Based Join Algorithms

The most important drawback of the distance range join is that it is difficult for the user

to control the selectivity of this join operation. The distance range join behaves similarly

Stack: Linked list:

r1 r2

r3

r7 r8 r9

r16r15

00
s1 s2

s4

s9s8

Stack: Linked list:
001110

0011

〈〉〈〉

0011
001110

00

00111000: r17 00111001: r18 ...
File R:

001111: s10 01: s11 ...
File S:

Figure 34: Data Structure for Orenstein’s Spatial Join
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to the range query where the user may get an empty result if ε is chosen too small and the

complete database if ε is chosen too large. With increasing data space dimension, the

range of ε where the query result corresponds to neither of these two trivial cases be-

comes more and more narrow. Likewise the result of the similarity join becomes trivial

if ε is not suitably chosen. If ε is chosen too small, the join result is (almost) empty. If ε
is chosen too large, the join result (nearly) corresponds to the cross-product of the two

data sets.

To overcome this drawback of the range distance join, we have defined in chapter 2

the join operations with a nearest neighbor based join predicate. Previously published

algorithms are presented in this section. For nearest neighbor based join algorithms, the

cardinality of the result is (up to tie situations) defined in the specification of the join

query. In chapter 2, we distinguish between closest pair queries (also known as k-dis-

tance join) and the k-nearest neighbor join. We will see that there are no previous publi-

cations that concentrate on the latter join operation.

3.3.1  Closest Pair Queries According to Hjaltason&Samet

In [HS 98], Hjaltason and Samet propose the algorithm for three join operations which

belong to the group of closest pair queries on both point data as well as polygon data

(extended spatial objects):

• k-distance join (i.e. k-closest pair query)

corresponds to the original k-closest pair query. The user specifies the parameter

k and the system retrieves those k pairs from R × S having least distance.

• incremental distance join

similar to the k-distance join but the parameter k is not previously defined.

Rather, the first, second, third, etc. pair is retrieved by repeated calls of a func-

tion GetNext. The caller decides according to the results whether or not more

pairs are needed. 

• k-distance semijoin

similar to the k-distance join but a GROUP BY operation is performed on one of

the point sets (R). Only the first pair is reported for each point of R, subsequent
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pairs where the same point of R is reported again, are discarded. Therefore, the

k-distance semijoin retrieves those k points of R which have the smallest nn-dis-

tance with respect to S. This operation can also be used to implement the special

case of the k-nearest neighbor join where k corresponds to 1 (the k in the k-dis-

tance join and in the k-nearest neighbor join have a different meaning). For this

purpose, the k of the k-distance semijoin must be set to the cardinality of R: 

k = |R|.

Although this is up to future work, we do not believe that this leads to a good

efficiency of the 1-nearest neighbor join. The k-nearest neighbor join for k ≠ 1

cannot be implemented using this technique.

In [HS 98], Hjaltason and Samet extend their algorithms for the usual nearest neighbor

query and the distance ranking which have been proposed in [HS 95] (cf. also

section 3.1.4) to the similarity join. The basic idea is to replace the two priority queues

by different ones. For plain similarity search, we have one priority queue which stores

the active pages (called active page list APL) ordered by increasing distance from the

query point. The other priority queue stores the k candidate points ordered by decreasing

distance from the query point. For the k-distance join, the APL stores pairs of pages

ordered by increasing distance from each other. Likewise, the candidate list stores k pairs

of points.

The algorithm for the k-distance join in each step takes the top pair of pages (Pi, Qj)

from the APL. Then, one of the two pages of the pair (say Pi) is expanded, i.e. loaded into

the main memory. If Pi is a directory page, the set of child pages {Pi,1...Pi,l} of Pi is

determined and the pairs (Pi,1, Qj), ...., (Pi,l, Qj) are inserted into the priority queue. This

kind of expansion of an APL entry is called the unidirectional node expansion because

of the top pair (Pi, Qj) only one page Pi or Qj is expanded (cf. figure 35). The authors

also propose an algorithm which performs a simultaneous expansion of Pi and Qj which

is called bidirectional node expansion. For the bidirectional node expansion, plane

sweeping can be applied. Hjaltason and Samet also propose various strategies for tie

breaking (i.e. several page pairs have the same distance) and for the tree traversal.



Nearest Neighbor Based Join Algorithms 75

The algorithm for the incremental distance join works like the algorithm for the k-

distance join with some minor modifications: The candidate list is infinite and ordered

by increasing distance. The algorithm stops whenever the top candidate pair is validated

to be the next closest pair. In fact, the authors store both kinds of pairs, page pairs and

object pairs in the same priority queue. The next closest pair is validated whenever an

object pair appears at the top of the queue.

The distance semijoin is implemented using the incremental distance join as a build-

ing block. To retrieve the k points of R which have the smallest nearest neighbor dis-

tance, the incremental distance join is repeatedly called. For each result (o1,o2) of such a

call the algorithm checks whether o1 has already been reported before. If so, the pair

(o1,o2) is discarded, otherwise reported as a result of the k-distance semijoin. The algo-

rithm stops when k pairs have been reported. Several additional strategies for the tree

traversal of the semijoin are mentioned in [HS 98].

3.3.2  Alternative Approaches

Shin et al. [SML 00] propose several modifications of the algorithm of Hjaltason and

Samet to improve the performance. They propose a method for selecting the sweep axis

and direction for the plane sweep method in bidirectional node expansion which mini-

mizes the computational overhead of this expansion. Moreover, they apply aggressive

pruning methods to further optimize the distance join processing. This pruning is based
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Figure 35: Principle of the k-distance join by Hjaltason&Samet
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on estimated values for the pruning distance. Compensation methods ensure the correct-

ness of the algorithm in the case that this estimation fails. The estimate is initially chosen

and then during query processing dynamically corrected. 

Corral et al. [CMTV 00] also propose a collection of five algorithms for the k-closest

pair query. In contrast to Hjaltason and Samet, they consider 5 different algorithms for

the nearest neighbor search and systematically transform them such that they implement

the k-closest pair query. The five approaches are:

• Naive: Traverse both indexes depth first without any pruning. I.e., every possi-

ble page pair is formed.

• Exhaustive: Like naive, but prune those page pairs the mindist of which exceed

the current candidate distance

• Simple recursive: Additionally prune according to the minmaxdist criterion

• Sorted distance recursive: before descending the tree, sort the pairs of child

pages according to their mindist. This algorithm is basically the extension of the

RKV-algorithm for nearest neighbor search [RKV 95] to the k-closest pair

query.

• Heap algorithm: Similar to [HS 98] with some differences of minor importance

Basically the first three approaches are only limited versions of the fourth. Two of the

algorithms perform pruning based on the minmaxdist criterion. The minmaxdist of a pair

Figure 36: Mindist, maxdist, and minmaxdist of a page pair
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m
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of pages is the maximum pruning distance which can be encountered after processing

the corresponding subtrees. The mindist, maxdist, and minmaxdist for a pair of pages are

depicted in figure 36. Several new strategies for tie breaking and processing of trees of

different height are proposed.

3.4 Conclusions

We have seen that there are several algorithms that implement the distance range join.

However, most of them are based on the spatial join and, therefore, do not yield a very

high performance in high dimensional data spaces. Even the most important approaches

that have exclusively been published for the similarity join such as MDJ [KS 97a] or the

ε-kdB tree run into serious problems for high dimensional data spaces. Therefore we see

the need for further research in this area. There is some related work for the k-closest pair

query. We will not consider this kind of join operation in our further work, because this

operation is not very important for our applications. The k-nearest neighbor join, in

contrast, has a high importance. There is almost no related work for this operation.

Therefore, the k-nn join will also play an important role in our thesis.
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Chapter 4
Density Based Clustering on the 
Distance Range Join

When considering algorithms for KDD, we can observe that many algorithms rely

heavily on repeated similarity queries (i.e. range queries or nearest neighbor queries

among feature vectors) which are a database primitive prevalent in most multimedia

database systems. For example, the algorithm for mining spatial association rules (ex-

tracting associations between objects based on spatial neighborhood relations) proposed

in [KH 95] performs a similarity query for each object of a specified type such as a town.

Another example is the algorithm for proximity analysis proposed in [KN 96] which

uses the features of neighboring objects in order to explain the existence of known clus-

ters. This algorithm performs a similarity query for each object contained in the consid-

ered cluster. For various other KDD algorithms, this situation comes to an extreme: a

similarity query has to be answered for each object in the database which obviously

leads to a considerable computational effort. Examples include algorithms for the iden-

tification of outliers in large databases [KN 97, KN 98, BKNS 00] and numerous clus-

tering algorithms [Sib 73, Mur 83, JD88, HT 93, EKSX 96, ABKS 99].

In order to accelerate this massive similarity query load, multidimensional index

structures [BKSS 90, LJF 95, BKK 96] are usually applied for the management of the
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feature vectors. Provided that the index quality is high enough, which can usually be

assumed for low and medium dimensional data spaces, such index structures accelerate

the similarity queries to a logarithmic complexity. Therefore, the overall runtime com-

plexity of the KDD algorithm is in O(n log n). Unfortunately, the overhead of executing

all similarity queries separately is large. The locality of the queries is often not high

enough, so that usual caching strategies for index pages such as LRU fail, which results

in serious performance degenerations of the underlying KDD algorithms. Several solu-

tions to alleviate this problem have been proposed, e.g. sampling [GRS 98] or dimen-

sionality reduction [FL 95].

The benefits of these kinds of data reduction, however, are limited. Especially clus-

tering algorithms are not insensitive with respect to sampling, because clusters consist-

ing of a very small number of points are lost if too few points are in the sample. In order

to maintain the completeness of the result, guidelines for the bounds of the sampling rate

have been proposed recently [GRS 98]. Dimensionality reduction of the data can be

done either by manual feature selection (which requires substantial domain knowledge)

or by some standard method such as Principal Component Analysis, Discrete Fourier

Transform, or the FastMap algorithm proposed in [FL 95]. However, the reduction of the

dimensionality of the data implies some loss of information and thus may not always be

applicable. The introduction of parallelism is also a promising approach in order to sup-

port query intensive KDD algorithms efficiently. The development of parallel algo-

rithms, however is complex and expensive. While the benefits of the acceleration tech-

niques mentioned above are limited, they can also be applied in combination with our

technique proposed in this chapter to further improve the performance.

The basic intention of our solution is to substitute the great multitude of expensive

similarity queries by another database primitive, the similarity join, using a distance-

based join predicate, without affecting the correctness of the result of the given KDD

algorithm: Consider a KDD algorithm that performs a range query (with range ε) in a

large database of points Pi (0<i<n) for a large set of query points Qj (0<j<m). During the

processing of such an algorithm, each point Pi in the database is combined with each

query point Qj which has a distance of no more than ε. This is essentially a join operation

between the two point sets P and Q with a distance-based join predicate, a so-called
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distance join or similarity join. The general idea of our approach is to transform query

intensive KDD algorithms such that the transformed algorithms are based on a similarity

join instead of repeated similarity queries. In this chapter, we concentrate on algorithms

which perform a range query for each point in the database. In this case, the similarity

join is a self-join on the set of points stored in the database. Nevertheless, our approach

is also applicable for many other KDD algorithms where similarity queries are not is-

sued for each database object, but which are still query intensive. Additionally, since a

large variety of efficient processing strategies have been proposed for the similarity join

operation, we believe that our approach opens a strong potential for performance im-

provements.

Note that this idea is not applicable to every KDD algorithm. There is a class of

algorithms which is not meant to interact with a database management system and thus

is not based on database primitives like similarity queries, but instead works directly on

the feature vectors. What we have in mind is the large class of algorithms which are

based on repeated similarity queries (or, at least, can be based on similarity queries).

Examples of methods where our idea can be applied successfully are the distance based

outlier detection algorithm RT [KN 98], the density based outliers LOF [BKNS 00], the

clustering algorithms DBSCAN [EKSX 96], DenClue [HK 98], OPTICS [ABKS 99],

nearest-neighbor clustering [HT 93], single-link clustering [Sib 73], spatial association

rules [KH 95], proximity analysis [KN 96], and other algorithms. In this chapter, we

demonstrate our idea on the known clustering algorithm DBSCAN and on the recently

proposed hierarchical clustering method OPTICS.

The remainder of this chapter which is the extended version of [BBBK 00] is orga-

nized as follows: Section 4.1 describes the most important clustering algorithms in more

details. Section 4.2 proposes a schema for transforming KDD algorithms using repeated

range queries into equivalent algorithms using similarity joins. The sections 4.2.2 and

4.2.3 describe in detail the transformations of the data mining algorithms DBSCAN and

OPTICS, respectively. In section 4.3, we present a comprehensive experimental evalua-

tion of our technique, and section 4.4 concludes this chapter.
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4.1 Clustering Algorithms

Existing clustering algorithms can be classified into hierarchical and partitioning clus-

tering algorithms (see e.g. [JD 88]). Hierarchical algorithms decompose a database D of

n objects into several levels of nested partitionings (clusterings). Partitioning algo-

rithms, on the other hand, construct a flat (single level) partition of a database D of n

objects into a set of k clusters such that the objects in a cluster are more similar to each

other than to objects in different clusters. Popular hierarchical algorithms are e.g. the

Single-Link method [Sib 73] and its variants (see e.g. [JD 88, Mur 83]) or CURE

[GRS 98]. Partitioning methods include k-means [McQ 67], k-modes [Hua 97], k-me-

doid [KR 90] algorithms and CLARANS [NH 94]. The basic idea of partitioning meth-

ods is to determine the set of pairwise distances among the points in the data set. Points

with minimum distances are successively combined into clusters.

Density based approaches apply a local cluster criterion and are popular for the pur-

pose of data mining, because they yield very good quality clustering results. Clusters are

regarded as regions in the data space in which the objects are dense, separated by regions

of low object density (noise). These regions may have an arbitrary shape and the points

inside a region may be arbitrarily distributed. The local densities are determined by

repeated range queries. We can distinguish between algorithms that execute these range

queries directly and algorithms that replace these range queries by a grid approximation. 

Repeated range queries are executed directly in the DBSCAN algorithm [EKSX 96].

The basic idea is that for each point of a cluster, the neighborhood of a given radius (ε)

has to contain at least a minimum number of points (MinPts) where ε and MinPts are

input parameters. Here the mutual distances between the points are determined by eval-

uating exactly one range query for each point stored in the database. Such a range query

can be processed by the sequential scan approach or by the index approach. The sequen-

tial scan reads the whole database and determines all distances in a straightforward way.

In this case, the runtime of DBSCAN is quadratic. The index based approach accelerates

query processing under certain boundary conditions to a logarithmic complexity. There-

fore, the time complexity of DBSCAN is in O(n log n). While DBSCAN as a partition-

ing algorithm computes only clusters of one given density, OPTICS [ABKS 99] gener-
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ates a density based cluster-ordering, representing the intrinsic hierarchical cluster

structure of the dataset in a comprehensible form. Both DBSCAN and OPTICS execute

exactly one ε-range query for every point in the database. They will be presented in more

detail in sections 4.2.2 and 4.2.3, respectively.

Due to performance considerations several proposals rely on grid cells [JD 88] to

accelerate query processing. The data space is partitioned into a number of non-overlap-

ping regions or cells which can be used as a filter step for the range queries (multi-step

query processing [KSF+ 96]). All points in the result set are contained in the cells inter-

secting the query range. To further improve the performance of the range queries to a

constant time complexity, query processing is limited to a constant number of these cells

(e.g. the cell covering the query point and the direct neighbor cells) and the refinement

step is dropped, thereby trading accuracy for performance. Cells containing a relatively

large number of objects are potential cluster centers and the boundaries between clusters

fall in cells with fewer points. The success of this method depends on the size of the cells

which must be specified by the user. Cells of small volume will give a very “noisy”

estimate of the density, whereas large cells tend to overly smooth the density estimate.

Additionally, simple grid based methods degenerate in high dimensional spaces. For

example, partitioning every dimension in a 20-dimensional space only once, results in

220 > 1,000,000 grid cells. Algorithms using grids include WaveCluster [SCZ 98], Den-

Clue [HK 98] and CLIQUE [AGGR 98]. For low dimensional spaces, these algorithms

work and perform very well. In order to scale to medium dimensional spaces, they em-

ploy sophisticated techniques to find an acceptable trade-off between accuracy and

speed. In high dimensional spaces their performance as well as accuracy break down due

to the problems mentioned above.

For example, the basic idea of DenClue [HK 98] is that the influence of each point on

the density of the data space can be modeled formally using a mathematical function

(e.g. the Gaussian function), called influence function. The overall density of the data

space can be calculated as the sum of the influence functions of all the data points. In this

model, cluster centers are the local maxima of the overall density function, which can be

found by a hill-climbing procedure guided by the gradient of the overall density func-

tion. The gradient at a point p is approximated by considering the influences of data
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points close to p only, as most points do not actually contribute to the overall density

function, because they are so far away, that their influence is negligible. Obviously, this

basic idea can be very easily and accurately implemented using repeated range queries.

Instead, the authors of [HK 98] chose a grid based approach, trading accuracy for speed

and limiting the algorithm to moderate dimensions.

4.2 Similarity-Join Based Clustering

4.2.1  General Idea

In section 4.1, we have seen that density based clustering algorithms perform range

queries in a multidimensional vector space. Since a range query is executed for each

point stored in the database, we can describe those algorithms using the following sche-

ma A1:

Algorithmic Schema A1:

foreach Point p ∈  D {

PointSet S := RangeQuery (p, ε) ;

foreach Point q ∈  S

DoSomething (p,q) ;

}

Q1

Q2

Q3 Q5

Q4

Figure 37: Sequence of Range Queries for A1
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In order to illustrate this algorithmic schema, we consider as an example task the

determination of the core point property for each point of the database. According to the

DBSCAN definition, a point is a core point if there is at least a number of MinPts points

in its ε-neighborhood (for a formal definition see [EKSX 96]). For this task, the proce-

dure DoSomething (p,q) will simply increment a counter and set the core point flag if

the threshold MinPts is reached. Assume a sample data set with one cluster as depicted

on the left side of figure 37. On the right side of figure 37 is the start of a sequence order

in which schema A1 may evaluate the range queries. Since A1 does not use the informa-

tion which points belong to which page of the index, the sequence of the range queries

does not consider the number of page accesses or even optimize for a low number of

page accesses. 

Under the assumption of a page capacity of 4 data points, a pagination as depicted in

figure 38 is quite typical and, for our sample sequence, the following page accesses must

be performed: Query Q1 accesses page P1 and the queries Q2 and Q3 both access the

pages P1 and P2. The query Q4 accesses all three pages P1, P2 and P3, and so on. After

processing the upper part of the cluster, range queries for the lower part are evaluated

and thus P1 is accessed once again. But at this point in time, P1 is eventually discarded

from the cache and therefore P1 must be loaded into main memory again.

However, by considering the assignment of the points to the pages, a more efficient

sequence for the range queries can be derived, i.e. loading identical data pages several

times into main memory can be avoided: First, determine all pairs of points on page P1

P1
P3P2

Figure 38: An Index Pagination for the Sample Data Set
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having a distance no more than ε; then, all pairwise distances of points on page P2; and

afterwards, all cross-distances between points on page P1 and P2. Then, P1 is no longer

needed and can be deleted from the cache. Finally, we load page P3 from secondary

storage and determine the pairs on P3 and the cross-distances between P2 and P3. Since

the distance between the pages P1 and P3 is larger than ε, there is no need to determine

the corresponding cross-distances. Processing the data pages in this way clearly changes

the order in which data points with a distance no more than ε are combined. The only

difference from an application point of view, however, is that we now count the ε-neigh-

borhoods of many points simultaneously. Therefore, we simply need an additional at-

tribute for each point which may be a database attribute unless all active counters fit into

main memory.

What we have actually done in our example is to transform the algorithmic schema

A1 into a new algorithmic schema A2 and to replace the procedure DoSomething (p,q)

by a new, but quite similar procedure DoSomething’ (p,q). The only difference be-

tween these two procedures is that the counter which is incremented in each call is not a

global variable but an attribute of the tuple p. The changes in the algorithmic schema A2

are more complex and can be expressed as follows:

Algorithmic Schema A2:

foreach DataPage P 

LoadAndPinPage (P) ;

foreach DataPage Q

if (mindist (P,Q) ≤ ε) then

CachedAccess (Q) ;

/* Run Algorithmic Schema A1 with */

/* restriction to the points on P and Q: */

foreach Point p ∈  P

foreach Point q ∈  Q

if (distance (p,q) ≤ ε) then

DoSomething’ (p,q) ;

UnPinPage (P) ;
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Here, mindist (P,Q) is the minimum distance between the page regions of P and Q, i.e.

where lbi and ubi denote the lower and upper boundaries of the page regions.

CachedAccess (...) denotes the access of a page through the cache. Thus, a physical

page access is encountered if the page is not available in the cache. In order to show the

correctness of this schema transformation, we prove the equivalence of schema A1 and

A2 in the following lemma.

Lemma 2. Equivalence of A1 and A2.

(1) The function DoSomething’ is called for each pair (p,q) in the algorithmic schema

A2 for which DoSomething is called in schema A1.

(2) DoSomething is called for each pair (p,q) for which DoSomething’ is called.

Proof:

(1) If DoSomething (p,q) is called in A1, then q is in the ε-neighborhood of p, i.e. the

distance |p - q| ≤ ε. The points are either stored on the same page P (case a) or on two

different pages P and Q (case b).

(a) As mindist (P,P) = 0 ≤ ε the pair of pages (P,P) is considered in A2. The pair of points

(p,q) is then encountered in the inner loop of A2 and, thus, DoSomething’ (p,q) is

called.

(b) As the regions of the pages P and Q are conservative approximations of the points p

and q, the distance between the page regions cannot exceed the distance of the points, i.e.

mindist(P,Q) ≤ |p - q| ≤ ε. Therefore, the pair of pages (P,Q) is considered in A2 and

DoSomething’(p,q) is called.

(2) If DoSomething’ is called in A2, then |p - q| ≤ ε. As q is in the ε-neighborhood of p,

DoSomething (p,q) is called in A1.q.e.d.

mindist2
P Q,( )

P.lbi Q.ubi–( )2 if P.lbi Q.ubi>

Q.lbi P.ubi–( )2 if Q.lbi P.ubi>
0 otherwise






0 i d<≤
∑=
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We note without a formal proof that for each pair (p,q) both DoSomething and Do-

Something’ are evaluated at most once. Considering the algorithmic schema A2, we

observe that this schema actually represents an implementation of a join-operation

which is called pagewise nested loop join. More precisely, it is a self-join operation

where the join predicate is the distance comparison |p - q| ≤ ε. Such a join is also called

similarity self-join. If we hide the actual implementation (i.e. the access strategy of the

pages) of the join operation, we could also replace the algorithmic schema A2 by a more

general schema A3 where D D denotes the similarity self-join:

Algorithmic Schema A3:

foreach PointPair (p,q) ∈  (D D)

DoSomething’ (p,q) ;

This representation allows us not only to use the pagewise nested loop join but any

known evaluation strategy for similarity joins. Depending on the existence of an index

or other preconditions, we can select the most suitable join implementation.

When transforming a KDD algorithm, we proceed in the following way: First, the

considered KDD method is broken up into several subtasks that represent independent

runs of the similarity join algorithm. Additional steps for preprocessing (e.g. index gen-

eration) and postprocessing (e.g. cleaning-up phases) may be defined. Then, the original

algorithm in A1 notation is transformed such that it operates on a cursor iterating over a

similarity join (A3 notation). Next, we consider how the operations can be further im-

proved by exploiting the knowledge of not only one pair of points but of all points on a

pair of index pages. In essence, this means that the original algorithm runs restricted to a

pair of data pages.

In summary, our transformation of a KDD algorithm allows us to apply any algorithm

for the similarity self-join, be it based on the sequential scan or on an arbitrary index

structure. The choice of the join algorithm and the index structure is guided by perfor-

mance considerations.

|p - q| ≤ ε

|p - q| ≤ ε
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4.2.2  Application to DBSCAN

In this section we will shortly introduce the algorithm DBSCAN and then show how to

base it on the similarity self-join. The key idea of density based clustering is that for each

object of a cluster the neighborhood of a given radius (ε) has to contain at least a mini-

mum number of objects (MinPts), i.e. the cardinality of the neighborhood has to exceed

a given threshold. For a detailed presentation of the formal definitions see [EKSX 96].

Definition 7 (directly density-reachable)

Object p is directly density-reachable from object q wrt. ε and MinPts in a set of

objects D if 

1) p ∈  Nε(q)

2) |Nε(q)| ≥ MinPts

where Nε(q) denotes the subset of D contained in the ε-neighborhood of q.

The condition |Nε(q)| ≥ MinPts is called the core object condition. If this condition holds

for an object p then we call p a core object. Other objects can be directly density-reach-

able only from core objects.

Definition 8 (density-reachable and density-connected) 

An object p is density-reachable from an object q wrt. ε and MinPts in the set of

objects D if there is a chain of objects p1, ..., pn, p1 = q, pn = p such that pi ∈ D and

pi+1 is directly density-reachable from pi wrt. ε and MinPts.

Object p is density-connected to object q wrt. ε and MinPts in the set of objects D if there

is an object o ∈ D such that both p and q are density-reachable from o wrt. ε and MinPts

in D.

Density-reachability is the transitive closure of direct density-reachability. Density-

connectivity is a symmetric relation. 

A density based cluster is now defined as a set of density-connected objects which is

maximal wrt. density-reachability and the noise is the set of objects not contained in any

cluster.



90 Density Based Clustering on the Distance Range Join

Definition 9 (cluster and noise) 

Let D be a set of objects. A cluster C wrt. ε and MinPts in D is a non-empty subset of

D satisfying the following conditions:

1) Maximality: ∀ p,q ∈ D: if p ∈ C and q is density-reachable from p wrt. ε and

MinPts, then also q ∈ C. 

2) Connectivity: ∀ p,q ∈  C: p is density-connected to q wrt. ε and MinPts in D.

Every object not contained in any cluster is noise. 

Note that a cluster contains not only core objects but also objects that do not satisfy

the core object condition. These objects - called border objects of the cluster - are direct-

ly density-reachable from at least one core object of the cluster (in contrast to noise

objects).

The algorithm DBSCAN, which discovers the clusters and the noise in a database

according to the above definitions, is based on the fact that a cluster is equivalent to the

set of all objects in D which are density-reachable from an arbitrary core object in the

cluster (cf. lemma 1 and 2 in [EKSX 96]). The retrieval of density-reachable objects is

performed by iteratively collecting directly density-reachable objects. DBSCAN checks

the ε-neighborhood of each point in the database. If the ε-neighborhood Nε(p) of a point

p has more than MinPts points, a new cluster C containing the objects in Nε(p) is created.

Then, the ε-neighborhood of all points q in C, which have not yet been processed, is

checked. If Nε(q) contains more than MinPts points, the neighbors of q, which are not

already in C, are added to the cluster and their ε-neighborhood is checked in the next

step. This procedure is repeated until no new point can be added to the current cluster C.

Then the next point without cluster id is considered.

In contrast to executing exactly one range query for every point in the database, we

propose to base DBSCAN on the result of a similarity self-join of the database. Materi-

alizing the result of the join, however, requires space potentially quadratic in the size of

the database, so we adapt DBSCAN to run directly on the joining pages, using the sche-

ma given in section 4.2.1. This algorithm, called J-DBSCAN (which returns the same

clustering as DBSCAN), consists of three steps. In step 1, the core points are deter-
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mined, in step 2, a partial clustering of the database is computed and in step 3, these are

merged into the final clustering (clean-up phase).

Step 1: To determine whether a point p satisfies the core object condition we need the

cardinality of p’s ε-neighborhood. We keep a counter p.counter in p’s data page, initial-

ized to zero. We then execute a similarity self-join. For every pair of joining pages page1

and page2 and every pair of points o ∈ page1, p ∈ page2 with dist(o, p) ≤ ε, we incre-

ment o.counter and p.counter if o ≠ p, or p.counter if o = p.

Once the join finishes, q.counter contains |Nε(q)| for every point q.

Step 2: We assign tentative cluster ids to the data points, by executing a second similar-

ity join and, in principle, running DBSCAN on every pair of joining data pages. The

tentative cluster ids are assigned in such a way, that the following two conditions hold:

1) Points having the same tentative cluster id belong to the same cluster. 2) If two points

belonging to the same cluster are assigned different tentative ids, then these two tentative

ids will be in the same maximally connected component of the graph represented by the

mergeList. The mergeList is the adjacency list representation of an undirected

graph, its nodes are the tentative cluster ids and edges are inserted whenever the two core

points with different tentative cluster ids join (cf. case (1) given below).

As an example consider figure 39. Assume that page1 is first joined with itself. Then

the five clusters on page1 will be assigned five different cluster ids ➀  to ➄ . Next, assume

that page1 and page2 are joined, such that point X from page1 is joined with every point

p from page2 with dist(X, p) ≤ ε and point Y from page1 is joined with every point p from

page2 with dist(Y, p) ≤ ε. Then some points of the cluster on page2 will be assigned

cluster id ➁  and others will be assigned cluster id ➃ . Finally, page2 is joined with itself,

and a point with cluster id ➁  is joined with a point having cluster id ➃ . Thus, the pair of

cluster ids (➁ , ➃ ) is added to the mergeList. Therefore, the U-shaped cluster will be

identified correctly.

According to definition 9, whenever two core points join, they have to be assigned the

same cluster id. Whenever a core point and a non-core point join, they should be as-

signed the same cluster id. Note however, that a non-core point may join with two core
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points from different clusters. In this case, the non-core point may be assigned either one

of the cluster ids. From this we infer the (symmetric) matrix given in figure 40. For every

pair of joining points (p1, p2), we execute the action given in figure 40, explained in

detail in the following:

(1) If both points are core points and both already have cluster ids, we need to merge

these two clusters. The actual merging will be done in step three of the algorithm. Here

in step two we only insert the pair of cluster ids into the list of “cluster ids to be merged”

(mergeList). This is equivalent to adding an edge between the two tentative cluster

ids to the graph, and thereby merging the two maximally connected components they

belong to.

(2) If both points are core points and only one already has a cluster id C, the other one is

assigned this cluster id C.

(3) If one point, assume p1, is a core point with a cluster id and the other, p2, a non-core

point with a cluster id, then p2 is a border point of the cluster to which p1 belongs. In this

case, nothing needs to be done. This is obvious, if their cluster ids are equal. If they have

different cluster ids, then there are two possible cases. Case 1: p2 is a border point of two

different clusters, i.e. no point o with o ≠ p1 and o ≠ p2 exists such that p1 and p2 are

density connected through o. Then p2 may be assigned to either cluster, and nothing

needs to be done. Case 2: p1 and p2 belong to the same cluster, i.e. a point o with o ≠ p1

and o ≠ p2 exists such that p1 and p2 are density connected through o. This chain of core

page1

Figure 39: Tentative Cluster Ids

page2

➀
➄

➂

➁ ➃
point X point Y

➁ ➃
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points connecting p1 and p2 guarantees that the two cluster ids will end up in the same

maximally connected component in the mergeList graph. Again, nothing needs to be

done.

(4) If one is a core point with a cluster id C and the other a non-core point without a

cluster id, the non-core point is a border point of the cluster and therefore assigned the

cluster id C. 

(5) If both are core points without cluster ids, they are directly density reachable and

belong to the same cluster. A new cluster id is generated and assigned to both points.

(6) If, without loss of generality, p1 is a non-core point with a cluster id and p2 a core

point without a cluster id, we do nothing. We cannot safely assign p2 the cluster id of p1.

We could assign a new cluster id to p2, however, we do not want to do this in order to

keep the number of cluster ids as small as possible. If p2 joins with a core point having a

cluster id sometime later, it will be assigned this cluster id. If that does not happen, p2

will eventually join with itself leading to case (5). Thus we can safely defer assigning a

cluster id to p2.

P1 CORE POINT NON-CORE POINT

P2 ID NULL ID NULL

CORE
POINT

ID merge if 
P1.ID≠P2.ID

(1)

P1.ID =
P2.ID

(2) (3)

P1.ID =
P2.ID

(4)

N
U
L
L

P2.ID =
P1.ID

(2)

P1.ID =
P2.ID =
new ID

(5) (6)

P1.ID =
P2.ID = 
new ID

(7)

NON-
CORE
POINT

ID (3) (6) (8) (8)

N
U
L
L

P2.ID =
P1.ID

(4)

P1.ID =
P2.ID = 
new ID

(7) (8) (8)

Figure 40: J-DBSCAN matrix
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(7) If one is a core point and the other is not, both having no cluster ids, a new cluster id

is generated and assigned to both. We cannot defer this as in case (6) because the non-

core point may then end up without a cluster id.

(8) If both points are non-core points, they are not directly density reachable so nothing

needs to be done.

In order to keep mergeList as short as possible we try to defer cases (5) and (7) as

much as possible. For two different joining pages, we do this by making two passes over

the joining points, first handling all other cases. Thereby, the number of times we exe-

cute cases (5) and (7) is minimized. For a page joining with itself we can further improve

this by making depth first passes starting (in turn) with all the core points having cluster

ids.

Step 3: The final cluster ids are computed, using the entries in the mergeList. Recall

that the mergeList represents an undirected graph, the nodes are the cluster ids and

for every entry (p1, p2) in the list there exists an edge between p1 and p2. We now deter-

mine the maximally connected components of this graph by a depth first search. Each

such component is one cluster, so the tentative cluster ids are replaced by final cluster

ids, if necessary. In all our experiments the size of the mergeList was very small and

step three took negligible time.

When J-DBSCAN terminates, all points belonging to clusters will have been as-

signed cluster ids according to their cluster membership and all noise points will have a

cluster id of NULL.

4.2.3  Application to OPTICS

While DBSCAN can only identify a “flat” clustering, the newer algorithm OPTICS

[ABKS 99] computes an order of the points augmented by additional information (the

core-distance and a reachability-distance) representing the intrinsic hierarchical (nest-

ed) cluster structure. The result of OPTICS, the cluster-ordering, can be used as a stand-

alone tool to get insight into the distribution of a dataset. Depending on the size of the

database it can either be represented graphically (for small datasets) or visualized using

an appropriate visualization technique (for large datasets). Thus, it is possible to explore
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interactively the clustering structure, offering additional insights into the distribution

and correlation of the data. Furthermore, not only ‘flat’ clustering information, but also

the hierarchical clustering can be automatically extracted using an efficient and effective

algorithm.

As in the previous section, we will shortly introduce the definitions and the algorithm

and then show how to base OPTICS on the similarity join. 

Definition 10 (core-distance)

Let p be an object from a database D, let ε be a distance value, let Nε(p) be the ε-

neighborhood of p, let MinPts be a natural number and let MinPts-dist(p) be the dis-

tance from p to its MinPts-th neighbor. Then, the core-distance of p, denoted as core-

distε,MinPts(p) is defined as MinPts-dist(p) if |Nε(p)| ≥ MinPts and UNDEFINED oth-

erwise.

Definition 11 (reachability-distance)

Let p and o be objects from a database D, let Nε(o) be the ε-neighborhood of o, let

dist(o,p) be the distance between o and p, and let MinPts be a natural number. Then,

the reachability-distance of p with respect to o denoted as reachability-distε,MinPts(p,

o) is defined as max(core-distε,MinPts(o), dist(o,p)) if |Nε(o)| ≥ MinPts and UNDE-

FINED otherwise.

Note that the reachability-distance of an object p depends on the core object with respect

to which it is calculated.

The algorithm OPTICS creates an ordering of a database, additionally storing the

core-distance and a suitable reachability-distance for each object. Its main data structure

is a seedlist, containing tuples of points and reachability-distances. Initially the seedlist

is empty and all points are marked as not-done. The algorithm works as follows:

Algorithm OPTICS:

repeat

if the seedlist is empty then

if all points are marked “done”, then terminate;

find “not-done” point q closest to the origin;
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add (q, infinity) to the seedlist;

(p,r) := seedlist entry with smallest reachability value;

remove (p,r) from seedlist;

mark p as “done”;

output (p,r);

update-seedlist(p);

The function update-seedlist(p) executes an ε-range query around the point p. For every

point q in the result of the range query it computes r = reachability-distε,MinPts(q, p). If

the seedlist already contains an entry (q, s), it is updated to (q, min(r, s)), otherwise (q, r)

is added to the seedlist.

The similarity join based algorithm J-OPTICS, which computes the same result as

OPTICS, consists of three steps. In step 1 the core-distances of all points are determined.

In step 2 the reachability values from every point to every point in its ε-neighborhood are

materialized. As the number of these reachability-distances is quadratic in the number of

points, we do not save all of them but prune as many as possible. In step 3 the order of

the points is computed. 

Step 1: To calculate the core-distance of a point, we need to know if there are at least

MinPts points in its ε-neighborhood and, if this is the case, the distance of the MinPts-th

neighbor. For every point, we keep an array of distances of size MinPts, in which we

record the distances of the closest MinPts neighboring points seen so far. Initially all the

entries in this array are set to infinity. We then execute a similarity join and for every

joining pair of points, calculate their distance and update the array accordingly. After the

join is finished, the maximal entry in the array is the core-distance, or infinity if the core-

distance is UNDEFINED.

Step 2: Given the core-distance for a point, we can calculate the reachability-distances

from this point to every other point in its ε-neighborhood by executing a second similar-

ity join. As the number of reachability-distances is potentially quadratic in the number

of points, we employ the following techniques to filter most of them. We have to distin-

guish the following two cases:
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Case 1: A page joining with itself, containing m points. For every pair of joining points

on this page, we calculate the reachability distances, leading to a m × m matrix R, with

R[p,o]=reachability-distε,MinPts(o, p). Because of the rules OPTICS uses to chose the

next point, we can easily prove by a case analysis that if 

R[p,o] < R[p,q] and R[o,q] < R[p,q], 

then OPTICS will never use R[p,q]. In all our experiments, we eliminated approximately

70% of the relevant (i.e. not infinity) entries in R using this rule. 

All entries R[p,o] that have not been eliminated are added to the reachability-dis-

tance-list for point p.

Case 2: Two different pages page1 and page2 joining, containing m1 and m2 points,

respectively. We compute two matrices, an m1 × m2 matrix R and an m2 × m1 matrix P

with

R[o,p] = reachability-distε,MinPts(p, o) 

P[p,o] = reachability-distε,MinPts(o, p) 

for o ∈ page1, p ∈ page2. Because we do not have access to the reachability distances

from one point in a page to another point in the same page, we cannot use the condition

given in case 1 to eliminate unnecessary reachability-distances; instead we use the easily

provable condition that if R[p,o] < R[p,q] and P[o,r] < R[p,q] and R[r,q] < R[p,q], then

OPTICS will never use R[p,q]. In our experiments, this rule allowed us to eliminate at

least 90% of the relevant entries in P and R. All entries R[p,o] and P[p,o] that have not

been eliminated are added to the reachability-distance-list for point p.

Step 3: To compute the order of the points, a modified version of the original OPTICS

algorithm is run, in which update-seedlist(p) fetches the reachability-distance-list for p

instead of executing a range query around p. Because this list contains all relevant reach-

ability-distances, the result of J-OPTICS is guaranteed to be the same as the result of

OPTICS.
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4.3 Experimental Evaluation

In order to show the practical relevance of our method, we applied the proposed schema

transformation to two effective data mining techniques. In particular, we transformed the

known clustering algorithm DBSCAN and the hierarchical cluster structure analysis

method OPTICS such that both techniques use a similarity self-join instead of repeated

range queries. Note again that the resulting cluster structures generated by DBSCAN and

OPTICS based on the similarity self-join are identical to the cluster structures received

from the original techniques (the only exception are non-core point objects which are

density reachable from more than one cluster; for both versions of DBSCAN and OP-

TICS these points can be arbitrarily assigned to any of the clusters from which they are

density reachable). We performed an extensive experimental evaluation using two real

data sets: first, an image database containing 64-d color histograms of 112,000 TV-

snapshots, and second, 300,000 feature vectors in 9-d representing weather data. For

both data set, we used the Euclidean distance. We used the original version of the R*-tree

and a 2-level variant of the X-tree. In all experiments, the R*-tree and the X-tree were

allowed to use the same amount of cache (10% of the database size). Additionally, we

implemented the similarity query evaluation based on the sequential scan. The join algo-

rithm we used is similar to the algorithm proposed in [BKS 93], i.e. the basic join strat-

egy for R-tree like index structures. Advanced similarity join algorithms can further

improve the performance of our approach. All experiments were performed on an HP-

C160 under HP-UX B.10.20. In the following, Q-DBSCAN denotes the original algo-

rithm, i.e. when DBSCAN is performed with iterative range queries, and J-DBSCAN

denotes our new approach, i.e. based on a similarity self-join. In the same way we will

use Q-OPTICS and J-OPTICS. In all experiments, we report the total time (i.e. I/O plus

CPU time). The sequential scan methods on the file were implemented efficiently, such

that the file is scanned in very large blocks. Therefore, the I/O cost of scanning a file is

considerably smaller than reading the same amount of data pagewise from an index.

4.3.1  Page Size

In our first set of experiments, we performed DBSCAN and OPTICS with varying page

sizes in order to determine the optimal page sizes with respect to the used access method.
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In figure 41a, the runtimes of Q-DBSCAN and J-DBSCAN on 100,000 points from the

weather data with ε = 0.005 and MinPts = 10 are shown. The page size is given as the

average number of points located on a data page. We can observe that for all page sizes

the runtime of Q-DBSCAN is considerably larger than the runtime of J-DBSCAN and

this holds for the R*-tree, for the X-tree and for the sequential scan. The speed-up factor

of J-DBSCAN compared to Q-DBSCAN for the optimal page sizes is 20 for both index

structures, i.e. J-DBSCAN based on the R*-tree is 20 times faster than Q-DBSCAN

based on the R*-tree (and the same speed-up factor is achieved for the X-tree). 
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Figure 41: DBSCAN for increasing page size on (a) weather data and (b) image data
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Performing Q-DBSCAN on the sequential scan clearly yields the worst runtime,

which is 556 times the runtime of J-DBSCAN using the X-tree. Note that we used a

logarithmic scale of the y-axis in figure 41 since otherwise the runtimes of J-DBSCAN

and J-OPTICS would hardly be visible. Figure 41b shows the results for the image data.

We clustered 40,000 points with ε = 0.08 and MinPts = 10. For this data set, the perfor-

mance improvement of J-DBSCAN compared to Q-DBSCAN using the R*-tree is even

higher: the speed-up factor is 54 when the R*-tree is the underlying access method and

19 using the X-tree. For small page sizes, performing Q-DBSCAN on the sequential

scan yields a better runtime than using the R*-tree. However, when the page size of the

R*-tree is well adjusted, the Q-DBSCAN on the sequential scan again has the slowest

runtime. We can also observe, that the J-DBSCAN variants on the R*-tree and on the X-

tree are relatively insensitive to page size calibrations. 

For OPTICS, we observed similar results. Again, we varied the page size and ran

Q-OPTICS and J-OPTICS on both data sets. Figure 42a shows the runtimes of Q-OP-

TICS and J-OPTICS on the weather data set for ε = 0.01 and MinPts = 10. For the opti-

mal page sizes, all query based approaches are clearly beaten by the join based approach-

es, and, once again, the X-tree outperforms the R*-tree. The speed-up factor of

J-OPTICS over Q-OPTICS is 3.4 using the R*-tree, and 5.6 using the X-tree. The runt-

ime of Q-OPTICS based on the sequential scan is 51 times the runtime of J-OPTICS

based on the X-tree. Figure 42b presents the results for the image data for ε = 0.1 and

MinPts = 10. The speed-up factor of J-OPTICS over Q-OPTICS is 22 using the R*-tree,

and 12 using the X-tree. Note that because of the high-dimensionality of the database,

the sequential scan outperforms the R*-tree for almost all page sizes.

Independently from the underlying page size, the join based techniques outperform

the query based techniques by large factors. Therefore, page size optimization is neither

absolutely necessary to achieve good performance, nor is it possible to outperform our

new techniques simply by optimizing the page size parameter of the query-based algo-

rithms. Since the X-tree consistently outperformed the R*-tree on both data sets, we

focus on the X-tree and on the sequential scan in the remainder of our experimental

evaluation.
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4.3.2  Database Size

Our next objective was to investigate the scalability of our approach when the database

size increases. We ran Q-DBSCAN and J-DBSCAN on both data sets and increased the

number of points from 50,000 to 300,000 (weather data) and from 10,000 to 110,000

(image data). The used parameter values were ε = 0.005, MinPts = 10 on the weather
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Figure 42: OPTICS for increasing page size on (a) weather data and (b) image data
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data and ε = 0.08, MinPts = 10 on the image data. As figure 43 depicts, the query based

approach Q-DBSCAN scales poorly when the iterative range queries are processed by

the sequential scan. The reason is that DBSCAN yields a quadratic time complexity

when using a sequential scan as the underlying access method. 

The scalability of Q-DBSCAN on top of the X-tree is obviously better due to the

indexing properties of the X-tree. For J-DBSCAN, however, we clearly observe the best

scalability as the database sizes increase: the speed-up factor compared to Q-DBSCAN

using the X-tree increases to 23 for 300,000 points of the weather data and the speed-up

factor for 110,000 points of the image data is 20.

We also investigated the scalability of Q-OPTICS and J-OPTICS. The results for the

weather data with ε = 0.01 and MinPts = 10 are depicted in figure 44a. In this experi-

ment we increased the number of points from 50,000 up to 300,000. As before, the

scalability of the query based approach is poor whereas the join based approach scales

well. The speed-up factor of J-OPTICS over Q-OPTICS increases to 6. Figure 44b

shows the same experiment for the image database for ε = 0.1 and MinPts = 10, where

we increased the number of points from 10,000 to 110,000 and again found the scalabil-

ity of J-OPTICS clearly better than the scalability of Q-OPTICS. The speed-up factor

increases from 7.6 for 10,000 points to 14 for 110,000 points.

4.3.3  Query Range

For the performance of Q-DBSCAN and Q-OPTICS, the query range ε is a critical

parameter when the underlying access method is an index structure. When ε becomes

too large, a range query cannot be performed in logarithmic time since almost every data

page has to be accessed. Consequently, performing Q-DBSCAN and Q-OPTICS on the

sequential scan can yield better runtimes for large ε-values since the sequential scan does

not cause random seeks on the secondary storage. In order to analyze our join based

approach when ε becomes large, we ran J-DBSCAN and J-OPTICS with increasing ε-

values. 

Figure 45a depicts the results for Q-DBSCAN and J-DBSCAN on 100,000 points of

the weather data and figure 45b shows the results on 40,000 points of the image data. For
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both data sets we set MinPts = 10. We can clearly observe that the runtime of Q-DB-

SCAN substantially increases with ε whereas the runtime of J-DBSCAN shows only

moderate growth, thus leading to a speed-up factor of 19 for ε = 0.02 on the weather data

and on the image data the speed-up factor was 33 for ε = 0.2. Note, in figure 45 we

omitted the runtimes of Q-DBSCAN on the sequential scan since even for large values

Figure 43: Scalability of DBSCAN on (a) weather data and (b) image data
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OPTICS on weather data (9-d )
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Figure 44: Scalability of OPTICS on (a) weather data and (b) image data
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of ε the runtimes applying the sequential scan was by factors larger compared to a pro-

cessing on top of the X-tree (e.g. for ε = 0.2 and the image data the runtime of Q-DB-

SCAN on the sequential scan still was about 5 times the runtime of Q-DBSCAN based

on the X-tree).

We also performed Q-OPTICS and J-OPTICS with increasing ε on 100,000 points of

the weather data set and for 40,000 points of the image data, both for MinPts = 10 (cf.

figure 46). For the weather database, the runtime for Q-OPTICS based on the sequential
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OPTICS on weather data (9-d )
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Figure 46: OPTICS for increasing query range on (a) weather data and (b) image data
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scan is not shown, as it is about 6 times higher than the runtime of Q-OPTICS based on

the X-tree even for ε=0.03. For the image data set, the runtime of Q-OPTICS based on

the X-tree quickly increases and eventually reaches the runtime of Q-OPTICS based on

the sequential scan. Obviously, when increasing ε further, Q-OPTICS on the sequential

scan will outperform Q-OPTICS based on the X-tree since the X-tree will read too many

data pages for each range query while paying expensive random disk seeks. The runtime

of J-OPTICS for both data sets, on the other hand, shows a comparatively small growth

when increasing ε. J-OPTICS outperforms Q-OPTICS on both the X-tree and the se-

quential scan by a large factor. This results from the fact that even when the similarity

self-join generates all possible data page pairs due to a large ε, these are generated only

once whereas Q-OPTICS generates these page pairs many times.

4.4 Conclusions

In this chapter, we have presented a general technique for accelerating query-driven

algorithms for knowledge discovery in databases. A large class of KDD algorithms de-

pends heavily on repeated range-queries in multidimensional data spaces, which, in the

most extreme case, are evaluated for every point in the database. These range queries are

expensive database operations which cause serious performance problems when the data

set does not fit into main memory. Our solution is the transformation of such a data

mining technique into an equivalent form based on a similarity join algorithm. We pro-

posed a general schema for rewriting KDD algorithms which use repeated range queries

such that they are based on a similarity join. In order to show the practical relevance of

our approach, we applied this transformation schema to the known clustering algorithm

DBSCAN and to the hierarchical cluster structure analysis method OPTICS. The result

of the transformed techniques are guaranteed to be identical to the result of the original

algorithms. In a careful experimental evaluation, we compared our transformed algo-

rithms with the original proposals, where the query evaluation is based on various con-

cepts such as the X-tree, the R*-tree and the sequential scan. The traditional techniques

are outperformed by factors of up to 33 for the X-tree and 54 for the R*-tree.
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Chapter 5
Further Applications of the 
Range Distance Join

After the complex case of the transformation of DBSCAN and OPTICS, we give in this

chapter a few algorithms for which the evaluation on top of the similarity join is rather

straightforward. The applications presented here are robust similarity search in sequence

data where the join leads in particular to robustness with respect to noise and scaling. We

also present a few generalizations of this technique to similarity of multidimensional

sequences (i.e. raster or voxel data) and to partial similarity. Also presented are applica-

tions like catalogue matching and duplicate detection. It is worth noting, however, that

only few publications from the application areas such as robust similarity search

[ALSS 95] or data mining [BBBK 00] are really conscious of using the similarity join as

a primitive operation. Others such as astronomy catalogue matching [VCVS 95] merely

describe their algorithms without becoming aware of the fact that it is actually a redefi-

nition of a rather simple similarity join algorithm (in most cases the nested loop join). In

particular for these applications, we expect a high potential for performance gains if the

simple join algorithm is replaced by a more sophisticated and efficient one. It is one of

the intentions of this thesis to promote the concept of the similarity join in prospective

application domains.
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5.1 Robust Similarity Search

The traditional approach for similarity search, range queries or nearest neighbor queries

on the associated feature vectors has several clear disadvantages with respect to the

robustness of the search. It is difficult to control how flexible the search reacts with

respect to mismatches in single attributes and to employ a partial similarity search which

reports database objects which resemble the query object only at a certain region. The

Euclidean distance (and to more or lesser extent also other well-known distance mea-

sures) is rather sensitive with respect to mismatches in a single dimension. The

maximum metric even defines the similarity according to the worst matching dimen-

sion, so it is the most sensitive among the Lp norms. It is clearly application dependent

whether or not such a sensitivity is useful. If it is not desired, then some user adaptable

similarity measure [ALSS 95] may be helpful to assign low weights to mismatching

dimensions. This approach, however, requires that the dimension of mismatch is known

and constant for all objects. If this is not the case, the simple feature based approach will

not be very effective. This problem that assigning single vectors to objects is not robust

with respect to

• noise or mismatch in single attributes and

• similarity search for partial objects

has been addressed by Agrawal et al. [ALSS 95] for the domain of time sequence anal-

ysis. The principle can be generalized also for different domains such as color images,

CAD parts, protein molecules and many others.

5.1.1  Query Decomposition

Features of time sequences can be generated in a quite trivial way by using the elements

of the sequences as features. The Euclidean distance between two feature vectors corre-

sponds to the squared approximation error when approximating one sequence by the

other which is a well accepted distance measure in the corresponding technical applica-

tion domains such as electrical engineering. 
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To achieve robustness with respect to noise and subsequence matching Aggrawal et

al. propose to decompose both components database objects as well as query objects

using a given sliding window of size w. This is a prominent concept borrowed from

information retrieval where usually strings (words) are decomposed in overlapping n-

lets (typically n = 3) to make the search for words robust with respect to spelling errors.

Here the similarity between two words is measured by the number of matching n-lets,

normalized by the length of the searched word. In a similar way, the sliding windows of

time sequences can be matched (called window stitching by Agrawal et al. [ALSS 95]).

The robustness with respect to noise can be achieved by a low weighting of individual

mismatches. Partial similarity search is achieved by not enforcing the complete recon-

struction of the complete database object but only of a part of the same length as the

query object. In essence, matching of decomposed query vectors with decomposed data

vectors is a similarity join. As we have to find those (complete) time sequences which

have the maximum number of matching subsequences, we have to apply a groupby

statement which groups according to the object ID and filters the sequences according to

counts of similar subsequences or counts of contiguous similar subsequences.

5.1.2  Application of the Similarity Join

Agrawal et al. [ALSS 95] use the similarity join for matching of the short, elementary

subsequences obtained by the sliding window. For this step, overlapping subsequences

of the length w of the sliding window are matched after a suitable offset translation and

amplitude scaling. The similarity of two such elementary subsequences is given by a

channel around the query subsequence with a defined width of 2·ε as depicted in figure

47. In this example, the window size corresponds to w = 9. Translation and scaling is

achieved by normalizing both database and query subsequences to [0..1] in the y-axis

(amplitude). Two elementary sequences are called similar if one is in the ε-channel of the

other. As being inside the ε-channel means that each component of the two vectors has a

difference of no more than ε the similarity measure for elementary subsequences corre-

sponds to the maximum norm (L∞). Finding all pairs of similar elementary subsequences

corresponds to the distance range join between the set of elementary subsequences of the
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query sequence and the elementary subsequences of the sequences stored in the data-

base: 

subseq-pairs := decomposed (q)  decomposed (DB)

As the focus of Agrawal et al. [ALSS 95] is on finding pairs of similar time sequences in

a database, in this special case a similarity self join on the set of decomposed database

objects is applied.

5.1.3  Further Processing

The output of the similarity join are matching pairs of similar elementary subsequences.

To determine subsequences of maximum length Agrawal et al. [ALSS 95] apply an op-

eration called window stitching. Although we do not feel that it is actually required to

apply a particular reconstruction of the subsequences (in information retrieval, this is

already sufficiently done by matching overlapping character n-lets), we briefly mention

that the window stitching algorithm constructs a graph of similar elementary subse-

quences where the vertices correspond to elementary matches and the edges correspond

to subsequent matches. Window stitching is equivalent to finding longest path in the

match graph as depicted in figure 48. The authors do not show that window stitching

yields improvements over the simple approach of counting and maximizing similar ele-

mentary subsequences.
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Figure 47: The Similarity Join in Robust Similarity Search
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5.1.4  Generalization

The principle of query decomposition can also be applied to other kinds of objects, in

particular objects which have an inherent structure which can be immediately trans-

formed into vectors. Examples are raster images but also three-dimensional objects like

CAD parts and protein molecules. For instance, the surface of a protein can be decom-

posed into areas which are typically subject to biochemical interactions and then, similar

molecules or even docking partners may be found using the similarity join. Here the

object decomposition and/or the similarity measure for the partial objects must also

insure robustness with respect to rotation. A sliding window for raster images is depicted

in figure 49.
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Figure 49: Extension to Raster Images
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5.1.5  Continuous Feature Transitions

In some approaches for time sequence similarity [FRM 94] or CAD similarity [BK 97]

either queries or database objects are not only decomposed into a finite set of points but

rather into a continuum of points (manifold, cf. figure 50). An example for partial simi-

larity search on 2D CAD parts is depicted in figure 50. Here, partial search is defined as

follows: We are given a part of a contour which is not closed. Find a CAD part in the

database which contains the query contour (considering invariance with respect to trans-

lation and rotation). The partial contour may start and end at arbitrary points (not neces-

sarily vertices) of the retrieved contour. For partial similarity, the database CAD part

need not to contain exactly the query contour but a contour which is similar to the query

contour. Berchtold and Kriegel [BK 96] solve the problem by basically storing the set of

all subcontours of a CAD part in the database. This set is essentially infinite. Therefore,

all contours which start and end at a given pair of subsequent vertices are assembled into

a manifold. By starting the corresponding subsequence at an arbitrary point S on the

contour, a one-dimensional line (not necessarily a straight line) is generated in the fea-

ture space. As also the ending point E varies on the contour, a two-dimensional area is

generated (not depicted in figure 50). These manifolds are also decomposed for effec-

tiveness and efficiency. Therefore, we also face a similarity join problem. The corre-
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Figure 50: Continuous Feature Transitions
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sponding similarity join between two extended objects, however, has not yet been con-

sidered and may be subject to future research.

5.2 Catalogue Matching

An application to which the concept of similarity join can be directly applied, is match-

ing of multimedia catalogues stemming from different sources. Examples of such re-

quirements exits in virtually all application domains of feature based similarity. We use

as a running example astronomic catalogues which store information about astronomic

objects such as planets, stars, galaxies, etc. 

5.2.1  Known transformation

Features which are stored in such catalogues are not only the positions of the objects

using some appropriate coordinate system but also, for instance, the intensity of the

radiation in different frequency bands. All features are measured using both physical

devices and complex computations. Therefore, each feature is subject to a measurement

error which is bounded by the device tolerance. 

The operation of catalogue matching is defined as follows: Two catalogues, R and S

are given which store features about objects which are partially common to both sets (R

and S are generally neither disjoint nor equal). The typical situation is, that both cata-

logues store different but overlapping regions of the universe and that e.g. one of the

catalogues stores fewer objects due to weaker sensitivity of the device. Figure 51 illus-

trates the two catalogues, R and S. An appropriate ε for matching can be derived from the

device tolerances. Determining the set of pairs which are common to both catalogues

corresponds to the distance range join R S between the two catalogues as indicated

on the right side of figure 51. Our resulting catalogue should also contain information

about all objects which are only registered in one of our two catalogues. The correspond-

ing join operation which takes also those objects to the result which have no join partner

in the other set (leaving the corresponding attributes NULL) is called full outer join in

ε
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the relational database theory. It is straightforward to extend the similarity join to a full

outer similarity join. 

5.2.2  Unknown Transformation

Until now we have implicitly assumed that positions and the remaining features of both

catalogues are stored using a common coordinate system. If the required transformation

to bring set S into the coordinate system used in set R is known, then we simply can apply

this transformation to each point of S before the similarity join. Particularly for astro-

nomic catalogues it is sometimes unknown what the relative position of two catalogues

is. In this case, we can determine the relative position directly from the data sets. For this

purpose, in each of the sets triangles are drawn connecting some of the objects which are

likely to be included in both sets (e.g. the brightest stars). Then some features of the

triangles which are invariant with respect to the transformation to be determined are

stored in data sets (such as the ratios between angles etc.). Matching pairs of these de-

rived triangle features can be used to determine the actual coordinate transformation.

Matching the triangles again corresponds to a distance range join of the two derived

feature sets.

R S
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ε

Figure 51: Catalogue Matching
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5.3 Duplicate Detection

A problem similar to catalogue matching is the duplicate detection. In contrast to cata-

logue matching, duplicate detection typically involves only one data set R which con-

tains some duplicate feature vectors. Here we also have to assume that the features are

superimposed by some noise. Therefore, duplicate elimination in feature databases does

not involve exact matches but fuzzy matches. To detect duplicates we determine the self

join of the data set using a distance range ε which is derived from the noise level of the

feature transformation. If it is not possible to determine an appropriate ε it is also possi-

ble to determine a closest pair ranking. Duplicate detection is depicted in figure 52.

5.4 Conclusions

In this chapter, we have proposed several further application domains for the similarity

join. In contrast to the applications from the data mining domain presented in chapter 4,

the transformation of algorithms such as robust similarity search, duplicate detection,

catalogue matching is relatively simple as demonstrated throughout this chapter. The

major objective of this chapter is to underpin our argumentation for the similarity join as

an important database primitive for various application domains.

R

Figure 52: Duplicate Detection
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Chapter 6
A Cost Model for Index Based 
Similarity Join Algorithms

After the previous chapters 4 and 5 which concentrated on the applications of the simi-

larity join we are now in this and the two following chapters focussing on the algorithms

to implement the distance range join. 

Due to the high impact of the similarity join operation, a considerable number of

different algorithms to compute the similarity join have been proposed (cf. chapter 3).

From a theoretical point of view, however, the similarity join has not been sufficiently

analyzed. Our feeling is that the lack of insight into the properties of the similarity join

is an obstacle in developing new methods with better performance.

Therefore, we develop a cost model for index based similarity join algorithms in this

chapter. The concept used in this cost model is the Minkowski sum which is here modi-

fied to estimate the number of page pairs from the corresponding index structures which

have to be considered. In contrast to usual similarity search, the concept of the Minkows-

ki sum must be applied twice for the similarity join in order to estimate the number of

page pairs which must be joined. We will point out that the index selectivity is the central

key to the performance analysis. In section 6.1, we will present the formula for the index

selectivity with respect to the similarity join operation. We will further analyze how
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much selectivity is needed to justify the usage of an index for join processing. The

surprising result is, that for the optimization of the CPU operations, a fine-grained index

is indispensable. For the I/O operations, however, fine-grained indexes are disastrous.

Our conclusion from these results is the necessity of decoupling the CPU optimization

from the I/O optimization.

6.1 Problem analysis

In this section, we separately analyze the performance behavior of the similarity join

with respect to CPU cost and I/O cost. For this purpose, we assume a simplified version

of an R-tree like index structure which consists of a set of data pages on the average filled

with a number Ceff of points and a flat directory. In our simplified index, similarity joins

are processed by first reading the directory in a sequential scan, then determining the

qualifying pairs of data pages, and, finally, accessing and processing the corresponding

data pages.

When using an index, the only gain is the selectivity, i.e. not all pairs of pages must be

accessed and not all pairs of points must be compared. For a join, the index selectivity σ

is defined as the number of page pairs to be processed divided by the theoretically pos-

sible page pairs:

, 

where BR and BS are the numbers of blocks of the point sets and |R| and |S| are the sizes

of the corresponding data sets (number of points). The index selectivity depends on the

quality of the index and on the parameter ε of the similarity join. As a matter of fact,

using an index for a join computation induces some overhead. We will first determine

the possible overhead for the index usage. It is important to limit the overhead to a

threshold, say 10%, to avoid that the join algorithm becomes arbitrarily bad in case of a

large ε. 

σ processed page pairs
BR BS⋅

-------------------------------------------------
processed point pairs

R S⋅
--------------------------------------------------≈=



121

The distance calculations in the directory are the most important overhead for the

CPU. The calculation of a Euclidean distance between two boxes (time tbox) can be

assumed to be by a factor α more expensive than a distance calculation between two

points (time tpoint) with

, typically ,

because it requires 2 additional case distinctions per dimension d (since both times tpoint

and tbox are linear in d, α does not depend on d). Therefore, the relative CPU overhead

when processing a page filled with Ceff points is

.

Limiting the CPU overhead vCPU ≤ 10% requires . A similar con-

sideration is possible for the I/O. Here, the time for reading the directory is negligible

(less than 5%). Important are, however, the seek operations which are necessary because

index pages are loaded by random accesses rather than sequentially. The overhead is the

time necessary for disk arm positioning (tseek) and for the latency delay (tlat), divided by

the “productive” time for reading the actual data from disk (ttr is the transfer time per

Byte):

with the hardware constant  (  for typical disk drives). We

assume 4 bytes for a floating point value. Limiting the I/O overhead vI/O ≤ 10% requires

 

which is even for a high data space dimension d ≥ 100 orders of magnitude larger than

the corresponding CPU limit.

Next we analyze how much selectivity is needed to brake-even with the overhead in

index-based query processing. Again, we separately treat the CPU cost and the I/O cost.

α tbox tpoint⁄= α 5≈

vCPU

tbox

Ceff tpoint⋅
------------------------

α
Ceff
---------= =

Ceff α vCPU⁄ 10α≥ ≥

vI/O

tseek tlat+

Ceff 4d t⋅ tr⋅
----------------------------

β
Ceff 4d⋅
-------------------= =

β tseek tlat+( ) ttr⁄= β 40000≈

Ceff β 4d vI/O⋅( )⁄ 100000 d⁄≥ ≥
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For the CPU cost, we know that we have to perform one distance calculation for every

pair of pages in the directory. Additionally, for those page pairs which are mates (i.e.

 pairs) all pairs of the stored points must be distance compared (

distance computations). Altogether, we get  distance computations for the

points. For join processing without index,  distance calculations must be per-

formed. To justify the index, we postulate:

and thus 

For each pair of pages which must be processed, we assume that a constant number λ

of pages must be loaded from disk. If there is no cache and a random order of processing

then λ = 2. If a cache is available λ is lower, but we assume that λ is not dependent on

the page capacity, because the ratio of cached pages is constant (e.g. 10 %). We postulate

that the cost for the page accesses using a page capacity Ceff and a selectivity σ must not

exceed the cost for the page accesses for low-overhead pages without selectivity:

≤
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Figure 53: The Minkowski Sum for Page Pairs
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We obtain the following selectivity which is required to justify an index with respect to

the I/O cost:

The actual selectivity of an index with respect to the similarity join operation can be

modeled as follows. As we assume no knowledge about the data set, we model a uniform

and independent distribution of the points in a d-dimensional unit hypercube [0..1]d.

Furthermore, we assume that the data pages have the side length  and

, respectively because  is the expected volume of a page region. 

The index selectivity can be determined by the concept of the Minkowski sum

[BBKK 97]. A pair of pages is processed whenever the minimum distance between the

two page regions does not exceed ε. To determine the probability of this event, we fix

one page at some place and we (conceptually) move the other page over the data space.

Whenever the distance is less than or equal to ε we mark the data space at the position of

the center of the second page (cf. figure 53). As we mark the complete area where the

variable page is a join mate of the fixed page, the probability of an arbitrary page to be a

mate of the fixed page, corresponds to the marked area divided by the area of all possible

positions of the page (which is the data space, [0..1]d). 

The Minkowski sum is a concept often used in robot motion planning. Understanding

two geometric objects A and B each as an infinite number of vectors (points) in the data

space (e.g. A = {a1, a2, ....}) the Minkowski sum A ⊕ B is defined as the set of the vector

sums of all combinations between vectors in A and B, i.e. 

A ⊕ B = {a1+b1, a1+b2, a2+b1, ...}.

For cost modeling we are only interested in the volume of the Minkowski sum, not in

its shape. The example in figure 2 is now constructed, step by step: On the left hand side,

simply the fixed page region with side length  is depicted. Next we show the

complete area of the data space where the distance from the page region does not exceed

ε. This corresponds to the Minkowski sum of the page region and a sphere of radius ε.

Then, we show an example of a marginally mating page. The center point of the page is

σ
Ceff

2 16d2 vI/O⋅⋅
β β 4d C⋅ eff+( )⋅
------------------------------------------≤

Ceff R⁄d

Ceff S⁄d Ceff R⁄

Ceff R⁄d
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marked, as depicted. If we move this page around the shaded contour, we obtain the

geometric object depicted on the right hand side. It corresponds to the Minkowski sum

of three objects, the two page regions and the ε-sphere. The Minkowski sum of the two

cubes is a cube with added side length. The Minkowski sum of the resulting cube and the

ε-sphere can be determined by a binomial formula which was derived first in

[BBKK 97]:

In figure 54 we compare the required and the estimated selectivities along with vary-

ing block sizes. The thin, dashed line shows σ as it is needed to justify the CPU overhead

of the index. The curve is increasing very fast. Therefore, no good (i.e. low) selectivity

is needed unless the block size is very small (<10). Quite the opposite is true for the I/O

cost (thick gray line). Until a block size of at least 10,000 points, an unrealistic good

selectivity is needed. Only for block sizes starting at 10,000, index selectivities above
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10% are allowed. Also depicted are 3 actual selectivities, estimated by our model. These

curves are typical examples to demonstrate the range of possible curves. 

The index usage is justified if the actual selectivity is below the needed selectivity.

The higher the difference between “actual” and “needed” is, the more the index will

outperform non-index joins. Over a wide range of block sizes, the actual selectivity

curve is below the curve for the CPU cost. The highest difference is obtained between 10

and 100 points. In contrast the I/O curve needs always a better selectivity than the index

has, if the distance parameter ε is high. For lower ε, the index is justified, but only for

very large pages. The difference is never high.

It would be possible to determine the optimum block size for the CPU-cost and for the

I/O cost. For this purpose we would have to choose a fixed distance parameter ε. As our

objective is to create an index which is suitable in every join situation, it would be bad to

optimize for a specific ε.

However, we can learn some important lessons from figure 54. Smaller pages are

very good for minimizing the CPU cost. But for the I/O cost, small pages of 10..100

points are disastrous. Large pages, in contrast, minimize the I/O cost but are bad for the

CPU cost. Gains at one of the sides are always paid by a higher price on the other side.

Optimizing the overall-cost can merely bring the two cost components in balance.

To escape from this dilemma, it is necessary to decouple the I/O cost from the CPU

cost by a new index architecture which will be proposed in chapter 7. This architecture

consists of large blocks which are subject to I/O. These large blocks accommodate a

secondary search structure with “subpages” which are used for reducing the computa-

tional effort.

6.2 Optimization of the I/O time

We have seen in the previous sections that limiting the overhead of I/O operations re-

quires large pages with Ceff in the area of at least some 10,000s points. Additionally, only

for such large pages, the actual selectivity is below the needed selectivity (cf. figure 54).

When the block size is small, the selectivity which is needed to compensate for the index
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overhead is much smaller than the actually achievable selectivity of the multidimension-

al index.

We may ask ourselves whether or not the page size has an influence on the perfor-

mance if the selectivity is close to 100%. For similarity queries with a bad index selec-

tivity, the sequential scan is optimal, i.e. an infinitely large page size. For joins, however,

the situation may be different and at the end of this section, we will know that a careful

page size optimization is important. 

In chapter 7 we will propose a join algorithm which loads several pages of R into the

buffer and combines them with those pages of S which have a distance less than or equal

to ε to at least one of the buffered S-pages. For such algorithms, the number of page

accesses is

,

where BS and BR are the numbers of blocks into which the point sets are decomposed, C

is the number of blocks of the buffer, b is the block size in Bytes and fR, fS, and c are the

sizes of the point sets and of the buffer in Bytes. The formula states the fact that the point

set R is scanned once (BR accesses) and the blocks of S are considered 

times. As S is scanned blockwise we face the following trade-off: If b is too large, i.e.

close to c/2, then S must be scanned more often than necessary. In contrast, if b is chosen

too small (e.g. 1 KByte), then the disk yields a latency delay after each block access.

The total cost of the join can be summarized as follows: For every block access of S,

we have the corresponding transfer time b·ttr and the latency delay tlat. Additionally, for

each of the BR / (C − 1) traversals of R we have two disk arm positioning operations

(tseek), one more latency delay, and the transfer time:

+

A BR σ
BR BS⋅
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As R is scanned only once and in larger blocks than the inner point set, we can neglect

the cost for that. Further we can omit the ceiling-operator in fR/b and fS/b, because the

point sets are much larger than the block size, and thus the relative error by this approx-

imation is negligible, too:

We are looking for the block size b which minimizes tI/O. The only obstacle in optimiza-

tion by setting the derivative to 0 is the floor-rounding in c/b which cannot be neglected

because c>>b is not guaranteed (we are basically out to determine whether the buffer

should be assigned to R and S more balanced or more unbalanced). We solve this prob-

lem by first optimizing a hull function thull with thull = tI/O if b divides c and thull < tI/O
otherwise:

Figure 55 depicts the actual cost function tI/O and the hull function thull for a file size of

10 MByte and a buffer of 500 KByte. It is easy to see that the optimum of tI/O cannot be

at some position where tI/O is continuous, because the remaining term

tI/O σ
fR fS⋅

b2 c b⁄ 1–( )⋅
---------------------------------------- tlat b ttr⋅+( )⋅ ⋅≈

thull σ
fR fS⋅

b c b–( )⋅
------------------------ tlat b ttr⋅+( )⋅ ⋅=

140
130
120
110
100
90
80

50K 100K 150K 200K

I/
O

 ti
m

e 
[s

ec
]

b

tI/O

thull

Figure 55: Optimizing the Join for I/O



128 A Cost Model for Index Based Similarity Join Algorithms

(when the floor-expression is some constant γ) is strictly monotonically decreasing. This

can be shown by the derivative. So, the minimum of tI/O must be at a position where b

divides c without rest. As thull meets tI/O at all such positions, we know that the optimum

of tI/O can only be at the first meeting point (tI/O = thull) immediately left or right from

the minimum of thull. The minimum of thull can be determined by setting the derivative

to zero which yields two results. Only one is positive and it is a minimum, which can be

shown according to the second derivative. The positive solution of 

is (because  for large pages):

The two possible positions of the actual optimum of tI/O are

.

These two values must be substituted in the cost function to determine the actual mini-

mum.

As the minimum of thull is very stable (cf. figure 55), it is also possible to use e.g. b1

without considering b2.
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Figure 56 depicts b1 with a buffer size varying from 0 to 10 MByte for a disk drive

with a transfer rate of 4 MByte/s and a latency delay of 5 ms. The optimum for a

10 MByte buffer, for instance, is 455903 Bytes (i.e., 23 buffer pages).

6.3 Optimization of the CPU time

The CPU cost are composed of two components: cost of directory processing (i.e. dis-

tance computations among page regions) and cost of data level processing (i.e. point

distance calculations). In our simplified index structure, the distance between every pair

of pages must be calculated, i.e.  calculations. The number of point dis-

tance calculations depends on the index selectivity and is . The total CPU cost

is:

As we have , we can rewrite this and insert our estimate of the selectivi-

ty:

We do not want to optimize the index for a specific distance parameter ε, because we

must create an index which is good for every similarity join. Therefore, we consider the

two extreme situations of very low and very high distance parameters. For small ε, we

can rewrite our CPU cost formula to
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which is optimized by

.

If ε is very large, then the index cannot yield any selectivity. In this case, it is merely

necessary to limit the overhead as in the beginning of section 6.1. For a 10% limit at least

10α points must be stored in a data page. Therefore, we have the following value for the

effective capacity:

6.4 Conclusions

In this chapter, we have proposed a cost model for the index selectivity of the similarity

join. We have given cost formulas for both CPU and I/O cost and have shown how our

cost model can be used to optimize the page capacity for maximum CPU and I/O perfor-
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mance, respectively. Our analysis, however, revealed a serious optimization conflict

between these two cost factors. While large pages are needed to optimize the I/O perfor-

mance, large pages ruin the CPU performance and vice versa for small pages. In our next

chapter, we propose a solution to this conflict, a new index structure which allows a

separate optimization for CPU and I/O.
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Chapter 7
MuX: An Index Architecture for 
the Similarity Join

This chapter is dedicated to the solution of the optimization conflict detected in the

analysis of chapter 6. Our objective is to develop a index architecture which allows a

separate optimization for CPU and I/O performance. Therefore, we basically need two

separate page capacities, one for CPU and one for I/O. This goal is achieved by the

multipage index (MuX). This index structure consists of large data and directory pages

which are subject to I/O operations. Rather than directly storing points and directory

records an these large pages, these pages accommodate a secondary search structure

which is used to speed up the CPU operations. To facilitate an effective and efficient

optimization, this secondary search structure has again an R-tree like structure with a

directory and data pages. Thus, the page capacity of the secondary search structure can

be optimized by the cost functions developed in chapter 6, however, for the CPU trade-

off. We show that the CPU performance of MuX is similar (equal up to some small

dilatational management overhead) to the CPU performance of a traditional index which

is purely CPU optimized. Likewise, we show that the I/O performance resembles that of

an I/O optimized traditional index. Our experimental evaluation confirms this and dem-

onstrates the clear superiority over the traditional approaches.
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7.1 The Multipage Index (MuX)

It has been shown in the previous chapter that it is necessary to decouple the I/O and

CPU optimization to achieve a satisfactory performance in multidimensional join pro-

cessing. It was shown how to optimize join processing with respect to I/O and CPU

performance. We now introduce an index architecture and the corresponding algorithms

which enable the separate optimization. In essence, our index consists of large I/O pages

that are supported by an additional search structure to speed up the main-memory oper-

ations. A few index structures with supporting search structures have already been pre-

viously proposed. For instance, Lomet and Salzberg propose the hB tree [LS 90] which

uses a kd-tree like structure to organize directory pages. Their objective is improve the

insert operations in order to achieve an overlap-free space decomposition in their index,

not a separate optimization of CPU and I/O operations. Also, some quad tree based

structures can be used in such a way. Kornacker [Kor 99] provides an interface for GIST

that allows the application of supporting search structures in index pages. Our solution

uses a simple R-tree like secondary search structure. In the current chapter, we have not

evaluated which kind of search tree serves the best purpose. Our motivation for using

minimum bounding rectangles for both, the primary and the secondary search structure,

is to be able to apply the same cost model for both optimizations. Using different con-

cepts for the primary and secondary search structure is viable, but requires different cost

models and makes the analysis thus more complex. It remains as an issue for future work

to evaluate different secondary search structures with respect to high-dimensional in-

dexing and similarity join processing.

7.2 Index architecture

The Multipage Index (MuX) is a height-balanced tree with directory pages and data

pages (cf. figure 57). Both kinds of pages are assigned to a rectilinear region of the data

space and to a block on secondary storage. The block size is optimized for I/O according

to the model proposed in chapter 6. The I/O optimized pages are called the hosting pag-

es. As in usual R-trees, both kinds of pages store a number of entries (directory entries
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and data points). In contrast to usual R-trees, where the entries of pages are stored in

random order in a simple array, MuX uses a secondary search structure to organize the

entries. The complete search structure is accommodated in the hosting pages. Therefore,

search operations in the secondary search structure do not raise any further I/O opera-

tions once the hosting page has been loaded. 

For the secondary search structure, we use a degenerated R-tree consisting of a flat

directory (called page directory) and a constant number of leaves (called accommodated

buckets). If the hosting page is a data page, the accommodated buckets are data buckets

and contain feature vectors. If the hosting page is a directory page, the accommodated

buckets are directory buckets which store pairs of a MBR and a pointer to another host-

ing page. The page directory is flat and consists of an array of MBRs and pointers to the

corresponding accommodated buckets. Generally, it would be straightforward to use a

hierarchical page directory. The actual number of buckets accommodated on a hosting

page, however, is not high enough to justify a deep hierarchy. In our current implemen-

tation, the primary directory of MuX also consists of a single level (flat hierarchy),

because hierarchical directories often do not pay off in high-dimensional query process-

ing, as it was pointed out e.g. in [BBJ+ 00].

hosting
directory page
accommodated
directory buckets

page directory hosting
data page
accommodated

Figure 57: Index architecture of the multipage index
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7.3 Construction and maintenance

For a fast index construction, the bottom-up algorithm for X-tree construction [BBK 98]

was adopted. The various R-tree algorithms for insertions and deletions can also be

adapted to the MuX architecture. Due to space limitations we cannot go into further

details at this point.

7.4 Similarity queries

Similarity range queries can be efficiently processed by a depth-first traversal of the

multipage index. For nearest neighbor queries, k-nearest neighbor queries and ranking

queries, we propose to adapt the HS algorithm [HS 95] which uses a priority queue for

page scheduling. In our implementation, only the hosting pages are scheduled by the

priority queue. Once a hosting page is accessed, the corresponding accommodated buck-

ets are processed in order of decreasing priority. Accommodated buckets can additional-

ly be pruned whenever their query distance exceeds the current pruning distance.

7.5 Join processing

We use the following strategy for join processing: One block of the buffer memory with

the size of one hosting page is reserved for S (the S-buffer). The rest of the buffer (R-

buffer) is used for caching one or more hosting pages of R. In the outermost loop of the

algorithm presented in figure 58, the R-buffer is filled with a chunk of pages of R. In line

(*), each hosting page of S which is a join mate of (at least) one of the accommodated

buckets in the R-buffer is accessed. Then each pair of accommodated buckets having a

distance of at least ε is processed, i.e. the point pairs fulfilling the join criterion are

determined.
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In line (*) our algorithm considers the accommodated buckets of the chunk in the R-

buffer to exclude hosting pages of S from consideration. Note that our algorithm could

also use the hosting pages of R instead of the accommodated buckets. The buckets,

however, exclude more S-pages from processing (i.e. the index selectivity is improved).

It would also be desirable to use the accommodated buckets of S for this exclusion test,

but the corresponding MBRs of these buckets are not known until the hosting page is

loaded.

In the following two claims, we will point out why our MuX structure achieves a

separate optimization of CPU and I/O performance and why this leads to a superior

performance compared to the conventional R-tree join. For these claims we assume that

the capacity of an accommodated bucket is at least 20 data points and that a hosting page

stores at least 10 accommodated buckets.

algorithm MuX_join

for i := 1 to BR step C − 1 do

load hosting pages BR(i) .. BR(i + C − 1) ;

for j := 1 to BS do

(*) if BS(j) has some join mate in an accomm.

bucket of BR(i) .. BR(i+C−1) then

load hosting page BS(j) ;

for each accomm. bucket of

BR(i) .. BR(i + C − 1) do

for each accomm. bucket of BS(j)

if distance (buckets) ≤ ε then

process pair of buckets;

Figure 58: Join Processing for the Multipage Index
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Claim 1: The I/O cost of an R-tree and MuX are very similar if the page capacity of

the R-tree corresponds to the capacity of a hosting page of MuX.

Claim 2: With respect to CPU cost, the MuX join performs similarly to an R-tree if

the page capacity of the R-tree is chosen like the accommodated buckets of MuX.

Rationale for claim 1: Provided that the R-tree and the MuX structure apply the same

insertion and splitting rules and provided that the page capacities are equal, both tech-

niques lead to identical paginations. Therefore, the same page pairs have to be consid-

ered which leads to the same number of page accesses. The main difference is that MuX

pages have to store additionally the page directory which increases the cost of a page

access. The page directory stores pairs of lower bounds and upper bounds for each ac-

commodated bucket. For each bucket we have to store as much information as for two

data points. As the capacity of a bucket is at least 20 data points, the storage size of a

MuX hosting page is at most 10% larger than the storage size of the R-tree. Therefore,

the I/O cost of MuX is at most 10% higher than that of the R-tree.

Rationale for claim 2: Provided that the page capacity of the R-tree corresponds to the

page capacity of the accommodated buckets, and provided that the same insertion and

split strategy has been applied, the two structures exactly compare the same point pairs.

The number of point distance computations is identical. The MuX structure determines

at most as many distances between accommodated buckets as the R-tree determines

distances between R-tree pages (in practice even much fewer because not all pairs of

accommodated buckets have to be considered; only those located in mating hosting

pages). The additional CPU cost in the MuX structure are the distance computations

between the hosting pages. Because each hosting page stores more than 10 accommodat-

ed buckets there can be only one successful distance calculation per 102=100 distance

calculations between accommodated buckets. MuX can in the worst case be 1% worse

than the corresponding R-tree.

We optimize the capacity of the hosting pages of MuX such that they are I/O optimal.

The capacity of the accommodated buckets is optimized such that they are CPU-optimal.

Taken claim 1 and claim 2 together, we obtain a CPU performance which resembles a
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CPU-optimized R-tree and an I/O performance that resembles an I/O optimal R-tree (for

both cases plus the overhead mentioned in the rationales of the claims).

Compared to conventional index join algorithms which traverse the indexes depth-

first [BKS 93] or breadth-first [HJR 97], our new algorithm improves the performance

with respect to CPU and I/O. The I/O effort is reduced by two ideas: The first idea is to

use more cache for the point set R which is scanned in the outermost loop. The advantage

is that in the case of a bad index selectivity the number of scans of the other point set S

is minimized. Therefore, the I/O cost cannot become substantially worse than the I/O

cost of a nested loop join. In the case of a good index selectivity, in the inner loop only

those S-pages are loaded which are actually needed. Therefore, the performance cannot

become substantially worse than a breadth-first or depth-first index traversal. For these

extreme cases, we have always the performance of the best of the two worlds: nested

loops or tree traversal. In the cases between these extremes, we combine the advantages

of both paradigms and outperform them both clearly. The second idea leading to reduced

I/O cost is that we use the page regions of the accommodated R-buckets to exclude

hosting S-pages. While only I/O optimized pages are subject to I/O operations, the more

selective bucket regions are used for excluding, leading to a clear advantage in the index

selectivity. The CPU effort is minimized due to the optimization of the bucket size for

minimum computational cost. Additionally, many distance computations between buck-

et regions are avoided, because buckets can only mate if their hosting pages mate, too.

7.6 Experimental evaluation

To show the superiority of our proposal over competitive techniques, we have performed

an extensive experimental evaluation. For this purpose, we implemented our multipage

index join algorithm. For comparison, we also implemented a similarity join algorithm

using nested loops and a similarity join algorithm based on the R-tree spatial join (RSJ)

algorithm [BKS 93] with three different scheduling and caching schemes.

The cache for the nested loop-join was assigned according to our optimization pre-

sented in chapter 6. All RSJ variants used a caching strategy discarding the page which
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will not be used for the longest time in the future. Note that, in contrast to usual paging

algorithms applied in general-purpose operating systems, the join algorithm allows to

exploit the knowledge of the page schedule in the future. The basic RSJ algorithm ac-

cesses the data pages of the index in a random order. The cache hit rate can be improved
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Figure 59: 4D Uniform Data Varying Database Size
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by accessing the pages of the index in an order preserving the spatial proximity. In

[HJR 97], 4 different kinds of page ordering were proposed, including the Hilbert curve,

and an improvement of the cache hit ratio of up to 50% was reported. We implemented

a page scheduling strategy based on Z-ordering and a greedy optimization strategy

which starts with an arbitrary page and accesses in each step the unprocessed page with

the smallest distance to the last previously accessed pages. We will refer to the three

variants as “R-tree Similarity Join (RSJ)”, “RSJ with Z-ordering optimization”, and “RSJ

with greedy optimization.” All algorithms were allowed to use the same amount of buffer

memory (5% of the database size).

All our experiments were carried out on HP 9000/780 workstations under HPUX-

10.20. We used a disk device with a transfer rate of 4 MByte/sec, a seek time of 5 msec,

and latency time of 5 msec. Our algorithms do not exploit parallelism between CPU and

I/O, which would be possible in all approaches. Therefore, our reported total query time

corresponds to the sum of the CPU time and the I/O time. The index construction was

not taken into account.

For our experiments, we used synthetic as well as real data. Our synthetic data sets

consist of up to 800,000 uniformly distributed points in the unit hypercube with the
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Figure 61: 8D Uniform Data
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dimensions 4 and 8. Our real-world data stem from three application domains: A CAD

database with 16-dimensional feature vectors extracted from geometrical parts, a color

image database with 64-dimensional feature vectors representing color histograms, and

a meteorology database with 9-dimensional feature vectors generated by weather obser-

Figure 62: 9D Real Data from a Meteorology Application
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Figure 63: 8D Uniform Data Varying Database Size
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vation. In the similarity join, we used the Euclidean distance. Appropriate distance pa-

rameters ε for each data set were determined such that they are useful in clustering

[EKSX 96] and that each point of the data set is combined with a few other points on the

average. That means in particular that we avoided in our experiments the extreme cases

of no resulting pair (or in the case of self joins: each point is only a join mate of itself),

or each point is combined with every other point.

Figure 59 shows our experiments on uniformly distributed point data. In the left dia-

gram, the data space is 4-dimensional and an appropriate ε = 0.05 (i.e. in the result, each

point has an average of 8.5 join mates). The nested loop join has the worst performance

over all scales. With increasing database size, this technique is outperformed by all other

techniques by increasing factors. For low-dimensional data spaces, the scheduling strat-

egy in the R-tree similarity join plays a relatively important role. Therefore, the more

sophisticated strategies which order the page accesses by Z-ordering or a greedy strategy

improve the performance of the R-tree similarity join by factors up to 4.2. The clear

winner over all database sizes is our new technique, the MuX-join. It outperforms the

nested loop join up to 400 times and is up to 10 times faster than the R-tree similarity

join. Even the improved R-tree join versions are outperformed with factors between 2.3

and 4.6. The diagram in the middle shows our experiments with an 8-dimensional data

space (ε = 0.3; each point has an average of 22.3 join mates). In this dimension, the

various R-tree join variants do not differ much. As the index selectivity begins to deteri-

orate in medium-dimensional data spaces, the nested loop join is much more competitive

and is only for the largest database (800,000 points) outperformed by the three R-tree

join variants. Our new technique, in contrast, outperforms the other techniques by a

factor of 6.3 (over R-trees) and 8.1 (over nested loop) for the largest database size. For

100,000 points, the corresponding factors are 7.4 (over R-trees) and 3.1 (over nested

loop). The diagram on the right side depicts the performance of the join algorithms with

varying distance parameter ε (d = 8; n = 50,000). It is obvious that for very large ε the

nested loop join must be the winner, because the join result combines each point with

every other point, and the nested loop join has no additional index overhead. Therefore,

the R-tree variants are clearly outperformed. As our new technique strictly limits the

index overhead by an appropriate optimization of I/O as well as CPU, it is never clearly
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outperformed. Instead, the performance slowly approaches the performance of the nest-

ed loop join with increasing ε.

Our experiments on real application data depicted in figure 64 clearly confirm our

experiments on uniform data. Partially, the improvement factors are even higher. The

left diagram depicts the results on the 9-dimensional meteorology feature vectors

(ε = 0.0001; 3.9 join mates per point). For the largest database size, our technique was

590 times faster than the nested loop join, 5.9 times faster than the R-tree similarity join,

and 3.5 times faster than RSJ with the improved scheduling strategies. For the 16-dimen-

sional CAD feature vectors (diagram in the middle; ε = 0.01; 7.5 join mates per point)

our technique is up to 87 times faster than the nested loop join and between 6 and 7 times

faster than the 3 R-tree similarity join variants. The right diagram shows the results on

our color image database (ε = 0.0001; 1.1 join mates per point). For the largest database,

our technique yields an improvement factor of 1203 over the nested loop join of 25 over

all R-tree similarity join algorithms. 
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Figure 64: 64D Real Data (Color Histograms) form a Multimedia Application
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7.7 Conclusions

In the context of chapter 6, a severe optimization conflict between CPU and I/O optimi-

zation has been discovered. To solve this conflict, we have proposed an index architec-

ture which allows a separate optimization of the CPU time and the I/O time in this

chapter. Our architecture utilizes large primary pages which are subject to I/O process-

ing and optimized for this purpose. The primary pages accommodate a secondary search

structure to reduce the computational effort. Our experimental evaluation has shown

consistently good performance. Competitive approaches are outperformed by large fac-

tors. An open question for future work is the suitability of our secondary search struc-

ture. For simplicity, and in order to uniformly apply the same cost model for CPU and I/

O optimization, we used minimum bounding rectangles for both, the primary and the

secondary search structure. More sophisticated techniques, however, should have the

potential to even improve our high speedup factors.
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Chapter 8
Epsilon Grid Order: Joining 
Massive High Dimensional Data

In this chapter, we develop a method for massive data sets of at least 1 GByte operating

on a virtual grid partition of the data space. This method is based on the observation that

for the distance range join with a given distance parameter ε, a grid partition with a grid

distance of ε is an effective means to reduce the search space for join partners of a point

p. Due to the curse of dimensionality, however, the number of grid cells in which poten-

tially joining points are contained explodes with the data space dimension and results in

an order of O(3d) cells. To avoid considering each of the grid cells one by one, we

introduce the grid partition only in a virtual way as the basis of a particular sort order, the

ε grid order, which orders points according to grid cell containment. The ε grid order is

used as ordering criterion in an external memory sort operator. Later, the ε grid order

supports effective and efficient algorithms for CPU and I/O processing, particularly for

large data sets which cannot be joined in main memory.
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8.1 The Epsilon Grid Order

In this section, we propose our algorithm for the similarity join on massive high-dimen-

sional data sets. Our algorithm is based on a particular order of the data set, the epsilon

grid order, which is defined in the first part of this section. We will show that the epsilon

grid order is a strict order (i.e. an order which is irreflexive, asymmetric and transitive).

Then, we will prove a property of the epsilon grid order which is very important for join

processing: We show that all join mates of some point p lie within an interval of the file.

The lower and upper limit of the interval is determined by subtracting and adding the

vector [ε,ε,...,ε]T to p, respectively. Therefore, we call the interval the ε-interval.

Our join algorithm exploits this knowledge of the ε-interval. Assuming a limited

cache size, we have to distinguish two cases: The ε-interval of a point fits into the main

memory or not. If the ε-interval of each database point fits into main memory, then a

single scan of the database is sufficient for join processing. We call this kind of database

traversal the gallop mode. If the ε-intervals of some points do not fit into the main mem-

ory, we have to scan the corresponding part of the database more than once. The database

is traversed in the so-called crabstep mode. These two modes will be explained in

section 8.1.2. Finally, we will show in section 8.1.3 how sequences of epsilon-grid or-

dered points can be joined efficiently with respect to CPU operations. Epsilon grid or-

dering yields the particular advantage that no directory structure needs to be constructed

for this purpose. In contrast to index structures that manage main memory data structures

such as MuX or ε-kdB-trees the full buffer size can be used to store point information;

nearly no buffer capacity is wasted for management overhead.

8.1.1  Basic Properties of the Epsilon Grid Order

First we give a formal definition of the Epsilon Grid Order (· <ego ·). For this order, a

regular grid1 is laid over the data space, anchored in the origin, and with a grid distance

of ε. We define a lexicographical order on the grid cells, i.e. the first dimension d0 has

1. Note that our grid is never materialized. It is neither necessary to determine nor to store
grid cells of the data space. We use the grid cells merely as a concept to order the points,
not as a physical storage container.
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the highest weight; for two grid cells having the same coordinates in d0, the next dimen-

sion d1 is considered, and so on. This grid cell order is induced to the points stored in the

database: For a pair of two points p and q located in different grid cells, we let p <ego q be

true if the grid cell surrounding p is lexicographically lower than the grid cell surround-

ing q. Since we want to avoid explicit numbering of grid cells (which would be slightly

clumsy unless we assume a previously limited data space), the following definition de-

termines the order for the points directly, without explicitly introducing the grid cells:

Definition 12 Epsilon Grid Order (· <ego ·). 

For two vectors p, q the predicate p <ego q is true if (and only if) there exists a dimen-

sion di such that the following conditions hold:

(1)  

(2) 

Our first lemma proves that the epsilon grid order is, indeed, an order. We have not

defined the epsilon grid order as a reflexive order due to points which are located in the

same grid cell. Such points are not able to fulfill the antisymmetry property which is

usually required for an order. Therefore, we have defined the epsilon grid order as an

irreflexive or strict order which is required to be irreflexive, asymmetric, and transitive.

There are almost no consequences from a practical point of view. For instance, the usual

sorting algorithms can cope with an irreflexive order without modification. In the fol-

lowing lemma, we prove the three required properties, one of which (transitivity) is also

exploited in lemma 4 and 5.

Lemma 3. The Epsilon Grid Order is an irreflexive order.

Proof: 

Irreflexifity (¬ p <ego p): 

p <ego p cannot hold, because there is no dimension di for which ;

pi

ε
----

qi

ε
----<

pj

ε
----

qj

ε
----= j i<∀

pi ε⁄ pi ε⁄<
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Asymmetry ( p <ego q ⇒  ¬ q <ego p): 

Since p <ego q holds there exists a dimension di with  and

 for all j < i. Therefore, we know that  holds but

neither  nor  can be true, and, therefore, q <ego p is

false.

Transitivity ( p <ego q ∧  q <ego r ⇒  p <ego r):

Since p <ego q holds there exists a dimension di with  and

 for all j < i. Since q <ego r holds there exists a dimension di’ with

 and  for all j < i’. Without loss of generality we

assume i < i’ (the other cases are similar). We know that 

for all j < i and that , and, therefore, p <ego r. 

In the next two lemmata, we show that our join algorithm needs not to consider any

point as a join mate of some point p which is less (according to the epsilon grid order)

than the point p − [ε,ε,...,ε]T or greater than the point p + [ε,ε,...,ε]T. We note without a

formal proof that these bounds are in general much tighter than the bounds of the ε-kdB-

tree join algorithm: While the ε-kdB-tree needs two contiguous stripes of grid cells

simultaneously in the main memory, our algorithm needs only one stripe plus one addi-

tional grid cell for a similarity self join.

Lemma 4. A point q with q <ego p − [ε,ε,...,ε]T cannot be a join mate of p or of any point

p’ which is not p’ <ego p.

Proof: 

Following definition 12, there exists a dimension di such that 

The monotonicity1 of the floor function insures that . Because both ε and

 are positive we can rewrite this as . This specific square (pi −

pi ε⁄ qi ε⁄<
pj ε⁄ qj ε⁄= qj ε⁄ pj ε⁄=

qi ε⁄ pi ε⁄< qi ε⁄ pi ε⁄=

pi ε⁄ qi ε⁄<
pj ε⁄ qj ε⁄=

qi′ ε⁄ ri′ ε⁄< qj ε⁄ rj ε⁄=

pj ε⁄ qj ε⁄ rj ε⁄= =

pi ε⁄ qi ε⁄< ri ε⁄=

qi

ε
----

pi ε–

ε
-------------<

qi pi ε–<

pi qi–( ) pi qi–( )2 ε2>
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qi)
2 for some i cannot be smaller than the sum of all squares, which corresponds to the

distance between p and q:

Due to the transitivity of (· <ego ·), there exists also a dimension di´ such that .

Therefore, also  is valid. 

Lemma 5. A point q with p + [ε,ε,...,ε]T <ego q  cannot be a join mate of p or of any point

p’ which is not p <ego p’.

Proof. Analogous to lemma 4.

8.1.2  I/O Scheduling Using the ε Grid Order

In the previous section we have shown that our join algorithm must consider all points

between p − [ε,ε,...,ε]T and p + [ε,ε,...,ε]T to find the join mates of p. In this section we

1.  can only be valid if also .a b< a b<

ε2 pi qi–( )2 pj qj–( )2

0 j d<≤
∑≤< p q– 2=

qi′ p ′i′ ε–<
p ′ q– 2 ε2>
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construct an algorithm which schedules the disk I/O operations for a similarity self join

on a file of points which is sorted according to the epsilon grid order.

In our algorithm, we want to allow for unbuffered I/O operations on raw devices.

Therefore, we assume that the block size for the I/O units is a multiple of some hardware

given system constant. Generally, an I/O unit does not contain a whole number of data

point records. Instead, an I/O unit is allowed to store fragments of point records at the

beginning and at the end. Our join algorithm solves the corresponding problems by

storing the fragments in separate variables. The number of points contained in an I/O

unit is to some extent system given. Due to fragmentation, the number of point records

per I/O unit may vary by ±1. In general, the points in an I/O unit are not perfectly aligned

to rows and columns of the grid, as in the 2-dimensional example depicted in figure 65.

Figure 66 shows which pairs of I/O units must be considered for join processing.

Each entry in the matrix stands for one pair of I/O units (taken from the example in

figure 65), for instance, the upper left corner for the pair (1,1), i.e. the self join of “I/O-

Unit 1”. For the self join operation, our algorithm needs not to consider the lower left

triangular matrix due to the symmetry of the pairs. The pair (x,y) is equivalent to the pair

1 2 3 4 5 7 86

Unit y

1
2
3
4
5
6
7
8

Unit x

: Disk Access

out of
ε-interval

Figure 66: I/O Units in the Schedule

excluded due to self-join
out
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(y,x), and, therefore, the lower left half is canceled in the figure. A large, but less regular

part in the upper right corner is also cancelled. The corresponding pairs, for instance

(1,4), are excluded from processing, because the complete I/O-Unit 1 is out of the ε-

interval of I/O-Unit 4 (and vice versa, due to the symmetry of · <ego ·). 

In figure 66, a small area of pairs of I/O-Units remains (starting at the diagonal) which

must be scheduled efficiently. We indicate one of the most obvious scheduling methods,

column-by-column, by arrows in our running example. We start with the pair (1,1),

proceed to (1,2), then (2,2), (1,3), and so on. Additionally, we mark the disk accesses

caused by the schedule assuming main memory buffers for up to 3 I/O-Units which are

replaced using a LRU strategy.

Our column-by-column scheduling method, which we call the gallop mode, is very

efficient (even optimal, because each I/O unit is accessed only once) until the 6th column

is reached. Since 4 I/O-Units which are required for processing the 6th column do not fit

into main memory our scheduling turns from best case to worst case: For each scheduled

pair an I/O-Unit must be loaded into main memory.

We avoid this I/O thrashing effect by switching into a different mode of scheduling,

the crabstep mode. Since the ε-interval does not fit into main memory, obviously, we

have to read some I/O units more than once. For those relational joins which have to

form all possible pairs of I/O units or at least many of them (e.g. SELECT * FROM A,B

WHERE A.a≠B.b) it is well known that the strategy of outer loop buffering is optimal.

We adopt this strategy for the epsilon grid order where we do not have to form all possi-

ble pairs of I/O units, but only those in a common ε-interval. Our algorithm reserves in

this mode only the main memory buffer for one I/O unit for the inner loop. Most of the

buffer space is reserved for the outer loop, and the next I/O units from the outer loop are

pinned in the buffer. The inner loop iterates over all I/O units which are in the ε-interval

of any of the pinned pages. In figure 67, the two scheduling modes are visualized, as-

suming buffer space for up to 4 I/O units. Figure 67a shows the gallop mode where

enough buffer space is available. Here, 6 disk accesses are enough to form 24 page pairs.

Figure 67b shows the case where the gallop mode leads to I/O thrashing (36 disk access-

es for 36 page pairs). In contrast, the crabstep mode depicted in figure 67c requires 16
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disk accesses for 36 page pairs. The corresponding scheduling algorithm is shown in

figure 68. Note that for a clear presentation the algorithm is simplified.

In the main loop of the algorithm, first the buffers are determined which can be dis-

carded according to the ε-interval (code between marks 1 and 2). If free buffers are

available after this cleanup phase, we load the next I/O unit according to the strategy of

the gallop mode and join the new unit immediately with the I/O units in the buffers

(between marks 2 and 3). If no buffer is free, we have to switch into the crabstep mode.

In its first phase (between 3 and 4) we discard all buffers up to one and fill them with new

I/O units (which are immediately joined among each other). These new units are pinned

in the cache. In the second phase (from mark 4 to the end), we iterate over the discarded

I/O units, reload them, and join them with the pinned units.

8.1.3  Joining Two I/O-Units

It is not optimal to process a pair of I/O units by direct comparisons between the points

stored in the I/O units. Instead, our algorithm partitions the point set stored in each I/O

unit into smaller subsets. In contrast to other partitioning approaches without precon-

structed index, where partitioning requires multiple sorting of the subset according to

(c) crabstep(a) gallop mode (b) I/O thrashing

Figure 67: Scheduling Modes
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algorithm ScheduleIOunits ()

Load (0) ; JoinBuffer (0,0) ;

i := 1 ;

while i < NumberIOunits do
1 foreach b ∈  Buffers \ LastBuffer do

if b.LastPoint+[ε,ε,...,ε] <ego LastBuffer.LastPoint 

then MakeBufferEmpty (b) ;

if EmptyBufferAvailable then
2 (* Gallop Mode *)

Load (i) ; i := i + 1 ;

foreach b ∈  Buffers do

JoinBuffer (b, LastBuffer) ;

else
3 (* Crabstep Mode *)

n := FirstBuffer.IOunitNumber ;

m := i ;

foreach b ∈  Buffers \ LastBuffer do

MakeBufferEmpty (b) ;

LoadAndPin (i) ; i := i + 1 ;

foreach c ∈  PinnedBuffers do

JoinBuffer (b,c) ;
4 for j := n to m − 1 do

Load (j) ;

foreach b ∈  PinnedBuffers do

JoinBuffer (b, LastBuffer) ;

UnpinAllBuffers () ;

end ;

Figure 68: Scheduling Algorithm
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different dimensions or the explicit construction of a space-consuming main-memory

search structure, our approach exploits the epsilon grid order of the subsets stored on the

I/O units. Therefore, both sorting of the data set during the join phase as well as the

explicit construction of a search structure can be avoided. Our algorithm for joining two

I/O units (two sequences of epsilon-grid-ordered points) follows the divide and conquer

paradigm, i.e. the algorithm divides one of the sequences into two subsequences of ap-

proximately the same number of points and performs a recursive self-call for each of the

subsequences unless a minimum sequence capacity is reached or the pair of sequences

does not join (distance exceeds ε). For the purpose of excluding pairs of such sequences,

we introduce a concept called inactive dimensions of a sequence. The intuitive idea is as

follows: In general, a sequence of epsilon-grid-ordered points subsumes several differ-

ent grid cells. If the sequence is short, however, it is likely that all these grid cells have

the same position in the dimension d0 of highest weight. If so, with decreasing probabil-

ity it is also likely that the cells also share the same position at the second and following

dimensions. The leading dimensions which are common, are called the inactive dimen-

sions. The name inactive dimensions is borrowed from the indexing domain [LJF 95]

where an inactive dimension also denotes a value which is common to all items stored in

a subtree.

Definition 13 (active, inactive and unspecified dimension): For a sequence 〈p1,p2,...,pk〉
of k points which are epsilon-grid-ordered (i.e. p1 <ego p2 <ego ... <ego pk) a dimension di

is active if and only if the following two conditions hold:

(1)  

(2) 

If an active dimension exists, all dimensions dj with j < i are called inactive dimensions.

If no active dimension exists, all dimensions are called inactive. Dimensions which are

neither active nor inactive (i.e. dl with i < l < d) are unspecified.

The intuitive meaning of definition 13 is: The active dimension of a sequence is the

first dimension where the points are extended over more than one grid cell length (if any

exists). Due to the properties of the order relation, this can be decided according to the

p1 i,
ε

--------
pk i,
ε

--------<

p1 j,
ε

--------
pk j,
ε

--------= j i<∀
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first point p1 and the last point pk of the sequence. Dimension di is the first dimension

where p1 and pk are different after dividing and rounding.

Figure 69 shows for a 3-dimensional data space an example sequence (shaded area)

where d1 is the active dimension. The particular property of the inactive dimensions is

that they can be used very effectively to determine whether two sequences

P = 〈p1,p2,...,pk〉  and Q = 〈q1,q2,...,qm〉  of epsilon-grid-ordered points have to be joined.

They need not be joined if for at least one of the common inactive dimensions the dis-

tance between the cells exceeds ε. Formally: If ∃ dj such that dj is inactive in P and dj is

inactive in Q and

.

Active and unspecified dimensions are not used for excluding a sequence from being

join mate. Figure 70 shows our recursive algorithm for the join of two sequences. It has

two terminating cases: (1) the rule discussed above applies and (2) both sequences are

short enough. The cases where only one sequence has more than minlen points are

straightforward and left out in figure 70.
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Figure 69: The active dimension of a sequence
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8.2 Optimization Potential

In this section, we illustrate some of the optimization potential which is inherent to our

new technique. Due to the space restrictions, we can only demonstrate two optimization

concepts that integrate particularly nicely into our new technique. Further optimization

techniques which are subject to future research are modifications of the sort order of the

relation · <ego · and optimization strategies in the recursion scheme of the algorithm

join_sequences().

8.2.1  Separate Optimization of I/O and CPU

It has been pointed out in [BK 01] that, for index-based processing of similarity joins, it

is necessary to decouple the blocksize optimization for I/O and CPU. Therefore, a com-

plex index structure has been proposed which utilizes large primary pages for I/O pro-

cessing. These primary pages accommodate a number of secondary pages the capacity

of which is much smaller and optimized for maximum CPU performance.

For our technique, the Epsilon Grid Order, a separate optimization of the size of the

sequences is equally beneficial as in index based join processing. As the algorithm is

based on sequences of points, ordered by a particular relation, we need no complex

structure for the separate optimization. Our algorithm simply uses larger sequences for

I/O processing. The length of these sequences can be optimized such that disk contention

is minimized. Later, the algorithm join_sequences decomposes these large I/O units re-

cursively into smaller subsequences. The size of these can be optimized for minimal

CPU processing time.

In contrast to approaches that use a directory structure such as the ε-kdB-tree

[SSA 97] or the Multipage Index [BK 01] the EGO-join yields almost no space over-

head for this separate optimization. For CPU, the optimal size of processing units is

typically below 10 points. Therefore, the Multipage Index combines these points to an

accommodated bucket the MBR of which must be stored in the hosting page. The corre-

sponding storage overhead increases when the capacity of the accommodated buckets is
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decreased for optimization. Therefore, the optimization potential for this structure is a

priori limited. The ε-kdB-tree also suffers from the problem of explicitly holding a hier-

archical search structure in main memory.

For Epsilon Grid Ordering, no directory is explicitly constructed. Instead, the point

sequences (stored as arrays) are recursively decomposed. Therefore, the only space

overhead of our technique is the recursion stack which is O (log n). Our technique can

optimize the final size of the sequences (parameter minlen in figure 70) without consid-

ering any limiting overhead.

algorithm join_sequences (Sequence s, Sequence t)

sa := s.activeDimension() ;

ta := t.activeDimension() ;
1 for i:=0 to min {sa,ta,d−1} do

if  s.firstPoint[i]/ε −  t.firstPoint[i]/ε > 2 then

return ;
2 if s.length ≤ minlen AND t.length ≤ minlen then

simple_join (s,t) ; return ;

if s.length ≥ minlen AND t.length ≥ minlen then

join_sequences (s.firstHalf, t.firstHalf) ;

join_sequences (s.firstHalf, t.secondHalf) ;

join_sequences (s.secondHalf, t.firstHalf) ;

join_sequences (s.secondHalf, t.secondHalf) ;

return ; ... (* remaining cases analogously *)

Figure 70: Algorithm for Joining Sequences
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8.2.2  Active Dimensions and Distance Calculations

In spite of the CPU optimization proposed in section 8.2.1 the CPU cost is dominated by

the final distance calculations between candidate pairs of points. A well-known tech-

nique to avoid a considerable number of these distance calculations is to apply the trian-

gle inequality [BEKS 00]. In our experiments, however, the triangle inequality did not

yield an improvement of the Epsilon Grid Order due to the use of small, CPU optimized

sequences. A more successful way is to determine the distances between two points

(dimension by dimension) and testing in each step whether the distance already exceeds

ε. The corresponding algorithm is depicted in figure 71.

For this step-by-step test, it is essential that the dimensions are processed in a suitable

order, depending on the inactive dimensions, because some dimensions have a rather

high probability of adding large values to the distance (a high distinguishing potential),

others not. Therefore, in the line marked with (1) the dimensions are taken from a lookup

table which is sorted according to the distinguishing potential. The lookup table is filled

when starting the join between two minimal sequences. In the following we will show

how to estimate the distinguishing potential of the dimensions for a given pair of se-

function distance_below_eps (Point p, Point q): boolean

distance_sq := 0.0 ;

for i:=0 to d−1 do
1 j := dimension_order [i] ;

distance_sq := distance_sq + (p [j] − q [j])2 ;

if distance_sq > ε2 then return false ;

return true ;

Figure 71: Algorithm for Distance Calculations
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quences. For the analysis in this section, we assume that the points of a sequence follow

a uniform (not necessarily independent) distribution in the inactive dimensions, i.e. if di

is inactive in sequence s and the corresponding cell extension in di is [xi·ε..(xi+1)·ε], then

for the i-th coordinate pi of each point p ∈ s every value between [xi·ε..(xi+1)·ε] has the

same probability. In the following, we determine the distinguishing potential of the inac-

tive dimensions of a pair of sequences (i.e. the dimensions which are inactive in both

sequences).

How large the distinguishing potential of a dimension di is, depends on the relative

position of the two sequences in the data space (cf. figure 72). Since we consider only the

inactive dimensions (in the example both dimensions d0 and d1), both sequences sj and

rj have an extension of ε in all considered dimensions. Due to the grid, the sequences are

in an inactive dimension di either perfectly aligned to each other or directly neighboring.

In figure 72, s1 and r1 are aligned in both dimensions; s4 and r4 are neighboring in both

dimensions; s2 and r2 are aligned in d0, and s3 and r3 are aligned in d1, neighboring in the

other dimension. Other relationships are not considered, because if the sequences are

neither aligned nor neighboring, they are excluded from processing, as described in

section 8.1.3. 

A single, aligned dimension has no distinguishing power at all, because the difference

between two coordinates is at most the cell length ε. It is possible that the combination

of several aligned dimensions distinguishes points, but not very likely. In contrast, a

dimension where the two sequences are neighboring has a high distinguishing power.

d1

d0

s1

r1
s2 r2

s3

r3

s4

r4

Figure 72: Distinguishing Potential of the Dimensions

ε
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Under the above mentioned assumptions the distinguishing power can be determined as

follows, according to the sequences s2 and r2 in figure 72 for which we determine the

distinguishing power of d1: A point on the left boundary of s2 cannot have any join mate

on r2 (exclusion probability 1). For points on the right boundary of s1, no points on r2 can

be excluded by only considering d1 (probability 0). Between these extremes, the exclu-

sion probability (with respect to d1) decreases linearly from 1 to 0 (e.g. 50% for a point

in the middle of s2). Integrating this linear function yields an overall exclusion probabil-

ity of 50% for each neighboring dimension.

The distinguishing power of unspecified and active dimensions is relatively difficult

to assess. It depends on the ratio between ε and the extension of the data space in the

corresponding dimension and on the data distribution. Our join method generally does

not require knowledge about the data space or the data distribution. Determining these

parameters just for the optimization of this section would not pay off. According to our

experience, the distinguishing power of unspecified dimensions is in most cases below

50% (i.e. worse than that of neighboring inactive dimensions), but also clearly better

than 0 (aligned inactive dimensions).Our lookup table is filled in the following order:

• First all neighboring inactive dimensions,

• then the unspecified dimensions,

• next the active dimension(s) of the two sequences,

• and, finally, the aligned inactive dimensions.

This order reveals decreasing distinguishing powers of the dimensions and leads to an

exclusion of point pairs as early as possible in the algorithm of figure 71.

8.3 Experimental Evaluation

In order to show the benefits of our technique we implemented the EGO-algorithm and

performed an extensive experimental evaluation using database sizes of well beyond

1 GB. For comparison, we applied the original source code of the Multipage Index Join

[BK 01] and a similarity join algorithm based on the R-tree spatial join (RSJ) algorithm

[BKS 93]. The latter join algorithm, RSJ with Z-ordering optimization, employs a page
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scheduling strategy based on Z-ordering and will be denoted as Z-Order-RSJ. It is very

similar to the Breadth-First-R-tree-Join (BFRJ) proposed in [HJR 97]. The values for the

well known nested loop join with its quadratic complexity were merely calculated and

should give a reference for comparison. All algorithms were allowed to use the same

amount of buffer memory (10% of the database size).

For our new technique, EGO, we considered both CPU cost as well as I/O cost, in-

cluding the sorting phase which was implemented as a mergesort algorithm on second-

ary storage. As in figure 68 shown, our algorithm switches between the gallop and the

crabstep mode on demand. 

For the index based techniques (Z-Order-RSJ and MuX-Join) we assumed that index-

es are already preconstructed. To be on the conservative side, we did not take the index

construction cost of our competitors into account.

All our experiments were carried out under Windows NT4.0 on Fujitsu-Siemens Cel-

sius 400 machines equipped with a Pentium III 700 MHz processor and 256 MB main

memory (128 MB available for the cache). The installed disk device was a Seagate
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Figure 73: Experimental Results on Uniformly Distributed, 8-Dimensional Data
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ST310212A with a sustained transfer rate of about 9 MB/s and an average read access

time of 8.9 ms with an average latency time of 5.6 ms.

We used synthetic as well as real data. Our 8-dimensional synthetic data sets consist-

ed of up to 40,000,000 uniformly distributed points in the unit hypercube (i.e. a database

size of 1.2 GB). Our real-world data set is a CAD database with 16-dimensional feature

vectors extracted from geometrical parts and variants thereof. 

The Euclidean distance was used for the similarity join. We determined the distance

parameters ε for each data set such that they are suitable for clustering following the

selection criteria proposed in [SEKX 98].

Figure 74 shows our experiments using uniformly distributed 8-dimensional point

data. In the left diagram, the database size is varied from 0.5 million to 40 million points

while on the right side results are compared for varying values of the ε parameter. The

largest database was about 1.2 GB. For this size (as well as for the 20 million points) only

the results for EGO could be obtained in reasonable time. The nested loop join has the

worst performance off all the compared techniques. The Z-Order-RSJ outperforms the

nested loop join by factors ranging from 30 to 140 while the MuX-Join still is at least two
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Figure 75: 16-Dimensional Real Data from a CAD-Application (Scalability)
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times faster than Z-Order RSJ. By far the best performance is obtained with our new

EGO technique. EGO outperforms the best of the other techniques, the MuX-Join, by

factors between 6 and 9, and the Z-Order-RSJ by factors between 13 and 14. The right

diagram shows performance for varying distance parameter ε. Depending on its actual

page boundary configuration, the Z-Order-RSJ sometimes is not as sensitive to small

changes in the distance parameter as the other techniques. Again, we observe that our

novel approach clearly outperforms all other techniques for all values of ε. The speedup

factors were between 3.2 and 8.6 over MuX and between 4.7 and 19 over Z-Order-RSJ.

The experiments with real data are depicted in figure 76. The results for the 16-di-

mensional CAD data set confirm our experiments on uniform data. Again, the left dia-

gram shows performance for varying database size while the right diagram shows per-

formance for varying ε values. EGO was 9 times faster than the MuX-Join for the largest

database size and 16 times faster than the Z-Order-RSJ. In the right diagram we can

observe, that the performance of the MuX-Join and the Z-Order-RSJ converge for larger

ε values while EGO still shows substantially better performance for all values of ε. The

improvement factors of our technique varied between 4.0 and 10 over the Multipage

Index and between 4.5 and 17 over Z-Order-RSJ.

8.4 Conclusions

Many different applications are based on the similarity join of very large data sets, for

instance similarity search in multimedia databases, data analysis tools and data mining

techniques. Unfortunately, there is no technique available which efficiently scales to

very large data sets, i.e. data sets in the order of 1 GB. In this chapter, we focused on this

specific problem. We introduced and discussed a novel similarity join algorithm, denot-

ed as epsilon grid order, which is based on a particular sorting order of the data points.

This sorting order is derived by laying an equi-distant grid with cell length ε over the

data space and comparing the grid cells lexicographically. We proposed to apply an

external sorting algorithm combined with a sophisticated scheduling strategy which al-

lows our technique to operate with a limited cache buffer. Additionally, we developed

several optimization techniques which further enhance our method. In an experimental
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evaluation using data sets with sizes up to 1.2 GB we showed that our novel approach is

very efficient and clearly outperforms competitive algorithms. For future work we plan

a parallel version of the EGO join algorithm and the extension of our cost model for the

use by the query optimizer.
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Chapter 9
k-Nearest Neighbor Joins: 
Turbo Charging the KDD Process

Our previous chapters have primarily concentrated on the distance range join where the

user has to provide a similarity distance ε to define the join operation. Although there are

numerous applications to the distance range join such as various clustering algorithms,

a general problem of this join operation is the difficulty to determine a suitable query

parameter ε. This parameter is not very intuitive to the user because the user has in most

cases no concept about typical feature vectors and similarity distances. Feature distances

are only meaningful to the user in comparisons with other feature distances.

This is of course not a problem of the similarity join itself but rather of the concept to

use such a given radius in the corresponding data mining algorithms. The similarity join

inherits the corresponding problems from the data mining algorithm.

It is a consequence of the curse of dimensionality [BGRS 00] that the cardinality of

the join result is highly sensitive to a suitable choice of the radius ε. If ε is too small, the

join result will be empty. If ε is too large, the join result will be equal to the cartesian

product R × S. With increasing dimension, the interval of a sensible radius ε where the

join result is non-trivial is becoming more and more narrow.
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The problems of a fixed query range ε can be overcome by replacing the range query

based join predicate by a nearest neighbor based join predicate where the user defines a

result cardinality parameter k. The cardinality parameter k is much more intuitive to the

user than the distance parameter ε is.

Therefore, Hjaltason and Samet have proposed the k-distance join [HS 98] which

retrieves those k pairs from the cross-product R × S which have least distance. Up to the

rare tie situations, the result cardinality exactly corresponds to k which obviously solves

the cardinality control problem.

We believe, however, that the applications of the k-distance join and its incremental

version are rather limited. The authors mention applications in geographical information

systems including queries like “find the k cities nearest to any river”. Standard tasks of

data mining and knowledge discovery in databases are difficult to implement on top of

the k-distance join.

Many standard tasks of data mining, however, evaluate k-nearest neighbor queries for

a large number of query points. Examples are clustering algorithms such as k-means

[McQ 67], or k-medoid [KR 90], but also data cleansing and other pre- and postprocess-

ing techniques e.g. when sampling plays a role in data mining. 

In this chapter, we propose a third kind of similarity join, the k-nearest neighbor

similarity join, short k-nn join. This operation is motivated by the observation that the

vast majority of data analysis and data mining algorithms is based on k-nearest neighbor

queries which are issued separately for a large set of query points R = {r1,...,rn} against

another large set of data points S = {s1,...,sm}. In contrast to the incremental distance

join and the k-distance join which choose the best pairs from the complete pool of pairs

R × S, the k-nn join combines each of the points of R with its k nearest neighbors in S. 

Applications of the k-nn join include but are not limited to the following list: k-nearest

neighbor classification, k-means and k-medoid clustering, sample assessment and sam-

ple postprocessing, missing value imputation, k-distance diagrams, etc. 

Our list of applications covers all stages of the KDD process. In the preprocessing

step, data cleansing algorithms are typically based on k-nearest neighbor queries for
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each of the points with NULL values against the set of complete vectors. The missing

values can be computed e.g. as the weighted means of the values of the k nearest neigh-

bors. Then, the k-distance diagram is a technique for a suitable parameter selection for

data mining. In the core step, i.e. data mining, many algorithms such as clustering and

classification are based on k-nn queries. As such algorithms are often time consuming

and have at least a linear, often n log n or even quadratic complexity they typically run

on a sample set rather than the complete data set. The k-nn-queries are used to assess the

quality of the sample set (preprocessing). After the run of the data mining algorithm, it

is necessary to relate the result to the complete set of database points [BKKS 01]. The

typical method for doing that is again a k-nn-query for each of the database points with

respect to the set of classified sample points. 

In all these algorithms, it is possible to replace a large number of k-nn queries which

are originally issued separately, by a single run of a k-nn join. Therefore, the k-nn join

gives powerful support for all stages of the KDD process. In this chapter, we show how

some of these standard algorithms can be based on top of the k-nearest neighbor join.

These standard algorithms are

• k-means and k-medoid clustering

• k-nearest neighbor classification

• sample postprocessing

• and k-distance diagrams, a method for determining a suitable radius ε in density 

based clustering methods.

We will evaluate them in the following sections.
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9.1 k-Means and k-Medoid Clustering

The k-means method [HK 00] is the most important and most widespread approach to

clustering. For k-means clustering the number k of clusters to be searched must be pre-

viously known. The method determines k cluster centers such that each database point

can be assigned to one of the centers to minimize the overall distance of the database

points to their associated center points.

The basic algorithm for k-means clustering works as follows: In the initialization,

k database points are randomly selected as tentative cluster centers. Then, each database

point is associated to its closest center point and, thus, a tentative cluster is formed. Next,

the cluster centers are redetermined as the means point of all points of the center, simply

by forming the vector sum of all points of a (tentative) cluster. The two steps (1) point

association and (2) cluster center redetermination are repeated until convergence (no

more considerable change). It has been shown that (under several restrictions) the algo-

rithm always converges. The cluster centers which are generated in step (2) are artificial

points rather than database points. This is often not desired, and therefore, the k-medoid

algorithm always selects a database point as a cluster center.

The k-means algorithm is visualized in figure 77 using k = 3. At the left side (a) k = 3

points (white symbols ) are randomly selected as initial cluster centers. Then in

figure 77(b) the remaining data points are assigned to the closest center which is depict-

ed by the corresponding symbols ( ). The cluster centers are redetermined (moving

arrows). The same two operations are repeated in figure 77(c). If the points are finally

assigned to their closest center, no assignment changes, and, therefore, the algorithm

terminates clearly having separated the three visible clusters. In contrast to density-

based approaches, k-means only separates compact clusters, and the number of actual

clusters must be previously known.

It has not yet been recognized in the data mining community that the point association

step which is performed in each iteration of the algorithm corresponds to a (k = 1) near-
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est neighbor join between the set of center points (at the right side) and the set of data-

base points (at the left side of the join symbol) because each database point is associated

with its nearest neighbor among the center points:

database-point-set center-point-set

During the iteration over the cursor of the join, it is also possible to keep track of changes

and to redetermine the cluster center for the next iteration. The corresponding

pseudocode is depicted in the following:

repeat

change := false ;

foreach (dp,cp) ∈  database-point-set center-point-set do

if dp.center ≠ cp.id then change := true ;

dp.center := cp.id ;

cp.newsum := cp.newsum + dp.point ;

cp.count := cp.count + 1 ;

foreach cp ∈  center-point-set do

cp.point := cp.newsum / cp.count ;

until ¬  change ;

(a) Initialization (b) First Iteration (c) Convergence

Figure 77: k-Means Clustering

1-nn

1-NN
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9.2 k-Nearest Neighbor Classification

Another very important data mining task is classification. Classification is somewhat

similar to clustering (which is often called unsupervised classification). In classification,

a part of the database objects is assigned to class labels (for our running example of

astronomy databases we have different classes of stars, galaxies, planets etc.). For clas-

sification, also a set of objects without class label (newly detected objects) is given. The

task is to determine the class labels for each of the unclassified objects by taking the

properties of the classified objects into account. A widespread approach is to build up

tree like structures from the classified objects where the nodes correspond to ranges of

attribute values and the leaves indicate the class labels (called classification trees

[HK 00]). Another important approach is k-nearest neighbor classification [HT 93].

Here, for each unclassified object, a k-nearest neighbor query on the set of classified

objects is evaluated (k is a parameter of the algorithm). The object is e.g. assigned to the

class label of the majority of the resulting objects of the query. This principle is visual-

ized in figure 78. As for each unclassified object a k-nn-query on the set of classified

objects is evaluated, this corresponds again to a k-nearest neighbor join:

unclassified-point-set classified-point-set

k=3

Figure 78: k-Nearest Neighbor Classification

Class A
Class B
Class C
unclassif.

k=3

k=3
k=3

k-nn
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9.3 Sampling Based Data Mining

Data mining methods which are based on sampling often require a k-nearest neighbor

join between the set of sample points and the complete set of original database points.

Such a join is necessary, for instance, to assess the quality of a sample. The k-nearest

neighbor join can give hints whether the sample rate is too small. Another application is

the transfer of the data mining result onto the original data set after the actual run of the

data mining algorithm [BKKS 01]. For instance, if a clustering algorithm has detected a

set of clusters in the sample set, it is often necessary to associate each of the database

points to the cluster to which it belongs. This can be done by a k-nn join with k = 1

between the point set and the set of sample points:

sample-set point-set

The same is possible after sample based classification, trend detection etc.

9.4 k-Distance Diagrams

The most important limitation of the DBSCAN algorithm is the difficult determination

of the query radius ε. In [SEKX 98] a method called k-distance diagram is proposed to

determine a suitable radius ε. For this purpose, a number of objects (typically 5-20 per-

cent of the database) is randomly selected. For these objects, a k-nearest neighbor query

is evaluated where k corresponds to the parameter MIN_PTS which will be used during

the run of DBSCAN. The resulting distances between the query points and the k-th

nearest neighbor of each are then sorted and depicted in a diagram (cf. figure 79). Verti-

cal gaps in that plot indicate distances that clearly separate different clusters, because

there exist larger k-nearest neighbor distances (inter-cluster distances, noise points) and

smaller ones (intra-cluster distance). As for each sample point a k-nearest neighbor que-

k-nn
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ry is evaluated on the original point set, this corresponds to a k-nn-join between the

sample set and the original set:

sample-set point-set

If the complete data set is taken instead of the sample, we have a k-nn self join:

point-set point-set

9.5 Conclusions

In this chapter, we have proposed the k-nearest neighbor join, a new kind of similarity

join. In contrast to other types of similarity joins such as the distance range join, the k-

distance join (k-closest pair query) and the incremental distance join, our new k-nn join

combines each point of a point set R with its k nearest neighbors in another point set S.

We have shown that the k-nn join is a powerful database primitive which allows the

efficient implementation of numerous methods of knowledge discovery and data mining

such as classification, clustering, data cleansing, and postprocessing. Therefore, we be-

lieve that the k-nearest neighbor join will gain much attention as an important database

primitive to speed up the complete KDD process.

Figure 79: k-Distance Diagram

k-nn

k-nn



Chapter 10
Processing k-Nearest Neighbor 
Joins Using MuX

In this chapter, we show how the operation of a k-nearest neighbor similarity join can be

efficiently implemented on top of a multidimensional index structure. In chapter 6 we

have shown for the distance range join that it is necessary to optimize index parameters

such as the page capacity separately for CPU and I/O performance. We have proposed a

new index architecture (Multipage Index, MuX) (cf. chapter 7) which allows such a

separate optimization. The index consists of large pages which are optimized for I/O

efficiency. These pages accommodate a secondary R-tree like main memory search

structure with a page directory (storing pairs of MBR and a corresponding pointer) and

data buckets which are containers for the actual data points. The capacity of the accom-

modated buckets is much smaller than the capacity of the hosting page. It is optimized

for CPU performance. We have shown that the distance range join on the Multipage

Index has an I/O performance similar to an R-tree which is purely I/O optimized and has

a CPU performance like an R-tree which is purely CPU optimized. Although a formal

proof is up to future work, we believe that also the k-nn join clearly benefits from the

separate optimization, because the optimization trade-offs are very similar.
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In the following description, we assume for simplicity that the hosting pages of our

Multipage Index only consist of one directory level and one data level. If there are more

directory levels, these levels are processed in a breadth first approach according to some

simple strategy. A simple strategy for the higher index levels is sufficient, because most

cost arise in the data level. Therefore, our strategies focus on the last level, the data

pages.

10.1 Basic Algorithm

For the k-nn join R S, we denote the data set R for each point of which the nearest

neighbors are searched as the outer point set. Consequently, S is the inner point set. As

in [BK 01] we process the hosting pages of R and S in two nested loops (obviously, this

is not a nested loop join). Each hosting page of the outer set R is accessed exactly once.

The principle of the nearest neighbor join is illustrated in figure 80. A hosting page PR1

of the outer set with 4 accommodated buckets is depicted in the middle. For each point

stored in this page, a data structure for the k nearest neighbors is allocated. Candidate

points are maintained in these data structures until they are either discarded and replaced

by new (better) candidate points or until they are confirmed to be the actual nearest

neighbors of the corresponding point. When a candidate is confirmed, it is guaranteed

that the database cannot contain any closer point, and the pair can be written to the

output. The distance of the last (i.e. k-th or worst) candidate point of each R-point is the

pruning distance: Points, accommodated buckets and hosting pages beyond that pruning

distance need not to be considered. The pruning distance of a bucket is the maximum

pruning distance of all points stored in this bucket, i.e. all S-buckets which have a dis-

tance from a given R-bucket that exceeds the pruning distance of the R-bucket, can be

safely neglected as join-partners of that R-bucket. Similarly, the pruning distance of a

page is the maximum pruning distance of all accommodated buckets.

In contrast to conventional join methods we reserve only one cache page for the outer

set R which is read exactly once. The remaining cache pages are used for the inner set S.

For other join predicates (e.g. relational predicates or a distance range predicate), a strat-

k-nn
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egy which caches more pages of the outer set is beneficial for I/O processing (the inner

set is scanned fewer times) while the CPU performance is not affected by the caching

strategy. For the k-nn join predicate, the cache strategy affects both I/O and CPU perfor-

mance. It is important that for each considered point of R good candidates (i.e. near

neighbors, not necessarily the nearest neighbors) are found as early as possible. This is

more likely when reserving more cache for the inner set S. The basic algorithm for the k-

nn join is given below.

1 foreach PR of R do

2 cand : PQUEUE [|PR|, k] of point := {⊥ ,⊥ ,...,⊥ } ;

3 foreach PS of S do PS.done := false ;

4 while ∃  i such that cand [i] is not confirmed do

5 while ∃ empty cache frame ∧ 
6 ∃  PS with (¬PS.done ∧  ¬  IsPruned(PS)) do

7 apply loading strategy if more than 1 PS exist

8 load PS to cache ;

9 PS.done := true ;

10 apply processing strategy to select a bucket pair ;

11 process bucket pair ;

PR1

PS1

PS2

PS3

Figure 80: k-nn Join on the Multipage Index (here k=1)

BS31
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A short explanation: (1) Iterates over all hosting pages PR of the outer point set R which

are accessed in an arbitrary order. For each point in PR, an array for the k nearest neigh-

bors (and the corresponding candidates) is allocated and initialized with empty pointers

in line (2). In this array, the algorithm stores candidates which may be replaced by other

candidates until the candidates are confirmed. A candidate is confirmed if no unproc-

essed hosting page or accommodated bucket exists which is closer to the corresponding

R-point than the candidate. Consequently, the loop (4) iterates until all candidates are

confirmed. In lines 5-9, empty cache pages are filled with hosting pages from S whenev-

er this is possible. This happens at the beginning of processing and whenever pages are

discarded because they are either processed or pruned for all R-points. The decision

which hosting page to load next is implemented in the so-called loading strategy which

is described in section 10.2. Note that the actual page access can also be done asynchro-

nously in a multithreaded environment. After that, we have the accommodated buckets

of one hosting R-page and of several hosting S-pages in the main memory. In lines 10-

11, one pair of such buckets is chosen and processed. For choosing, our algorithm ap-

plies a so-called processing strategy which is described in section 10.3. During process-

ing, the algorithm tests whether points of the current S-bucket are closer to any point of

the current R-bucket than the corresponding candidates are. If so, the candidate array is

updated (not depicted in our algorithm) and the pruning distances are also changed.

Therefore, the current R-bucket can safely prune some of the S-buckets that formerly

were considered join partners.

10.2 Loading Strategy

In conventional similarity search where the nearest neighbor is searched only for one

query point, it can be proven that the optimal strategy is to access the pages in the order

of increasing distance from the query point [BBKK 97]. For our k-nn join, we are simul-

taneously processing nearest neighbor queries for all points stored in a hosting page. To

exclude as many hosting pages and accommodated buckets of S from being join partners

of one of these simultaneous queries, it is necessary to decrease all pruning distances as
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early as possible. The problem we are addressing now is, what page should be accessed

next in lines 5-9 to achieve this goal.

Obviously, if we consider the complete set of points in the current hosting page PR to

assess the quality of an unloaded hosting page PS, the effort for the optimization of the

loading strategy would be too high. Therefore, we do not use the complete set of points

but rather the accommodated buckets: the pruning distances of the accommodated buck-

ets have to decrease as fast as possible.

In order for a page PS to be good, this page must have the power of considerably

improving the pruning distance of at least one of the buckets BR of the current page PR.

Basically there can be two obstacles that can prevent a pair of such a page PS and a

bucket BR from having a high improvement power: (1) the distance (mindist) between

this page-bucket pair is large, and (2) the bucket BR has already a small pruning dis-

tance. Condition (1) corresponds to the well-known strategy of accessing pages in the

order of increasing distance to the query point. Condition (2), however, intends to avoid

that the same bucket BR is repeatedly processed before another bucket BR’ has reached

a reasonable pruning distance (having such buckets BR’ in the system causes much

avoidable effort).

Therefore, the quality Q(PS) of a hosting page PS of the inner set S is not only mea-

sured in terms of the distance to the current buckets but the distances are also related to

the current pruning distance of the buckets:

Q(PS) = 

Our loading strategy applied in line (7) is to access the hosting pages PS in the order of

decreasing quality Q(PS), i.e. we always access the unprocessed page with highest qual-

ity.

max
BR∈ PR

prunedist BR( )
mindist PS BR,( )
---------------------------------------

 
 
 
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10.3 Processing Strategy

The processing strategy is applied in line (10). It addresses the question in what order the

accommodated buckets of R and S that have been loaded into the cache should be pro-

cessed (joined by an in-memory join algorithm). The typical situation found at line (10)

is that we have the accommodated buckets of one hosting page of R and the accommo-

dated buckets of several hosting pages of S in the cache. Our algorithm has to select a

pair of such buckets (BR,BS) which has a high quality, i.e. a high potential of improving

the pruning distance of BR. Similarly to the quality Q(PS) of a page developed in

section 10.2, the quality Q(BR,BS) of a bucket pair rewards a small distance and punish-

es a small pruning distance:

Q(BR ,BS) = 

We process the bucket pairs in the order of decreasing quality. Note that we do not have

to redetermine the quality of every bucket pair each time our algorithm runs into line

(10) which would be prohibitively costly. To avoid this problem, we organize our current

bucket pairs in a tailor-cut data structure, a fractionated pqueue (half sorted tree). By

fractionated we mean a pqueue of pqueues, as depicted in figure 81. Note that this tailor-

cut structure allows efficiently (1) to determine the pair with maximum quality, (2) to

insert a new pair, and in particular (3) to update the prunedist of BRi which affects the

quality of a large number of pairs.

Processing bucket pairs with a high quality is highly important at an early stage of

processing until all R-buckets have a sufficient pruning distance. Later, the improvement

power of the pairs does not differ very much and a new aspect comes into operation: The

pairs should be processed such that one of the hosting S pages in the cache can be re-

placed as soon as possible by a new page. Therefore, our processing strategy switches

into a new mode if the last c (given parameter) processing steps did not lead to a consid-

erable improvement of any pruning distance. The new mode is to select one hosting S-

page PS in the cache and to process all pairs where one of the buckets BS accommodated

prunedist BR( )
mindist BS BR,( )
---------------------------------------
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by PS appears. We select that hosting page PS with the fewest active pairs (i.e. the

hosting page that causes least effort).

10.4 Experimental Evaluation

We implemented the k-nearest neighbor join algorithm, as described in the previous

section, based on the original source code of the Multipage Index Join [BK 01] and

performed an experimental evaluation using artificial and real data sets of varying size

and dimension. We compared the performance of our technique with the nested block

loop join (which basically is a sequential scan optimized for the k-nn case) and the k-nn

algorithm by Hjaltason and Samet [HS95] as a conventional, non-join technique.

All our experiments were carried out under Windows NT4.0 SP6 on Fujitsu-Siemens

Celsius 400 machines equipped with a Pentium III 700 MHz processor and at least 128

MB main memory. The installed disk device was a Seagate ST310212A with a sustained

pqueue to organize pairs
(BR0 , BS0 < j ≤ n)

by increasing mindist

pqueue to organize pairs
(BRi , BS0 < j ≤ n)

by increasing mindist

pqueue to organize pairs
(BRm , BS0 < j ≤ n)

by increasing mindist

. .
 .

. .
 .

min0

mini

minm

pqueue to organize

mini
0 < i ≤ m decreasing

prunedist (BRi)

max

Figure 81: Structure of a fractionated pqueue
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transfer rate of about 9 MB/s and an average read access time of 8.9 ms with an average

latency time of 5.6 ms.

We used synthetic as well as real data. The synthetic data sets consisted of 4, 6 and 8

dimensions and contained from 10,000 to 160,000 uniformly distributed points in the

unit hypercube. Our real-world data sets are a CAD database with 16-dimensional fea-

ture vectors extracted from CAD parts and a 9-dimensional set of weather data. We

allowed about 20% of the database size as cache resp. buffer for either technique and

included the index creation time for our k-nn join and the hs-algorithm, while the nested

block loop join (nblj) does not need any preconstructed index.

The Euclidean distance was used to determine the k-nearest neighbor distance. In

order to show the effects of varying the neighboring parameter k we included figure 82

with varying k (from 4-nn to 10-nn) while all other charts show results for the case of the

4-nearest neighbors. In figure 82 we can see, that except for the nested block loop join

all techniques perform better for a smaller number of nearest neighbors and the hs-

algorithm starts to perform worse than the nblj if more than 4 nearest neighbors are

requested. This is a well known fact for high dimensional data as the pruning power of

the directory pages deteriotates quickly with increasing dimension and parameter k. This

Figure 82: Varying k for 8-dimensional uniform data
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is also true, but far less dramatic for the k-nn join because of the use of much smaller

buckets which still perserve pruning power for higher dimensions and parameters k. The

size of the database used for these experiments was 80,000 points.

The three charts in figure 83 show the results (from left to right) for the hs-algorithm,

our k-nn join and the nblj for the 8-dimensional uniform data set for varying size of the

database. The total elapsed time consists of the CPU-time and the I/O-time. We can

observe that the hs-algorithm (despite using large block sizes for optimization) is clearly

I/O bound while the nested block loop join is clearly CPU bound. Our k-nn join has a

somewhat higher CPU cost than the hs-algorithm, but significantly less than the nblj

while it produces almost as little I/O as nblj and as a result clearly outperforms both, the

hs-algorithm and the nblj. This balance between CPU and I/O cost follows the idea of

MuX to optimize CPU and I/O cost independently. For our artificial data the speed-up

factor of the k-nn join over the hs-algorithm is 37.5 for the small point set (10,000 points)

and 9.8 for the large point set (160,000 points), while compared to the nblj the speed-up

factor increases from 7.1 to 19.4. We can also see, that the simple, but optimized nested

block loop join outperforms the hs-algorithm for smaller database sizes because of its

high I/O cost.

One interesting effect is, that our MUX-algorithm for k-nn joins is able to prune more

and more bucket pairs with increasing size of the database i.e. the percentage of bucket

pairs that can be excluded during processing increases with increasing database size.We

can see this effect in figure 84. Obviously, the k-nn join scales much better with increas-

ing size of the database than the other two techniques.

Figure 85 shows the results for the 9-dimensional weather data. The maximum speed-

up of the k-nn join compared to the hs-algorithm is 28 and the maximum speed-up com-

pared to the nested block loop join is 17. For small database sizes, the nested block loop

join outperforms the hs-algorithm which might be due to the cache/buffer and I/O con-

figuration used. Again, as with the artificial data, the k-nn join clearly outperforms the

other techniques and scales well with the size of the database.

Figure 86 shows the results for the 16-dimensional CAD data. Even for this high

dimension of the data space and the poor clustering property of the CAD data set, the k-
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Figure 83: Total Time, CPU-Time and I/O-Time for hs, k-nn join and nblj for varying size of the database

nested block loop join
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Figure 84: Pruning of bucket pairs for the k-nn join
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Figure 85: Results for 9-dimensional weather data
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nn join still reaches a speed-up factor of 1.3 for the 80,000 point set (with increasing

tendency for growing database sizes) compared to the nested block loop join (which

basically is a sequential scan optimized for the k-nn case). The speed-up factor of the k-

nn join over the hs-algorithm is greater than 5.

10.5 Conclusions

This chapter was dedicated to the efficient implementation of the k-nearest neighbor

join. We have argued that our Multipage Index (MuX) which has already been intro-

duced in chapter 6 for the distance range join is also an adequate index structure for

processing k-nearest neighbor joins. Our analysis in chapter 5 of the distance range join

is also valid for the k-nn join since the optimization tradeoffs are quite similar. 

For the k-nearest neighbor join on top of a complex index structure, a new algorithm

was needed along with some good strategies for accessing pages and processing page

pairs in the main memory. 

Figure 86: Results for 16-dimensional CAD data
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We have proposed strategies for three different tasks:

• Loading Strategy:

This strategy determines the order in which hosting pages of the Multipage 

Index (MuX) are fetched into the main memory

• Processing Strategy:

This strategy determines the order in which pairs accommodated buckets are 

formed for joining them in the main memory

We have implemented a k-nearest neighbor join algorithm which applies these strate-

gies. We have conducted an extensive experimental evaluation in which the clear supe-

riority over competitive approaches was shown.
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Chapter 11
Optimizing the Similarity Join

Due to its high importance, many different algorithms for the similarity join have been

proposed, operating on multidimensional index structures [BKS 93, LR 94, HJR 97],

multidimensional hashing [LR 96, PD 96], or various sort orders [SSA 97, KS 97,

BBKK 01]. In contrast to algorithms for simple similarity queries upon a single data set

(such as range queries or nearest neighbor queries), all of these algorithms are clearly

CPU bound. In spite of the filtering capabilities of the above algorithms the evaluation

cost are dominated by the final distance calculations between the points. This is even

true for index structures which are optimized for minimum CPU cost [BK 01].

Therefore, in the current chapter, we propose a technique for avoiding and accelerat-

ing a high number of the distance calculations between feature vectors. Our methods

shows some resemblance to the principle of plane-sweep algorithms [PS 85] which is

extended by the determination of an optimal order of dimensions. A design objective of

our technique was generality, i.e. our method can be implemented on top of a high num-

ber of basic algorithms for the similarity join such as R-tree based joins [BKS 93, LR 94,

HJR 97], hashing based methods [LR 96, PD 96], and sort orders [SSA 97, KS 97,

BBKK 01]. A precondition for our optimal dimension order is to have some notion of

partitions to be joined having a position and extension in the data space. This is given for
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all techniques mentioned above. Our technique is not meaningful on top of the simple

nested loop join [Ull 89].

11.1 Optimal Dimension Order

In this section we will develop a criterion for ordering the dimensions to optimize the

distance computations. We assume that our join algorithm with optimal dimension order

is preceded by a filter step based on some spatial index structure or spatial hash method

which divides the point sets that are to be joined into rectangular partitions and only

considers such partitions that have a distance to each other of at most ε. Suitable tech-

niques are depth-first- and breadth-first-R-tree-Join [BKS 93, HJR 97], Spatial Hash

Join [PD 96, LR 96], Seeded Trees [LR 94], the ε-kdb-tree [SSA 97], the Multidimen-

sional Join (MDJ) [KS 98], or the ε-grid-order [BBKK 01]. 

11.2 Algorithm

The integration of the dimension order is shown in figure 87. Our dimension order algo-

rithm receives partition pairs (P, Q) from the basic technique for the similarity join and

generates point-pairs as candidates for the final distance calculations. The general idea

of the dimension order is as follows: If the points of one partition, say Q are sorted by

basic-join-
algorithm

distance
calculation

M1

M2

P

Q

p

q

p

q

index or hash join partitions candidates join-results

Figure 87: Integration of the dimension-order-algorithm

dimension
order
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one of the dimensions, then the points of Q which can be join mates of a point p of P form

a contiguous sequence in Q (cf. figure 88). A large number of points which are excluded

by the sort dimension can be ignored. In most cases, the points which can be ignored, are

located at the lower or upper end of the sorted sequence, but it is also possible, that the

sequence of points that must be processed are in the middle of the sequence. In the latter

case, the start and end of the sequence of relevant points must be searched e.g. by binary

search, as depicted in the algorithm in figure 89. In the other cases, it is actually not

necessary to determine the first (last) point before entering the innermost loop. Here, we

can replace the search by a suitable break operation in the innermost loop.

11.3 Determining the Optimal Sort Dimension

If two partitions are joined together by the basic technique, we can use the following

information in order to choose the optimal dimension:

• The distance of the two partitions with respect to each other or the overlap (which 

we will interpret as negative distance from now on) in each case projected on the 

one single dimension of the data space. We observe that the overall distance of the 

two partitions as well as the distance projected on each of the dimensions cannot 

exceed ε as otherwise the whole partition pair would have been eliminated by the 

preprocessing step in the basic technique (see figure 90).

ε
d0

d1

Figure 88: Idea of the Dimension Order
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• The extent of the two partitions with respect to each of the single dimensions

In order to demonstrate that both distance as well as extent, really do matter, see figure

91: In both cases the distance of the two partitions is the same. For simplification we

show one exemplary point with its ε-neighborhood in partitions Q and Q´ although in

our further discussion we assume uniform distribution of points within the two partitions

i.e. we will not consider one specific point.

On the left side of figure 91 both of the partitions are roughly square. Let us first look

at the projection on the d0-axis: We observe that about 70% of the projected area of P lies

within the projected ε-neighborhood of our sample point in Q. If we were to choose d0

as sort-dimension only about 30% of the points can be excluded as join-mates for our

sample point in the first step. For the remaining 70% we still have to test dimension d1

i.e. we have to compute the overall point distance. If we now look at the projection on

dimension d1: here only 25% of the area of P lies within the ε-neighborhood of our

algorithm optimal_dimension_order_join (index M1, M2)

the similarity-join basic method 

generates partition pairs from M1 and M2 ;

for all parition pairs (P,Q) with dist(P,Q) ≤ ε
determine best sort dimension s according to Eq. (12) ;

sort (indirectly) points in Q according to dimension s ;

for all points p ∈ P

determine the first point a ∈ Q: ;

determine the last point b ∈ Q: ;

for all points q ∈ Q with 

if dist(p,q) ≤ ε
output (p,q) ;

end ;

as ps– ε≤
bs ps– ε≤

as qs bs≤ ≤

Figure 89: Algorithmic Scheme
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sample point in Q. If we choose d1 as start-dimension as much as 75% of the points are

already eliminated in the first step of our dimension ordering algorithm. In the case of

quadratic partitions it is thus advisable to choose the dimension within which the parti-

tions have the largest distance with respect to each other as this minimizes the area of the

projected ε-neighborhood.

The right side of figure 91 shows the two partitions P’ and Q’ which have a much

larger extent in dimension d0 than in dimension d1. For this reason the projection on the

d0-axis, with a portion of 33% of the area, is much better than the projection on the d1-

axis (75%). In this case the dimension d0 should be chosen as sort-dimension.

We can note the following as a first rule of thumb for the selection of the dimension:

for approximately square partitions choose the dimension with the greatest distance,

otherwise the dimension with the greatest extent.

11.4 Probability Model

In the following we will propose a model which grasps this rule of thumb much more

precisely. Our model is based on the assumption that the points within each partition

follow a uniform distribution. In our previous work it has already been shown that this

assumption is sufficiently fulfilled (e.g. [BBJ+ 00]). The results of our experiments in

section 4 will provide even more justification for this assumption. 

≤ε
≤ε≤ε

P

Q

Figure 90: ε for partitions and projections

ε
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Our model determines for each dimension the probability Wi[ε] (termed mating prob-

ability in the following) that two points in partitions P and Q with given rectangular

boundaries P.lbi, P.ubi, Q.lbi, Q.ubi ( ; lb and ub for lower bound and upper

bound, respectively) have at most the distance ε with respect to dimension di.

Definition 14 

Given two partitions P and Q, let Wi[ε] denote the probability for each dimension di

that an arbitrary pair of points (p,q) with p ∈ P and q ∈ Q has a maximal distance of

ε with respect to di:

Wi[ε] := W ( |pi−qi| ≤ ε), (p,q) ∈ (P,Q) (1)

If P.# denotes the number of points within partition P, then the expectation of the number

of point pairs which are excluded by the optimal dimension order join equals to

Ei[ε] = P.# · Q.# · (1 − Wi[ε]). (2)

This means that exactly the dimension di should be chosen as sort dimension that mini-

mizes the mating probability Wi[ε].

We will now develop a universal formula to determine the mating probability. We

assume uniform distribution within each of the partitions P and Q. Thus the i-th compo-

nent pi of the point p ∈ P is an arbitrary point from the uniform interval given by [P.lbi ..

P.ubi]. The pair (pi,qi) is chosen from an independent and uniform distribution within the

two-dimensional interval [P.lbi..P.ubi] × [Q.lbi..Q.ubi] because of the independence of

the distributions within P and Q, which we can assume for P ≠ Q. Hence the event space

is given by

Fi = (P.ubi − P.lbi) · (Q.ubi − Q.lbi) (3)

Wi[ε] is therefore given by the ratio of the portion of the area of Fi where pi and qi have a

distance of at most ε to the whole area Fi. This can be expressed by the following inte-

gral:

(4)

0 i d<≤

Wi ε[ ] 1
Fi

----- 1 for x y– ε≤
0 otherwise




Q.lbi

Q.ubi

∫
P.lbi

P.ubi

∫⋅= dydx
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In the following, we will show how this formula can be simplified using one exemplary

case out of the several possible configurations. A complete list of all formulas for all

possible cases will be given (without proof) thereafter.

First we need a consistent notion for the distance and the overlap of two partitions

with respect to dimension di. We thus define a parameter δi whose sign indicates whether

the partitions are disjoint in di (δi > 0) or show some overlap (δi ≤ 0). The absolute value

of δi represents either the distance or the overlap.

Definition 15 

δi := max {P.lbi , Q.lbi} − min {P.ubi , Q.ubi} (5)

We can now simplify the integral of formula (4) by case analysis looking at the geomet-

ric properties of our configuration, i.e. we can transform our problem into d distinct two-

dimensional geometric problems. To illustrate this, we look at the join of the two parti-

tions P and Q in two-dimensional space as shown on the left hand side of figure 92. In

this case, it is not directly obvious which dimension yields better results. The projection

on d0 which is the transformation that is used to determine W0[ε] is shown on the right

hand side of figure 92. The range with respect to d0 of points which can be stored in P is

shown on the x-axis while the range with respect to d0 of points which can be stored in

εε

25%

70%

75%

33%

d0

d1

d0

d1

P’

Q’

Q

P

Figure 91: Distance and extension of partitions
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Q is shown on the y-axis. The projection (p0,q0) of an arbitrary pair of points

(p,q) ∈ (P,Q) can only be drawn inside the area denoted as event space (cf. equation 3),

as all points of P with respect to dimension d0 are by definition within P.lb0 and P.ub0.

The same holds for Q.

The area within which our join condition is true for dimension d0 i.e. the area within

which the corresponding points have a distance of less than ε with respect to d0 is marked

in gray in figure 92. All these projections of pairs of points which fall into the gray area

are located within a stripe of width 2ε (the ε-stripe) which is centered around the 45°

main diagonal. All projections outside this stripe can be excluded from our search as the

corresponding points already have a distance with respect to d0 that exceeds our join

condition. The intersection of this stripe with the event space represents those point pairs

that cannot be excluded from our search using d0 alone. The mating probability is given

by the ratio of the intersection to the whole event space which equals 18% in our exam-

ple. 

ε
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1

1 2 3 4 5 6 7 d0

P

Q
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1

1 2 3 4 P0

projection on d0:

distance ≤ε

event space

d1

Q0

Figure 92: Determining the mating probability W0[ε]
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We will now show one single simple lemma and then give a complete enumeration of

relevant cases and discuss their efficient computation in the next section.

Lemma 6. 

If the two distinct partitions P and Q, P≠Q, are either disjoint or show overlap of no

more than ε i.e.  then 

(6)

Proof. In this case . This means the intersection of the event space and the ε-

stripe forms an isosceles-rectangular triangle with a lateral side length of . 

11.5 Efficient Computation

In the previous section, we have seen that the exclusion probability of a dimension di

corresponds to the proportion of the event space which is covered by the ε-stripe. In this

section, we show how this proportion can be efficiently determined. Efficiency is an

important aspect here because the exclusion probability must be determined for each

pair of mating pages (partitions) and for each dimension di. 

Throughout this section we will use the shortcut PL for P.lbi and similarly PU, QL,

and QU. Considering figure 93-95 we can observe that there exists a high number of

different shapes that the intersection of the event space and the ε-stripe can have. For

each shape, an individual formula for the intersection area applies. We will show

• that exactly 20 different shapes are possible, 

• how these 20 cases can be efficiently distinguished, and

• that for each case a simple, efficient formula exists.

Obviously, the shape of the intersection is determined by the relative position of the 4

corners of the event space with respect to the ε-stripe. E.g. if 3 corners of the event space

are above (or left from) the ε-stripe, and 1 corner is inside the ε-stripe, the intersection

δi– ε≤

Wi ε[ ]
ε δi–( )2

2Fi

--------------------=

δi– ε≤
ε δi–
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# Code Figure Formula

1 1111 0.0

2 1112

3 1122

4 1212

5 1222 1.0 − (%)

6 1113 − (*)

7 1123 − (*)

PU QL ε+–( )2

2 PU PL–( ) QU QL–( )
--------------------------------------------------------

PU PL+( ) 2⁄ ε QL–+
QU QL–

-------------------------------------------------------

PU QU QL+( ) 2⁄– ε+
PU PL–

---------------------------------------------------------

PU QL ε+–( )2

2 PU PL–( ) QU QL–( )
--------------------------------------------------------

PU PL+( ) 2⁄ ε QL–+
QU QL–

-------------------------------------------------------

Figure 93: Relative Positions of Event Space and ε-Stripe and Probability Formulas

where (%) =  and (*) = 
QU PL ε––( )2

2 PU PL–( ) QU QL–( )
-------------------------------------------------------- PU QL ε––( )2

2 PU PL–( ) QU QL–( )
--------------------------------------------------------
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# Code Figure Formula

8 1213 − (*)

9 1223 1.0 − (%) − (*)

10 1133

11 1313

12 1333 − (%)

13 1233 − (%)

14 1323 − (%)

PU QU QL+( ) 2⁄– ε+
PU PL–

---------------------------------------------------------

2ε
QU QL–
----------------------

2ε
PU PL–
--------------------

QU PL ε+–( )2

2 PU PL–( ) QU QL–( )
--------------------------------------------------------

QU PU PL+( ) 2⁄– ε+
QU QL–

--------------------------------------------------------

QU QL+( ) 2⁄ ε PL–+
PU PL–( )

--------------------------------------------------------

Figure 94: Relative Positions of Event Space and ε-Stripe and Probability Formulas

where (%) =  and (*) = 
QU PL ε––( )2

2 PU PL–( ) QU QL–( )
-------------------------------------------------------- PU QL ε––( )2

2 PU PL–( ) QU QL–( )
--------------------------------------------------------
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# Code Figure Formula

15 2222 1.0

16 2223 1.0 − (*)

17 2233

18 2323

19 2333

20 3333 0.0

QU PU PL+( ) 2⁄– ε+
QU QL–

--------------------------------------------------------

QU QL+( ) 2⁄ ε PL–+
PU PL–( )

--------------------------------------------------------

QU PL ε+–( )2

2 PU PL–( ) QU QL–( )
--------------------------------------------------------

Figure 95: Relative Positions of Event Space and ε-Stripe and Probability Formulas

where (%) =  and (*) = 
QU PL ε––( )2

2 PU PL–( ) QU QL–( )
-------------------------------------------------------- PU QL ε––( )2

2 PU PL–( ) QU QL–( )
--------------------------------------------------------
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shape is always a triangle (as discussed previously). For the relative position of a corner

and the ε-stripe, we define the following cornercode cc of a point:

Definition 16 Cornercode (cc) of a point in the event space

A point (p,q) in the event space has the corner code cc(p,q) with

(7)

Intuitively, the cornercode is 1 if the point is left (or above) from the ε-stripe, 3 if it is

right (or underneath) from the ε-stripe, and 2 if it is inside the ε-stripe (cf. figure 97). For

an event space given by its upper and lower bounds (PL,PU,QL,QU), the corners are

denoted as C1, C2a, C2b, and C3 as depicted in figure 96. We induce the cornercode to the

complete event space given by its lower and upper bounds:

Definition 17 Cornercode cc(ES) of the event space

The cornercode of the event space ES given by the lower and upper limits 

ES = (PL,PU,QL,QU) (8)

is the 4-tuple:

cc(ES) = (cc(C1), cc(C2a), cc(C2b), cc(C3) ) (9)

Formally, there exist 34=81 different 4-tuples over the alphabet {1,2,3}. However, not all

these 4-tuples are geometrically meaningful. For instance it is not possible that simulta-

cc p q,( )
1 if q p ε+>
2 otherwise 

3 if q p ε–<





=

C1 C2a

C2b C3

Figure 96:  Identifiers for the Corners of the Event Space

p

q

C2b = (PL,QL)

C1  = (PL,QU)

C3  = (PU,QL)

C2a = (PU,QU)

PL PU

QL

QU
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neously C1 is below and C3 above the ε-stripe. As C1 is left from C2a and C2a is above

C3 we have the constraint:

cc (C1) ≤ cc (C2a) ≤ cc (C3) (10)

And as C1 is above C2b and C2b is left from C3 we have the constraint:

cc (C1) ≤ cc (C2b) ≤ cc (C3) (11)

The corner code of C2a may be greater than, less than, or equal to the corner code of C2b.

The following lemma states that there are 20 4-tuples that fulfill the two constraints

above.

Lemma 7. Completeness of Case Distinction

There are 20 different intersection shapes for the event space and the ε-stripe.

Proof. By complete enumeration of all four-tuples: There are 3 tuples where cc(C1) =

cc(C3): 1111, 2222, and 3333. If the difference between cc(C1) and cc(C3) is equal to 1

(i.e. tuples like 1??2 or 2??3), we obtain 2 possibilities for each of the corner codes

cc(C2a) and cc(C2b), i.e. 2·22 = 8 different tuples. For a difference of two between cc(C1)

and cc(C3), which corresponds to tuples like 1??3, we have a choice out of three for each

of the corners C2a and C2b, i.e. 23 = 9 tuples. Summarized, we obtain 20 different tu-

ples

Figure 97:  The ε-stripe

p

q

ε

ε cc = 2 cc = 3cc = 1

ε-s
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q =
 p 

+ ε

q =
 p 

− ε

45°
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Note that the cornercodes 1111 and 3333 which are associated with a probability of

0.0 actually are never generated because the corresponding partitions have a distance of

more than ε and, thus, are excluded by the preceding filter step.

Each corner code of the event space is associated with a geometric shape of the inter-

section between event space and ε-stripe. The shape varies from a triangle (e.g.

cc = 1112) to a six-angle (cc = 1223). The fact that only 45° and 90° angles occur facil-

itates a simple and fast computation. Figure 93 shows the complete listing of all 20

shapes along with the corresponding corner codes and the formulas to compute the inter-

section area. Note that Lemma 6 covers the cases 2 (cc = 1112) and 19 (cc = 2333).

The concept of the cornercodes is not only a formal means to prove the completeness

of our case distinction but also provides an efficient means to implement the area deter-

mination. Our algorithm computes the corner code for each of the 4 corners of the event

space, concatenates them using arithmetic operations and performs a case analysis be-

tween the 20 cases.

11.6 Determining the Optimal Sort Dimension

Our algorithm determines the sort dimension such that the mating probability Wi[ε] is

minimized. Ties are broken by random selection, i.e. 

dsort = some {di | 0 ≤ i < d, Wi[ε] ≤ Wj[ε] ∀ j, 0 ≤ j < d}. (12)

Thus, we have an easy way to evaluate the formula for the sort dimension. As Wi[ε]

merely is evaluated for each dimension di, thus keeping the current minimum and the

corresponding dimension in local variables, the algorithm is linear in the dimension d of

the data space and independent of all remaining parameters such as the number of points

stored in the partitions, the selectivity of the query, etc. Moreover, the formula must be

evaluated only once per pair of partitions. This constant (with respect to the capacity of

the partition) effort is contrasted by potential savings which are quadratic in the capacity

(number of points stored in a partition). The actual savings will be shown in the subse-

quent section.
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11.7 Experimental Evaluation

In order to show the benefits of our technique we implemented our optimal dimension-

ordering algorithm on top of several basic similarity join methods and performed an

extensive experimental evaluation using artificial and real data sets of varying size and

dimension. For comparison we tested our algorithm not only against plain basic tech-

niques, but also against a simple version of the dimension-ordering algorithm which

does not calculate the best dimensions for each partition pair, but chooses one dimension

which then is used globally for all partition pairs. In the following we will not only

observe that our algorithm can improve CPU-efficiency by an important factor, but we

will also see that it is optimal in the sense that it performs much better than the simple

dimension-ordering algorithm − even if this algorithm chooses the best global dimen-

sion.

We integrated the ODO-algorithm into two index-based techniques, namely the Mul-

tipage Index Join (MuX) [BK 01] and the Z-order-RSJ which is based on the R-tree

Spatial Join (RSJ) [BKS 93] and employs a page scheduling strategy using Z-ordering.

The latter is very similar to the Breadth-First-R-tree-Join (BFRJ) proposed in [HJR 97].

We also implemented the ODO-algorithm into the recently proposed Epsilon Grid Order

(EGO) [BBKK 01] which is a technique operating without preconstructed index. 

The Multipage Index (MuX) is an index structure in which each page accommodates

a secondary main-memory search structure which effectively improves the CPU perfor-

mance of the similarity join. We implemented ODO on top of this secondary search

structure, i.e. we measured the improvement that ODO brings on top of this secondary

search structure. For comparison, we used the original MuX code which also exploited

the secondary search structure.

All our experiments were carried out under Windows NT4.0 on Fujitsu-Siemens Cel-

sius 400 machines equipped with a Pentium III 700 MHz processor and 256 MB main

memory (128 MB available). The installed disk device was a Seagate ST310212A with
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Figure 98: Experimental Results for MuX: Plain Basic Technique, ODO and SDO
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Figure 99: Experimental Results for MuX: Uniformly Distributed 8-D Data
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a sustained transfer rate of about 9 MB/s and an average read access time of 8.9ms with

an average latency time of 5.6ms.

Our 8-dimensional synthetic data sets consisted of up to 800,000 uniformly distribut-

ed points in the unit hypercube. Our real-world data set is a CAD database with 16-

dimensional feature vectors extracted from geometrical parts. 

The Euclidean distance was used for the similarity join. We determined the distance

parameter ε for each data set such that it is suitable for clustering following the selection

criteria proposed in [SEKX 98] obtaining a reasonable selectivity.

Figure 98 shows our experiments comparing the overall runtime i.e. I/O- and CPU-

time for the plain basic technique MuX either to MuX with integrated ODO or integrated

simple dimension-order (SDO) for all possible start dimensions. The left diagram shows

the results for uniformly distributed 8-dimensional artificial data while the right diagram

shows results for 16-dimensional real data from a CAD-application. The database con-

tained 100,000 points in each case. The SDO-algorithm depends heavily on the shape of

the page regions i.e on the split algorithm used by the index employed by the basic

technique. 

For uniformly distributed artificial data the loading procedure used by MuX treats all

dimensions equally and therefore the results for the simple dimension-sweep algorithm

are roughly the same for all start dimensions. ODO performs 6-times faster than plain

MuX and 4 times faster than the best SDO while SDO itself is about 1.5 times faster than

plain MuX. Note again that our algorithm chooses the most suitable dimension for each

pair of partitions. Therefore, it is possible that ODO clearly outperforms the simple

dimension sweeping technique (SDO) even for its best dimension. 

For our real data set SDO shows varying performance with varying start dimension.

We can even observe that for some start dimensions the overhead of SDO outweighs the

savings and overall performance degrades slightly compared to the plain basic tech-

nique. This shows that it can be unfeasible to apply dimension-ordering for one fixed

start dimension. MuX with integrated ODO is about 5.5 times faster for the real data set
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than plain MuX while it is still 3 times faster than the SDO with the best performance,

however it is more than 6 times faster than SDO with the worst performance. 

Figure 99 shows all results for the uniformly distributed artificial data set for varying

database size, including the diagram with distance calculations. We can see that the plain

MuX performs up to 50 times more distance calculations than with ODO. The diagrams

for the real data set are left out due to space ristrictions.

In order to show that the optimal dimension-ordering algorithm can be implemented

on top of other basic techniques as well, we show the results for the Z-order-RSJ with

uniformly distributed data in figure 100. Z-order-RSJ without ODO is up to 7 times

slower than with integrated ODO and performs up to 58 times more distance calcula-

tions. The results for Z-order-RSJ with real data are shown in figure 101. We can see a

speedup factor of 1.5 for SDO vs. plain Z-order-RSJ with respect to total time and of 1.8

with respect to distance calcualtions. ODO performs 3.5 times faster and performs 17

times fewer distance calculations than SDO while it performs 5.5 times faster and up to

25 times less distance calculations than SDO.

EGO was used to demonstrate integration of ODO with a basic technique that does

not use a preconstructed index. The results are given in figure 102 where EGO with

SDO, as well as plain EGO clearly perform worse than ODO i.e. SDO is about 1.5 times
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Figure 102: Experimental Results for EGO (16d CAD data)
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faster than plain EGO, but ODO is twice as fast as SDO and outperforms plain EGO by

a factor of 3.5.

11.8 Conclusions

Many different algorithms for the efficient computation of the similarity join have been

proposed in the past. While most known techniques concentrate on disk I/O operations,

relatively few approaches are dedicated to the reduction of the computational cost, al-

though the similarity join is clearly CPU bound. In this chapter, we have proposed the

Optimal Dimension Order, a generic technique which can be applied on top of many

different basic algorithms for the similarity join to reduce the computational cost. The

general idea is to avoid and accelerate the distance calculations between points by sort-

ing the points according to a specific dimension. The most suitable dimension for each

pair of pages is carefully chosen by a probability model. Our experimental evaluation

shows substantial performance improvements for several basic join algorithms such as

the multipage index, the ε-grid-order and the breadth-first-R-tree join.
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Chapter 12
Conclusions

Both data mining and query processing on feature data sets are emerging domains of

research. The objective of our thesis was to bridge the gap between these two domains.

With the similarity join we have proposed a powerful database primitive to support data

analysis and data mining on large databases. The material presented in this thesis has

contributed to this goal both theoretically as well as practically. Our work had two fo-

cusses: At the one hand, we demonstrated the implementation of important basic algo-

rithms for data mining on top of the similarity join. At the other hand, we proposed new

algorithms as well as a cost model and optimization techniques for the similarity join.

Our intention was to promote the similarity join in the research community and to

achieve awareness of the similarity join as a powerful database primitive to support

various prospective applications.

12.1 Contributions

In the literature, there are several different definitions for join operations involving sim-

ilarity. Therefore, at the beginning of our thesis, we propose a general definition for the

similarity join and give a taxonomy of the different similarity join operations. We distin-

guish between approaches where the join predicate is a range search and approaches
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where the join condition bases on the k-nearest neighbor principle. This taxonomy gives

our thesis the main structure. In this summarization, we group together applications and

algorithms.

12.1.1  Applications of the Similarity Join

There are many applications for which it is quite straightforward to use the similarity

join as a database primitive. In chapter 4, however, we have shown how to transform

density based clustering algorithms such that they can use the similarity join as a data-

base primitive. In particular, we demonstrate such a transformation for the density based

clustering method DBSCAN and for a density based analysis method for the hierarchical

cluster structure of a data set called OPTICS. 

For these two methods, the transformation is particularly challenging because in con-

trast to some other methods presented in this thesis, DBSCAN and OPTICS in their

original definitions enforce a certain order in which similarity queries are evaluated.

Therefore it is not straightforward to replace the similarity queries by the similarity join.

We proposed two methods of transformation: The first, called semantic rewriting first

transforms the clustering algorithm semantically to ensure that it is independent of the

order in which join pairs are generated. This is done by assigning cluster IDs tentatively,

and with a complex action table which handles inconsistent tentative results. The other

technique is called join result materialization. The join result is predetermined prior to

the run of the clustering algorithm and similarity queries are efficiently answered by

lookups to the materialized join result. 

We can show for both techniques that the result of the clustering algorithms is identi-

cal to that of the original algorithms. Our experimental evaluation yields performance

advances of up to a factor of 50 by our techniques. 

To demonstrate that using the similarity join is not always complex we also give in

chapter 5 a couple of application algorithms for which this transformation is straightfor-

ward. The applications presented here are robust similarity search in sequence data

where the join leads in particular to robustness with respect to noise and scaling. We also

present a few generalizations of this technique to similarity of multidimensional se-
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quences (i.e. raster or voxel data) and to partial similarity. Also presented are applica-

tions like catalogue matching and duplicate detection. All these algorithms are based on

the database primitive of the distance range join.

Chapter 9 is dedicated to the applications of the k-Nearest Neighbor Join (k-nnj)

which combines each point of a point set R with its k nearest neighbors in another point

set S. Many standard tasks of data mining evaluate k-nearest neighbor queries for a large

number of query points. Examples are clustering algorithms such as k-means, k-medoid

and the nearest neighbor method, but also data cleansing and other pre- and postprocess-

ing techniques e.g. when sampling plays a role in data mining. Our list of applications

covers all stages of the KDD process. In the preprocessing step, data cleansing algo-

rithms are typically based on k-nearest neighbor queries for each of the points with

NULL values against the set of complete vectors. The missing values can be computed

e.g. as the weighted means of the values of the k nearest neighbors. Then, the k-distance

diagram is a technique for a suitable parameter selection for data mining. In the core

step, i.e. data mining, many algorithms such as clustering and classification are based on

k-nn queries. In all these algorithms, it is possible to replace a large number of k-nn

queries which are originally issued separately, by a single run of a k-nn join. Therefore,

the k-nn join gives powerful support for all stages of the KDD process. In chapter 9, we

show how some of these standard algorithms can be based on top of the k-nearest neigh-

bor join.

12.1.2  Algorithms for the Similarity Join

We have proposed algorithms for both kinds of similarity joins, those based on the range

search as well as those based on nearest neighbor search. Additionally we can distin-

guish our solution to the applied paradigms, i.e. whether or not they operate on multidi-

mensional index structures.

Our most important contribution to the first group, index based join algorithms is a

cost model for the distance range join which estimates the index selectivity, i.e. the

number of page pairs which must be considered to compute the join result (cf. chapter 6).

The index selectivity is the key factor which is responsible for I/O and CPU cost of the
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join algorithms. We also show how the logical page capacity of these index structures

can be optimized in order to minimize CPU and I/O time. 

The concept used in this cost model is the Minkowski sum which is here modified to

estimate the number of page pairs from the corresponding index structures which have

to be considered. In contrast to usual similarity search, the concept of the Minkowski

sum must be applied twice for the similarity join in order to estimate the number of page

pairs which must be joined. 

During this analysis, we discover a serious optimization conflict between I/O and

CPU optimization. While large pages optimize the I/O, the CPU performance benefits

from small pages. This results in the observation that in traditional index structures only

one of these performance factors can be optimized.

To solve the conflict, we propose in chapter 7 a novel index architecture called Mul-

tipage Index (MuX). This index structure consists of large data and directory pages

which are subject to I/O operations. Rather than directly storing points and directory

records an these large pages, these pages accommodate a secondary search structure

which is used to speed up the CPU operations. To facilitate an effective and efficient

optimization, this secondary search structure has again an R-tree like structure with a

directory and data pages. Thus, the page capacity of the secondary search structure can

be optimized by the cost functions developed in chapter 6, however, for the CPU trade-

off. 

We show that the CPU performance of MuX is similar (equal up to some small dila-

tational management overhead) to the CPU performance of a traditional index which is

purely CPU optimized. Likewise, we show that the I/O performance resembles that of an

I/O optimized traditional index. Our experimental evaluation confirms this and demon-

strates the clear superiority over the traditional approaches.

The Multipage Index is also applied in chapter 10 to implement the k-nearest neigh-

bor join. Join algorithms on the nearest neighbor principle are more difficult to imple-

ment as it is not immediately decidable which page pairs must be formed to compute the

join result. Therefore, much more strategic decisions must be made to determine a suit-
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able order for the page accesses and for the join between page pairs. We develop two

strategies, a page access strategy and a processing strategy for these purposes.

For join processing without support of any precomputed index structure, we propose

in chapter 8 the ε grid order, a sort order which is founded on a virtual grid partition of

the data space. This method is based on the observation that for the distance range join

with a given distance parameter ε, a grid partition with a grid distance of ε is an effective

means to reduce the search space for join partners of a point p. Due to the curse of

dimensionality, however, the number of grid cells in which potentially joining points are

contained explodes with the data space dimension (O(3d) cells). To avoid considering

the grid cells one by one, we introduce the grid partition only in a virtual way as the basis

of a particular sort order, the ε grid order, which orders points according to grid cell

containment. The ε grid order is used as ordering criterion in an external memory sort

operator. Later, the ε grid order supports effective and efficient algorithms for CPU and

I/O processing, particularly for large data sets which cannot be joined in main memory.

Our last contribution to algorithms for similarity joins is a generic technique to accel-

erate and partially avoid the finalizing distance computations when computing the sim-

ilarity join. It can be applied on top of all join algorithms proposed in this thesis and also

on most algorithms described in the related work chapter. In spite of all optimization

efforts, most of these algorithms are clearly CPU bound, and the most important cost

factor are the finalizing distance calculations between the feature vectors. Our optimiza-

tion technique accelerates these distance calculations by selecting the dimension with

the highest selectivity and sorting the points along this optimal dimension. Therefore,

we call this technique the optimal dimension order. To select an optimal dimension our

technique considers the regions which are assigned to the considered partitions. It is not

restricted to index based processing techniques but can also be applied on top of hashing

based methods or grid based approaches such as the size separation spatial join, the ε-

kdB-tree or our ε Grid Order.

To summarize and overview the contributions made in this thesis cf. figure 103 which

gives again a small taxonomy of the similarity join and classifies our contributions ac-

cording to the two categories applications and algorithms which are, in turn categorized
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into index based and non index based techniques. Our contributions from this thesis are

marked with ovals and with links to the corresponding chapters.

12.2 Future Work

Besides complementing and even strengthening our effort in the successful areas of

database primitives for similarity search and data mining, we have identified several

research directions into which we plan to extend our future work. This includes opening

new, innovative application domains with new challenging research potential, a general

framework for the development of similarity search systems, and database technology

centered research.

12.2.1  New Data Mining Tasks

Due to a complex analysis of the complete data set data mining algorithms are often of a

much higher computational complexity than traditional database applications. This has

mainly prevented data mining tasks from being strongly integrated into the database

environment. Our method of identifying very powerful database primitives such as the

similarity join (or as another example, the convex hull operation, cf. [BK 01b]), data

mining algorithms may become standard database applications like others. The conse-

quence is a much tighter integration of data mining in the information infrastructure of

an enterprise which yields many advantages.

Due to the dramatic increase of performance by our approaches, it will be possible to

implement quite new kinds of data mining algorithms which detect new kinds of pat-

terns. An interesting, new challenge is subspace clustering [AGGR 98]. Typically, not

all attributes of feature vectors carry information which is useful in data mining. Other

attributes may be noisy and should be ignored as they deteriorate the data mining result.

Identifying the relevant attributes, however, is a difficult task. Subspace clustering com-

bines the two tasks of selecting attributes and finding clusters. Subspaces, i.e. groups of

attributes, are determined such that maximal, distinguishable clusters can be found. First
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algorithms, however, suffer from the high computational cost. Basing them on top of

powerful database primitives could open the potential to make this computation feasible. 

Another approach could be to make current data mining much more interactive. The

current process is to select parameters, to run a data mining algorithm and, finally, to

visualize the result of the algorithm. Our dramatic performance gains could open the

potential to make this process so fast that a user may change parameters and immediately

see the resulting changes in the visualization. Here, it could be beneficial to apply new

concepts in database systems which evaluate queries approximately [CP 00] or produce

first results in an early stage of processing.

12.2.2  New Application Domains

We have identified three areas of new applications which have only superficially been

considered as database applications, in spite of vast data amounts and clear relations to

similarity search and data mining. 

Electronic Commerce

Many stages in electronic commerce require concepts from similarity search and data

mining. In the early stage, marketing, it is essential to perform a customer segmentation,

a typical data mining application, to make directed offers to which the customers are

maximum responsive. 

In the core area of e-commerce, booking and sales systems, users specify their needs

in an inexact way. For instance, they have initial ideas about features their product

should have and the corresponding price. Then, in an interactive process the system has

to find out which of the initial features are how relevant to the specific customer and will

find in this way a product which fits best the users notions.

After commitment of the trade the final stage is marketing for additional products. A

good (human) salesman develops a sense what additional high-revenue products could

be of interest for the customer, based on his experience with previous customers pur-

chasing similar products. This behavior could also be imitated using concepts of similar-

ity search and data mining.
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For applications mentioned above, it is necessary to extend known concepts and to

develop new concepts. Classical similarity search takes the basic assumption that the

similarity measure is a parameter given by the user. Therefore, weights for the individual

features are assumed to be known. Here, we are rather facing the situation that the mea-

sures are initially completely unknown and develop during the selection process. Instead

of assuming a uniform importance of the features, and ranking the products according to

the Euclidean distance, the user should be provided with a selection of products that

reveals different weighting of the features. A selection with varying weights of features

essentially corresponds to the convex hull of a subset of the data [BK 01b]. The products

which are further investigated by the customers can be used for a relevance feedback, to

determine a suitable similarity measure. A first approach to use relevance feedback for

this purpose is the MindReader [ISF 98] which determines a quadratic form distance

measure [BKS 01]. For electronic commerce, we identify two additional requirements.

First, the relevance feedback should be extended to a multi modal model to take into

account that users in general do not only like one single “ideal” product but often have a

few alternatives in their minds which are not clearly separated in their notion. The sec-

ond requirement is a seamless integration of the concepts of similarity search, convex

hull, and relevance feedback.

Biometry Databases

Biometry applications store human data such as features from face images, fingerprints,

the hand geometry, the retina, or even voice and handwriting for identification and au-

Figure 104: Characteristic of Fuzzy Biometry Data
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thentication purposes. For many applications, a high number of feature vectors are

stored and due to the inexactness of the measuring devices, similarity search is needed

for identification.

In contrast to traditional similarity search, the uncertainty of the individual features is

not uniform among all features and even for a single feature, the uncertainty is not uni-

form among all stored vectors. Instead, each feature of each feature vector is associated

with an individual uncertainty which is stored in the database. With this concept, it is

possible to capture problems introduced by different environments and technical devic-

es. The uncertainty of facial features such as the eye distance, for instance, depends on

the angle between camera and person, and also on the illumination. The error can be

assumed to be taken from a Gaussian distribution, so the uncertainty is measured in

terms of a standard deviation. 

The challenge here is to develop specialized index structures to store feature vectors

with individual uncertainty vectors and query processing algorithms that facilitate a fast

and efficient evaluation of queries such as 

• determine all persons that match the query person with a probability of at least

10%

• determine the person that matches the query person with maximum probability.

Technical Analysis of Share Price

One of the classical applications of similarity search and data mining is clearly the anal-

ysis of time sequences [ALSS 95] such as share price analysis. Various similarity mea-

Ascend. Triangle Trend Channel Double Bottom

Figure 105: Chart Analysis
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sures have been proposed. For practical analysis, however, quite different concepts are

used, such as indicators, i.e. mathematical formulas derived from the time sequence that

generate trading signals (buy, sell). Another concept for the analysis of a time sequence

is the chart analysis (cf. figure 105) which detects typical formations in the share price

which are known to indicate a certain direction of the future price. Examples are trian-

gles, trend channels, lines of support and resistance, W-formations (double bottom),

head-and-shoulder-formations etc.

For effectively supporting users in their share price analysis, the requirement is to

integrate both indicators as well as formation analysis into search systems and into se-

quence mining algorithms. Suitable index structures and query processing techniques

must be developed to facilitate a fast and efficient analysis.

12.2.3  A Framework for the Development of Similarity Search Systems

The problem of similarity search should also be considered in a more general way. Cur-

rently, similarity search methods are tailored to specific application domains, and only

very basic techniques such as the nearest neighbor search solve general problems that

arise in virtually all similarity search systems.

The main difficulty in the development of similarity measures is the communication

between domain experts and similarity experts, as the similarity search involves a deep

knowledge of the scientific concepts of the domain. Vice versa, domain experts can

hardly imagine what a similarity search system may achieve and what concepts must be

applied for this purpose.

Our idea is to alleviate this problem by a common framework that bundles concepts

which are often applied in similarity search in a toolbox. This toolbox could contain

various methods of feature extraction such as histograms, fourier transformation, and

moment invariants, and various search methods such as similarity search, query decom-

position for making the search robust, search for partial similarity, etc.

This toolbox could be complemented with visualization systems, evaluation methods

and the above mentioned data mining techniques such as subspace clustering, convex
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hull and mind reader which may be used to determine whether the resulting feature

transformation is adequate.
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