Power ful Database Support for
High Perfor mance Data Mining

Habilitationsschrift im Fach Informatik
an der Fakultét fur Mathematik und Informatik
der Ludwig-Maximilians-Universitat Mtnchen

von
Christian Bohm

2001

Power ful Database Support for
High Perfor mance Data Mining

Habilitationsschrift im Fach Informatik
an der Fakultét fur Mathematik und Informatik
der Ludwig-Maximilians-Universitat Mtnchen

von
Christian Bohm

Tag der Einreichung:

Berichterstatter:
Professor Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universitéat Mtnchen
Professor Dr. Stefan Conrad, L udwig-Maximilians-Universitéat M tnchen
Professor Dr. Gerhard Weikum, Universitdt des Saarlandes

Acknowledgments

| would like to express my thanks to all people who supported me during the past years
while | have been working on this thesis. My warmest thanks go to Professor Dr. Hans-
Peter Kriegel. Hetook particular careto maintain agood working atmosphere within the
group and to provide a supportive and inspiring environment. | am grateful to Professor
Dr. Stefan Conrad and to Professor Dr. Gerhard Weikum from the University of Saarland
who both were readily willing to act as referees to this work. Thiswork could not have
grown and matured without the discussions with my colleagues. In particular | would
like to mention here Dr. Bernhard Braunmdiller and Florian Krebs. Most of my publica-
tions have been donein aclose collaboration with them. But also al my other colleagues
from the database systems group of the University of Munich had important contribu-
tions to my work by fruitful discussions and joint publications. | would like to thank
EvgueniaAltareva, Dr. Mihael Ankerst, Dr. Markus Breunig, Dr. Martin Ester, Matthias
Grol3, Karin Kailing, Professor Dr. Daniel Keim, Martin Pfeifle, Dr. Marco Potke, Pro-
fessor Dr. Jorg Sander, Stefan Schdnauer, Matthias Schubert, and Dr. Thomas Seidl. Dr.
Stefan Berchtold gave me the opportunity to work as aconsultant in his startup company
stb ag, Augsburg. During aresearch visit to the AT& T research lab in Florham Park, NJ,
USA, | cooperated with Professor H. V. Jagadish, Ph.D. | would like to thank all my
studentswho supported my work: Johann Dedie, Michael Euringer, Gerald Klump, Sven
Messfeld, Urs Michel, Wolfgang M uhlbauer, and Gert Unterhofer. Thiswork could not
have been completed without the administrative help of Susanne Grienberger and the
technical support of Franz Krojer. Last, but not least, | want to thank my parents, all my
friends and especially my girlfriend Bianca

Christian Bohm
Munich, 2001.

Abstract

Larger and larger amounts of data are collected and stored in databases, increasing the
need for efficient and effective analysis methods to make use of the information con-
tained implicitly in the data. The extraction of such potentially useful information is
called data mining.

In the thesis, it is shown that numerous data mining methods such as density based
clustering, k-means clustering, outlier detection, or k-nearest neighbor classification can
be based on the similarity join as a database primitive. By such a reformulation, the
identical result can be achieved at adrastically improved efficiency.

The similarity join becomes an important basic operation of advanced database man-
agement systems. For a given set of feature vectors, the similarity join determines those
object pairswhich are similar according to some appropriate similarity measure, in SQL
style

SELECT * FROM R, SWHERE distance (R.point, Spoint) < €.

Inthisthesis, we concentrate on both aspectsof the similarity join applicationsaswell
as algorithms. For the first aspect we show how typical algorithms of data analysis and
data mining can be reformulated such that they are exclusively based on the similarity
join. According to several example applications, we demonstrate the enormous perfor-
mance potential of this database primitive.

We also introduce several different kinds of similarity join. The most important vari-
ant which correspondsto the SQL statement aboveis based on therange search asajoin

v Abstract

predicate. But we also introduce two similarity join operations which are based on the
paradigm of the k-nearest neighbor search.

The main part of the thesisis dedicated to the efficient algorithms for the different
kinds of similarity join. First we introduce a new cost model for index based similarity
join algorithms. Starting from this cost model, we develop an innovative index architec-
turewhich takesinto account that similarity join algorithmsrequire a separate optimiza-
tion of CPU and 1/O cost.

Next, we develop a similarity join algorithm which is particularly suited for massive
data sets. It is based on a particular sort order for high dimensional data. Then we pro-
pose a novel agorithm for the similarity join upon a nearest neighbor join condition.
Finally, we present atechnique for the reduction of CPU cost which isuniversally appli-
cablein index based and non-index-based similarity join methods.

A perspective on future research directions in the area of database primitives for
similarity search, data analysis, and data mining concludes our thesis.

Abstract (In German)

Immer groRere Datenmengen werden gesammelt und in Datenbanken gespeichert. Hier-
durch wird die Notwendigkeit nach effektiven und effizienten Anaysemethoden, die
das in den Daten implizit vorhandene Wissen nutzbar machen, immer dringender. Die
Extraktion von solchen potentiell niitzlichen Informationen bezeichnet man als Data
Mining.

In dieser Arbeit wird gezeigt, dal3 sich zahlreiche Data-Mining-Verfahren wie z.B.
dichtebasiertes Clustering, die Ermittlung von Ausreif3ern oder die simultane Klassifi-
kation auf der Basis des Similarity Join (Ahnlichkeitsverbund) als Datenbank-Grund-
operation abstitzen lassen. Es wird nachgewiesen, dal3 sich durch eine entsprechende
Umformulierung dieser Verfahren das identische Ergebnis mit einer deutlich erhdhten
Effizienz erzielen [af3t.

Der Similarity Join wird hierdurch zu einer wichtigen Basisoperation von Multime-
dia-Datenbanksystemen. Innerhalb einer Menge von Multimedia-Objekten ermittelt der
Similarity Join digjenigen Objekt-Paare, die einander beziiglich eines featurebasierten
Abstandsmalies am éhnlichsten sind, in SQL-Notation

SELECT * FROM R, SWHERE distance (R.point, Spoint) < €.

Diese Arbeit konzentriert sich gleichermal3en auf beide Aspekte des Similarity Join,
Anwendungen sowie Algorithmen. Fur den Anwendungs-Aspekt wird gezeigt, wie ty-
pische Aufgaben der Datenanalyse und des Data Mining mit Hilfe des Similarity Join
gel6st werden konnen. Es wird aufgezeigt, dal3 typische Standard-Algorithmen dieser
Bereiche reformuliert werden kdnnen so dal3 sie ausschliefdlich auf dem Similarity Join

Vi Abstract (In German)

aufsetzen. Anhand verschiedener Beispielanwendungen wird das enorme Effizienzpo-
tenzial demonstriert, das sich durch die Verwendung dieser Datenbank-Grundoperation
ergibt.

In dieser Arbeit beschéftigen wir uns mit verschiedenen Arten von Similarity-Join-
Operationen. Die wichtigste Variante, die auch dem oben aufgefihrten SQL -Komman-
do entspricht, basiert auf der Bereichssuche a's Join-Pradikat. Eswerden aber auch zwel
Join-Operationen eingefUhrt, die auf dem Paradigma der k-néchsten-Nachbar-Suche be-
ruhen.

Der Hauptteil dieser Arbeit ist den effizienten Algorithmen fir die verschiedenen
Arten des Similarity Join gewidmet. Zunachst wird ein Kostenmodell fir die indexba-
sierte Anfragebearbeitung des Similarity Join eingefihrt. Ausgehend von diesem Mo-
dell wird eineinnovative Indexstruktur entwickelt, die einer speziellen Anforderung des
Similarity Join, CPU- und 1/O-Kosten getrennt zu optimieren, Rechnung trégt.

Dann wird ein Similarity Join Algorithmus entworfen, der sich speziell fir massive
Datenmengen eignet. Er basiert auf einer speziellen Sortierordnung fr hochdimensio-
nale Daten. Als néchstes wird ein neuartiger Algorithmus fur den Similarity Join auf
einer Join-Bedingung gemal3 der k-néchsten-Nachbar-Suche vorgeschlagen. Schliefdlich
entwickeln wir eine generische Technik zur Reduktion der CPU-K osten, die universell
bei Index-basierten wie nicht-Index-basierten Similarity-Join-Algorithmen eingesetzt
werden kann.

Ein Ausblick auf mogliche zukiinftige Forschungsrichtungen im Bereich Basisopera-
tionen fir Ahnlichkeitssuche, Datenanalyse und Data Mining schlief}t die Arbeit ab.

Table of Contents

11
1.2
1.3
1.4
1.5

21
2.2
2.3
231
232

3.1

311
312
3.1.3
314
3.15
3.1.6
3.2

I ntroduction

High Performance DataMining,
Feature DatalasesSo oo
TheSimilarity Join
High Performance Data Mining Based on the Similarity Join
Outlineof the Thesis e

Defining the Similarity Join

General Notion of Similarity JOiNnS
Distance Range Based Similarity Join
Nearest Neighbor Based Similarity Join
(k-) Closest Pair QUENESot ettt
(k-) Nearest Neighbor Join

Related Work

Preliminaries. Indexing High-Dimensional Spaces
Structure of High-Dimensional Indexes.,
Algorithmsfor Insert, Deleteand Update
Exact Matchand Range Query
Nearest Neighbor QUENYo e
R-tree, R*-treg,and X-tree
SStreeand TV-ree
Algorithmsfor the Distance Range Join,

17

17
18
20
20
22

viii

Table of Contents

321
3.2.2
323
324
3.25
3.3

331
332
34

4.1
4.2
421
4.2.2
4.2.3
4.3
431
4.3.2
4.3.3
4.4

5.1
511
512
5.1.3
5.14
5.15
5.2
521
5.2.2
5.3
5.4

Nested LOOP JOIN . ..ot e e e 48
Algorithms upon Preconstructed Indexes 52
Index Constructionon-the-Fly 59
Join Algorithm Based on Object Replication 66
Join AlgorithmsBasedonSorting 69
Nearest Neighbor Based Join Algorithms 72
Closest Pair Queries According to Hjaltason&Samet 73
Alternative Approaches 75
CONCIUSIONS . .ot e 77
Density Based Clustering on the Distance Range Join 79
Clustering Algorithms e 82
Similarity-JoinBased Clustering 84
General [dea 84
Applicationto DBSCANo 89
Applicationto OPTICS e 94
Experimental Evaluation e 98
Page SIZe .. 99
Database Size 102
QUEry RaNgEo 102
CONCIUSIONS . .ot e e 106
Further Applications of the Range Distance Join 109
Robust Similarity Search 110
Query DecompOSItiON ou ittt e 110
Application of the Similarity Join, 111
Further ProCesSiNgo oot e 112
Generalization 113
Continuous Feature Transitions, 114
CatalogueMatching 115
Known transformation 115
Unknown Transformationc.oiiiiinnannnn.n, 116
Duplicale DEtECtiONt 117
CONCIUSIONS . .ot e e e 117

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.11
8.1.2
8.1.3
8.2
821
8.2.2
8.3
8.4

9.1
9.2
9.3
9.4
9.5

A Cost Model for Index Based Similarity Join Algorithms 119

Problemanalysis 120
Optimization of thel/Otime, 125
Optimization of theCPUtimMe 129
CoNClUSIONS 130
MuX: An Index Architecturefor the Similarity Join 133
TheMultipage Index (MUX)t e 134
Index architecture 134
Construction and maintenanCeouuieienne i, 136
Similarity QUENESo 136
JOIN PrOCESSING . . ot ettt et e e 136
Experimental evaluation. 139
ConClUSIONS 145

Epsilon Grid Order: Joining Massive High Dimensional Data 147

TheEpsilonGridOrder ... e 148
Basic Propertiesof the Epsilon GridOrder 148
I/O SchedulingUsingthee GridOrder, 151
Joining TWO I/O-UNItSo e 154
Optimization Potential oo, 158
Separate Optimizationof I/OandCPU 158
Active Dimensions and Distance Calculations 160
Experimental Evaluation 162
CoNClUSIONS . ..o 166

k-Nearest Neighbor Joins: Turbo Charging the KDD Process 169

k-Meansand k-Medoid Clustering, 172
k-Nearest Neighbor Classification 174
Sampling Based DataMiningc.coiiiiiiiiiiii.. 175
K-Distance Diagramsoviui it e 175
ConClUSIONS 176

X Table of Contents
10 Processing k-Nearest Neighbor Joins Using MuX 177
10.1 BasiCAlgorithm 178
10.2 Loading Strategyovvviii i e 180
10.3 Processing Strategyvvvveei e 182
104 Experimental Evaluation 183
105 ConClUuSIONS ... 188
11 Optimizing the Similarity Join 191
11.1 Optima Dimension Orderottt 192
11.2 AlQOrthm . 192
11.3 Determining the Optimal Sort Dimension 193
11.4 Probability Model 195
115 EfficientComputation ... 199
11.6 Determining the Optimal Sort Dimension 205
11.7 Experimental Evaluationc.iiiiiiiiiiii 206
11.8 ConClUSIONS . ..ottt e 213
12 Conclusions 215
121 ContribUtiONS . ..ot e e 215
12.1.1 Applications of the Similarity Join i, 216
12.1.2 Algorithmsfor the Similarity Join 217
122 FUtUreWOIK .. e e 221
1221 New DataMining TasksSo vviii e e e 221
12.2.2 New ApplicationDOmainsov i 222
12.2.3 A Framework for the Development of Similarity Search Systems 225

References 227

List of Figures

1 Introduction

Fig.
Fig.
Fig.
Fig.
Fig.

1 TheKDD PrOCESS. . . vttt ettt e e et et et ettt 2
2. Basicldeaof FeatureDatabases 6
3: Usual Similarity QUENESo 7
4. The Similarity Join (Distance Range Join)coviiinnnnn... 8
5: Database Primitivesfor DataMiningcciiiiiianann.. 9

2 Defining the Similarity Join

Fig.
Fig.
Fig.
Fig.

6: TheDistance Range Join (E-JOIN)ottt e e 19
7: Thek-Closest Pair Query (fork =4) 21
8: Thek-Nearest Neighbor Join(fork=2) 22
9: TheNN-Join(k=21)isnotsymmetric..............ccoiiiiinenan.... 23

3 Related Work

Fig.10: Hierarchical Index Structures, 26
Fig.11: Corresponding Page Regions of an Indexing Structure. 28
Fig.12: MINDIST and MAXDISTot e 33
Fig. 13: MINMAXDIST . e e 34
Fig. 14: The HS Algorithm for Finding the Nearest Neighbor 37
Fig.15: Exampleforthe SplitHistory 43
Fig.16: Situation in the SS-tree where no Overlap-Free SplitisPossible 45
Fig.17: Telestope VeCtOrSot e e 47
Fig.18: Cubeapproximationof points. i, 53
Fig.19: MINDIST for similarity search (I.) andjoin(r.)........................ 54

Fig.20: Plane sweep asalocal optimizationof RSJ. 56

Xil List of Figures
Fig.21: Task definition and staticrangeassignment 56
Fig.22: Breadth-first traversal and intermediatejoinindex 58
Fig.23: Matching of similar and dissimilar partitions 61
Fig.24: Theseededtree e e 61
Fig.25: Grid partitioning of thee-kdB-tree 62
Fig.26: Joinagorithmofthee-kdB-tree 63
Fig.27: Structureof thee-kdB-tree. i 63
Fig.28: Enforcing equal structuresfor all e-kdB-trees. 65
Fig.29: Plug & JOiN i 66
Fig.30: Bootstrap Seeding of the Spatial Hash Join. 67
Fig.31: Partition Based Spatial MergeJoin) ..., 68
Fig.32: Spacefilling Curves e 70
Fig.33: Joins on space-filling curves with and without replication 70
Fig.34: Data Structurefor Orenstein'sSpatial Join vu... 72
Fig.35: Principle of the k-distance join by Hjaltason&Samet 75
Fig.36: Mindist, maxdist, and minmaxdist of apagepair 76

4 Density Based Clustering on the Distance Range Join

Fig. 37:
Fig.38:
Fig. 39:
Fig. 40:
Fig. 41
Fig.42:
Fig.43:
Fig.44:
Fig. 45:
Fig. 46:

Sequence of Range Queriesfor AL 84
An Index Pagination for the SampleDataSet. 88
Tentative Cluster Idso 92
FDBSCAN MaLiX . o v ettt et e e e e e e 93

DBSCAN for increasing page size on (a) wesather dataand (b) imagedata . .. 99
OPTICSfor increasing page size on () weather dataand (b) imagedata . .. 101
Scalability of DBSCAN on (a) weather dataand (b) imagedata 103
Scalability of OPTICS on (a) weather dataand (b) imagedata. 104

DBSCAN for varying query range on (a) weather dataand (b) image data. . 105
OPTICSfor increasing query range on (a) weather data and (b) image data . 107

5 Further Applications of the Range Distance Join

Fig.47:
Fig.48:
Fig. 49:
Fig.50:
Fig.51:
Fig.52:

The Similarity Join in Robust Similarity Search. 112
Window SHIChING oo 113
ExtensontoRaster Images. 113
Continuous Feature TransitionS.ot e 114
CatalogueMatching. 116
Duplicate Detection o 117

Xiii

6 A Cost Model for Index Based Similarity Join Algorithms

Fig.53: The Minkowski Sumfor PagePairs, 122
Fig.54. SelectivitiesNeededto Justifyanindex 124
Fig.55: OptimizingtheJoinfor 1/O e 127
Fig.56: I/O-Optimal Block Size. i 130

7 MuX: An Index Architecturefor the Similarity Join

Fig.57: Index architecture of the multipageindex 135
Fig.58: Join Processing for the MultipagelIndex 137
Fig.59: 4D Uniform DataVarying Database Size, 140
Fig.60: 8D Uniform DataVarying DatabaseSize....................couon.. 140
Fig.61: 8D UniformData. . ..ot e e 141
Fig.62: 9D Rea Datafrom aMeteorology Application. 142
Fig.63: 8D Uniform DataVarying DatabaseSizeooou.. 142
Fig.64: 64D Real Data (Color Histograms) form a Multimedia Application 144

8 Epsilon Grid Order: Joining Massive High Dimensional Data

Fig.65: I/OUnitsintheDataSpace.t 151
Fig.66: 1/OUnitsintheSchedule. 152
Fig.67: SchedulingModes e e 154
Fig.68: Scheduling Algorithm 155
Fig.69: Theactivedimensionof aSequeNCet 157
Fig.70: Algorithm for Joining SeqUENCES.o it 159
Fig.71: Algorithm for Distance Calculations., 160
Fig. 72: Distinguishing Potential of theDimensions 161
Fig. 73: Experimental Results on Uniformly Distributed, 8-Dimensional Data. 163
Fig. 74. Experimental Results on Uniformly Distributed, 8-Dimensional Data. 164
Fig.75: 16-Dimensional Real Datafrom a CAD-Application (Scalability)......... 165
Fig.76: 16-Dimensional Real Datafrom a CAD-Application (Epsilon) 165

9 Kk-Nearest Neighbor Joins: Turbo Charging the KDD Process

Fig. 77: K-Means ClUStEring.ot e et 173
Fig.78: k-Nearest Neighbor Classification 174
Fig.79: k-DistanceDiagramt 176

Xiv List of Figures

10 Processing k-Nearest Neighbor Joins Using MuX

Fig.80: k-nnJoin onthe Multipage Index (herek=1) 179
Fig.81: Structure of afractionated pgqueue., 183
Fig.82: Varying k for 8-dimensional uniformdata 184
Fig.83: Total Time, CPU-Timeand I/O-Timefor hs, k-nnjoin and nblj for varying size of
the database 186
Fig.84: Pruning of bucket pairsfor thek-nnjoin.............. 187
Fig.85: Resultsfor 9-dimensional weatherdata. 187
Fig.86: Resultsfor 16-dimensional CADdata., 188

11 Optimizing the Similarity Join

Fig.87: Integration of the dimension-order-algorithm 192
Fig.88: Ideaof theDimensionOrdert 193
Fig.89: AlgorithmicScheme i e 194
Fig.90: efor partitionsand projectionst 195
Fig.91: Distance and extension of partitions, 197
Fig.92: Determining the mating probability WO[€e] 198

Fig.93: Relative Positions of Event Space and e-Stripe and Probability Formulas. .. 200
Fig.94: Relative Positions of Event Space and e-Stripe and Probability Formulas. .. 201
Fig.95: Relative Positions of Event Space and e-Stripe and Probability Formulas. .. 202

Fig.96: ldentifiersfor the Cornersof theEventSpace 203
Fig.97: TheeStripe. . ..o 204
Fig.98: Experimental Resultsfor MuX: Plain Basic Technique, ODO and SDO 207
Fig.99: Experimental Resultsfor MuX: Uniformly Distributed 8-D Data 208
Fig.100: Experimental Resultsfor Z-RSJ: Uniformly Distributed 8-D Data. 209
Fig.101: Experimental Resultsfor Z-RSJ: 16-D Real Datafrom a CAD-Application 211
Fig.102: Experimental Resultsfor EGO (16d CAD data) 212

12 Conclusions

Fig.103: Taxonomy and Overview of theThesis............................. 220
Fig.104: Characteristic of Fuzzy BiometryData 223
Fig.105: Chart ANalySiS . ..o vt e e e e e 224

Refer ences

Chapter 1
| ntroduction

Since the beginning of the information age, human society is facing a rapid and even
accelerating growth of the available information. Both the number of databases as well
asthe amount of stored data per database isfast increasing, making it infeasible to eval-
uate the data manually. To cope with this information overkill will undoubtedly be one

of the most important challenges of the 21st century.

Traditionally, datain databases are collected for dedi cated applications which process
the data in a relatively simple way such as booking systems, accounting and billing,
storage and transportation planning etc. Companies, however, have also strong interest

to exploit their databases for supporting complex decisions.

Therefore, it is necessary to find interesting patterns in the data such as clusters of
similar database objects [McQ 67], outliers [KN 98], i.e. untypical database entries
which could indicate fraudulent behavior, to assign the database objects to different
meaningful classes[Mit 97], to detect associations (if-then-rules) [AS 94] etc. Such de-
tected patterns are commonly referred to as knowledge and the search for these patterns
is called Knowledge Discovery in Databases (KDD).

2 I ntroduction

c
o -
> = i
7 S % = g
0 o = i T
g & = 5 R
>5[z~ g
Database T‘ T Pattern Knowledge
- - -

Multiple Iterations

Figure 1: The KDD process

The most widespread definition for this notion has been given by Fayyad et al..:

Definition 1 Knowledge Discovery in Databases [FPS 96]
Knowledge Discovery in Databases (KDD) isthe non-trivial process of identifying

« valid

* novel

e potentialy useful

e and ultimately understandable

patternsin data.

The KDD process is an interactive and iterative process, involving numerous steps in-
cluding preprocessing of the data set, applying a data mining algorithm to generate pat-
ternsfrom it, and the evaluation of the results[BA 96]:

* Creating atarget data set:
Selecting a subset of the data or focusing on a subset of attributes or data sam-
ples on which discovery isto be performed.

Data reduction:

Finding useful features to represent the data (i.e. dimensionality reduction) or
transformation methods to reduce the number of variables under consideration
or to find invariant representations of the data.

Data mining:

Searching for patterns of interest in the particular representation of the data:
Classification rules or classification trees, association rules, regression, cluster-
ing etc.

I nter pretation of results:

Visualization of the extracted patterns or visualization of the data giving the
extracted models. Possibly the user has to return to previous steps in the KDD
process if the results are unsatisfactory.

The KDD processisdepicted in figure 1. The core step of knowledge discovery in data-

bases is data mining. Data mining algorithms can be classified according to the kind of
knowledge or pattern which is mined [FPS96], [MCP 93], [FPM 91], [San 99|,
[Bre 01]:

Classification (supervised learning):

Learning a function that maps data records into one of several predefined
classes which capture the common properties among a set of objectsin the data-
base. Each data record contains one dedicated attribute, the class label. The
objective of classification is to analyze this training data and to construct a
model for each class, which can than be used to classify newly arriving data
records (not containing the class label attribute). Example algorithms include
decision tree classifiers [Qui 86] and bayesian classifiers[Mit 97].

Clustering (unsupervised learning):

Identifying a finite set of clusters to describe the data, such that similar data
records are assigned the same clusters and dissimilar ones different clusters.
Typical agorithms are k-means [Sib 72] and its variants.

Data generalization:

Finding a compact description for a subset of the data. Examples of such a
description are association rules, typicaly generated by the apriori-algorithm

4 I ntroduction

[AS 94] and its variants, attribute oriented induction [CH 98], or spatial charac-
terization [EFKS 98].

» Regression and dependency modeling:
Learning a function which maps data records to real-valued variables and dis-
covering functional relationships between variables. Well-known algorithms
from the statistical domain include linear regression with error minimization.

» Change and Deviation Detection:
Discovering significant changes in the data from previous or normative values.
Time series analysis methods fall into this category.

1.1 High Performance Data Mining

Typically, knowledge detected in databases can be applied for

* marketing
» fraud detection
e customer segmentation and scoring

» dtrategic decisions including the orientation of a complete enterprise.

In these applications, the common purpose is to make important, domain-specific deci-
sions based on the gained knowledge. For decision making, it is important, that the
detected knowledgeisvalid and accurate. Therefore, validity and accuracy are the most
important requirements of all methods of knowledge discovery and data mining. Since
algorithms which do not fulfill these requirements are generally not effectively useful,
we call these requirements the effectivity requirements.

For decision making based on knowledge from large databases, however, a second
requirement is becoming of equally high importance: Efficiency. On the one hand, users
areinterested in ajust-in-time analysis of their datato base their decisions on the newest
available information. On the other hand, knowledge discovery involves complex algo-
rithmsfor data analysis. It isdifficult to gain valid and accurate knowledge fast, partic-
ularly when databases continue to rapidly increasein size.

Feature Databases 5

There is a number of well-known approaches to tackle the performance problems of
KDD agorithms such as

» sampling [BKKS 98]
* approximation of attributes, e.g. grid approximations [HK 98]
» dimensionality reduction [FL 95].

All these approaches serve their purpose in accel erating the applied algorithms but have
also their limitations when considering the quality of the result (i.e. the effectivity of the
algorithm) because it is not always obvious that the result of an algorithm on areduced
data set is comparabl e to the result on the original data set.

Therefore, the focus of our work was on approaches to accel erate data mining algo-
rithmsin a quality preserving way. Our objective is to reformulate standard agorithms
of knowledge discovery in databases to gain efficiency but at the sametimeto provethat
theresult of thereformulated algorithmisidentical to theresult of the original algorithm.
Our intention was not to propose any new data mining algorithm, because it is difficult
to assesanew approach if in acomparison with competitive approaches both categories,
effectivity and efficiency are different. The superiority of an approach isdemonstrated in
amore convincing way if it can be shown that the quality of the result is not affected at
al (neither positively nor negatively) but the efficiency is considerably improved.

L ossy accel eration technigues like sampling, approximations, and dimensionality re-
duction can then be additionally applied to achieve further performance gains without
quality guarantees.

1.2 Feature Databases

Our main focus is on data mining algorithms operating on feature databases which are
prevalent in similarity search systemsfor various application domains such as multime-
dia [FBF+ 94, SK 97], CAD [Jag 91, GM 93, BKK 97], medical imaging [KSF+ 96],
time sequence analysis[AFS 93, ALSS 95], molecular biology [KS 98b], etc. The prin-
ciple of afeature transformation is demonstrated in figure 2.

6 I ntroduction

Complex Objects Feature Vectors &-/nn-Search

Feature-
Transform.

— A

CIITTTTT

Figure 2: Basic Idea of Feature Databases

To capture similarity of complex domain-specific objects, the feature transformation
extractsimportant, characterizing properties from the objects. Examples of such proper-
ties (for the domain of CAD objects) are the length, width, and perimeter of a CAD
object but also more complex features such as parameters describing the curvature of the
border of such an object. The sequence of features is interpreted as a vector from a
multidimensional vector space (the feature space). These vectors can be effectively and
efficiently managed using some multidimensional index structure such as an R-tree
[Gut 84], [BKSS 90] or asimilar structure [GG 98].

Most feature databases are high-dimensional which causes particular performance
problems for usua indexing structures. Therefore, a number of dedicated index struc-
turesfor high-dimensional indexing and similarity search has been proposed such asthe
X-tree [BKK 96], the TV-tree [LJF 95], the SS-tree [WJ 96], the pyramid technique
[BBK 98b], the VA-file[WSB 98], and the |Q-tree[BBJ+ 00]. A survey of the problems
of high-dimensional spaces and the most important solutions to them can be found in
[BOh 98].

The most important property of afeature transformationisthat similarity inthe object
Space corresponds to spatial proximity in the feature space. |.e. whenever two of the
complex application objects are similar, the associated feature vectors have asmall dis-
tance according to an appropriate distance metric (often the Euclidean metric). There-
fore, thesimilarity searchisnaturally translated into aneighborhood query in thefeature
Space.

Feature Databases 7

(a) Range Query (b) k-nn Query
&I

Figure 3: Usual Similarity Queries

The two most important types of neighborhood queriesin feature databases are:

* Range Query:
The user specifies aquery object g and aquery radius €. The system retrieves all
objects from the database that have a feature distance from g not exceeding €.

* k-Nearest Neighbor Query
The user specifies a query object g and the result cardinality k. The system
retrieves those k objects from the database that have least distance from q.

Both types of queries are depicted in figure 3. Often a multi-step architecture for query
processing is required. From the users perspective, the k-Nearest Neighbor query is
eas er to handle because the result cardinality k ismoreintuitive than the query radiusce.
To determine a suitable € such that a useful set of result objects is retrieved (i.e. a set
which is not empty and not almost equal to the set of all database objects) is sometimes
difficult.

Numerousal gorithmsof knowledge discovery and datamining use similarity queries.
Examples are the distance based outlier detection algorithm RT [KN 98], the density based
outliers LOF [BKNSOQQ], the clustering agorithms DBSCAN [EKSX 96], DenClue
[HK 98], OPTICS [ABKS 99], k-means [McQ 67] and k-medoid clustering [KR 90], near-
est-neighbor clustering [HT 93], single-link clustering [JD 88], nearest neighbor classifica-
tion [Mit 97], spatia association rules[KH 95], proximity analysis [KN 96], etc.

8 I ntroduction

</ .
./l .\X/ x Point of R
/l * Pointof S
.ﬁ x—e Join result
° o °

Figure 4: The Similarity Join (Distance Range Join)

Conceptually, the execution of the similarity query isperformed by the database man-
agement system while the data mining algorithm itself runs as a database client applica-
tion. The similarity query is provided by the database system as a basic operation or a
database primitive. The advantage of this concept is physical data independence. The
implementor of the data mining algorithm needs no knowledge about the actual algo-
rithm for similarity search. Index structures can be seamlessly replaced by other, more
efficient structures without affecting the implementation of the data mining algorithm.

The similarity search algorithm is a black box to the data mining algorithm.

1.3 The Similarity Join

Another database primitive for feature databases which has recently gained attention is
thesimilarityjoin. Liketherelational join, the similarity join combinestwo data setsinto
one set such that the new set contains pairs of objects of the two original sets. The join
condition involves some similarity predicate, i.e. some range-query based predicate or

some nearest-neighbor based predicate.

WEell known applications of the similarity join are e.g. catalogue matching, duplicate
detection, or the search for pairwise similar itemsin large sets. For such applications, the

similarity join has already been considered to serve as a database primitive.

High Performance Data Mining Based on the Similarity Join 9

(a) single similarity queries (b) similarity join

KDD Algorithm KDD Algorithm

//¢ \ Similarity * Similarity
Gj %] %] -~ [Queries I><] Join

Qi 5

Figure5: Database Primitives for Data Mining

For usual similarity queries, there exist several different definitions such as range
gueries, k-nearest neighbor queries, inverse nearest neighbor queries, etc. Likewise,
there exist different definitionsfor the similarity join. The most common and most el ab-
orated similarity join operation is the distance range join in which the user defines a
query radius €, and the system retrieves all point pairs the distance of which does not
exceed € (cf. figure4). But there are a so two further similarity join operationswhich are
based on the principle of nearest neighbor search. We will formally introduce these
definitionsin chapter 2 and further elaborate later in thisthesis.

1.4 High Performance Data Mining Based on the Similarity Join

The central idea of thisthesisisthat the similarity join is apowerful database primitive
to support a number of data mining algorithms. The typical approach of many KDD
algorithms is to evaluate similarity queries for a high number of query objects. Some

10 I ntroduction

data mining algorithms such asthe clustering algorithm DBSCAN even evaluate asim-
ilarity query for each database point.

Our approach is to reformulate these KDD algorithms such that the high number of
single similarity queriesis replaced by a single run of the similarity join (cf. figure 5).
This goal is reached for numerous important algorithms of knowledge discovery and
data mining such as the density based clustering algorithms DBSCAN [EKSX 96] and
OPTICS[ABKS 99] the outlier detection methods RT [KN 98] and LOF [BKNS 00], k-
means[McQ 67] and k-medoid clustering [KR 90], nearest neighbor clustering [HT 93],
nearest neighbor classification [Mit 97] and several others.

For some of these techniques, we show theoretically that the result of the modified
algorithmsisidentical to the result of the original KDD algorithms. In other cases, this
isobvious. In all cases, it isguaranteed that the reformulation is quality preserving.

Replacing the high number of similarity queriesby asingle similarity join also greatly
affects the performance of these algorithms, even if relatively simple similarity join
algorithms are applied. This will be shown in some of the experimental evaluationsin
thisthesis.

Our principle of algorithm reformulation has a second advantage. The reformul ated
KDD a gorithm operates upon a more powerful database primitive than before. Gener-
ally, the algorithm that implements a database primitive is a black box to the algorithm
that usesthis database primitive. Therefore, the implementing algorithm can be replaced
by another solution without affecting the result (quality) of data mining.

Compared to usua similarity queries, the similarity joinisamore complex and pow-
erful database primitive. The similarity join yields more potential for performance im-
provements.

Our principle of powerful database primitives allows us to participate from future
progressin the similarity join algorithms. Outdated algorithms can be replaced by newer
ones with higher performance and different properties. E.g. new index and data struc-
tures can be used very efficiently.

Outline of the Thesis 11

1.5 Outline of the Thesis

Our thesisis built up from 4 large parts. The first part gives the motivation, introduces
the similarity join formally, and reviewsthe related work. Our second, and largest build-
ing block is dedicated to a similarity join operation called distance range join where a
query radius € is given. We give a number of applications and show how this database
primitive can be efficiently implemented. Then, the third part describes another type of
similarity join which isbased on anearest neighbor join predicate. We give again numer-
ous applications from the KDD domain and show how the basic operation of the k-
nearest neighbor join can be efficiently implemented. The last part is dedicated to CPU
optimization which can be applied to all kinds of similarity join. The remainder of our
thesis consists of the following chapters:

* Chapter 2. Defining the Similarity Join

In this chapter, we first introduce our basic notions. After that, we give the for-
mal definition of a genera similarity join which is a join of two multidimen-
sional point sets based on some join predicate involving similarity of two
objects. This definition leaves some degree of freedom how the similarity predi-
cate actually looks like. After that basic definition of similarity joins, we intro-
duce three different kinds of similarity join operations of which one is based on
the paradigm of range queries and the others are based on the paradigm of near-
est neighbor queries. The first operation, the distance range join operates on a
given similarity threshold €. Asthis similarity threshold is difficult to handle for
the user, we aso define our two nearest neighbor based similarity join opera-
tions. The first called k-distance join fetches those k pairs from the cross-prod-
uct of the two point sets which have minimum distance. The other called k-
nearest neighbor join combines each of the database points from the first set
with its k nearest neighborsin the other point set.

* Chapter 3. Related Work
This chapter is dedicated to previous approaches to the similarity join. Most of
the fundamentals of the similarity join are based on the spatial join which is
prevalent in spatial databases supporting geographic information systems (GIS).

12

I ntroduction

Many algorithms for the spatial join can be adopted for the similarity join which
isrelatively simple. In our presentation of these approaches we show the neces-
sary modifications to take the similarity join into account. As far as these modi-
fications are concerned, this chapter contains also original work and not only a
classification and survey over well-known techniques.

Chapter 4. Density Based Clustering on the Distance Range Join

In this chapter we show how density based clustering algorithms can be trans-
formed such that they operate on top of the distance range join rather than on top
of single similarity queries. In particular, we demonstrate such a transformation
for the density based clustering method DBSCAN and for a density based anal-
ysis method for the hierarchical cluster structure of a data set called OPTICS.
For these two methods, the transformation is particularly challenging becausein
contrast to some other methods presented in this thesis, DBSCAN and OPTICS
in their original definitions enforce a certain order in which similarity queries
are evaluated. Therefore it is not straightforward to replace the similarity que-
ries by the similarity join. We propose two methods of transformation: The first,
called semantic rewriting first transforms the clustering algorithm semantically
to ensure that it is independent of the order in which join pairs are generated.
This is done by assigning cluster 1Ds tentatively, and with a complex action
table which handles inconsistent tentative results. The other technique is called
join result materialization. The join result is predetermined prior to the run of
the clustering algorithm and similarity queries are efficiently answered by look-
ups to the materialized join result. We can show for both techniques that the
result of the clustering algorithmsisidentical to that of the original agorithms.
Our experimental evaluation yields performance advances of up to afactor of 50
by our techniques.

Chapter 5. Further Applications of the Range Distance Join

After the complex case of the transformation of DBSCAN and OPTICS, we
sketch in this chapter a few algorithms for which the evaluation on top of the
similarity join is easier. The applications presented here are robust similarity
search in sequence data where the join leads in particular to robustness with

Outline of the Thesis 13

respect to noise and scaling. We also present afew generalizations of this tech-
nique to similarity of multidimensional sequences (i.e. raster or voxel data) and
to partial similarity. We also present applications like catalogue matching and
duplicate detection.

* Chapter 6. A Cost Model for Index Based Similarity Join Algorithms

This and the following chapters are dedicated to algorithms and index structures
for the distance range join. We start in this chapter with a cost model for index
based join evaluation. The concept used in this cost model is the Minkowski
sum which is here modified to estimate the number of page pairs from the corre-
sponding index structures which have to be considered. In contrast to usual sim-
ilarity search, the concept of the Minkowski sum must be applied twice for the
similarity join in order to estimate the number of page pairs which must be
joined. We use this cost model to analyze the index with respect to the page
capacity and show how this parameter can be optimized. Our analysis, however,
reveals a serious optimization conflict between disk 1/0 and CPU optimization.
While large pages optimize the 1/0, the CPU performance benefits from small
pages. This results in the observation that in traditional index structures only
one of these performance factors can be optimized.

* Chapter 7. MuX: An Index Architecturefor the Similarity Join
This chapter is dedicated to the solution of the optimization conflict detected in
the analysis of chapter 6. Our objective is to develop an index architecture
which allows a separate optimization for CPU and /O performance. Therefore,
we basically need two separate page capacities, one for CPU and one for 1/0.
This goal is achieved by the multipage index (MuX). This index structure con-
sists of large data and directory pages which are subject to 1/O operations.
Rather than directly storing points and directory records an these large pages,
these pages accommodate a secondary search structure which is used to speed
up the CPU operations. To facilitate an effective and efficient optimization, this
secondary search structure has again an R-tree like structure with a (flat) direc-
tory and with data pages. Thus, the page capacity of the secondary search struc-
ture can be optimized by the cost functions devel oped in chapter 6, however, for

14

I ntroduction

the CPU trade-off. We show that the CPU performance of MuX issimilar (equal
up to some small additional management overhead) to the CPU performance of
atraditional index which is purely CPU optimized. Likewise, we show that the
I/O performance resembles that of an 1/0O optimized traditional index. Our
experimental evaluation confirms this and demonstrates the clear superiority
over the traditional approaches.

Chapter 8. Joining Massive High-Dimensional Data

We develop the € Grid Order, a sort order which isfounded on avirtual grid par-
tition of the data space. This method is based on the observation that for the dis-
tance range join with a given distance parameter €, a grid partition with a grid
distance of € is an effective meansto reduce the search space for join partners of
apoint p. Due to the curse of dimensionality, however, the number of grid cells
in which potentially joining points are contained explodes with the data space

dimension (O(3d) cells). To avoid considering the grid cells one by one, we
introduce the grid partition only in a virtual way as the basis of a particular sort
order, the € grid order, which orders points according to grid cell containment.
The € grid order serves as the ordering criterion in an external memory sort
operator. Later, the € grid order supports effective and efficient algorithms for
CPU and 1/0 processing, particularly for large data sets which cannot be joined
INn main memory.

Chapter 9. k-Nearest Neighbor Joins: Turbo Charging the KDD Process

The next two chapters are dedicated to the k-Nearest Neighbor Join (k-nn join)
which combines each point of a point set R with its k nearest neighbors in
another point set S. This chapter gives the applications of this database primi-
tive. Many standard tasks of data mining evaluate k-nearest neighbor queries for
a large number of query points. Examples are clustering algorithms such as k-
means, k-medoid and the nearest neighbor method, but also data cleansing and
other pre- and postprocessing techniques e.g. when sampling playsarole in data
mining. Our list of applications covers all stages of the KDD process. In the pre-
processing step, data cleansing algorithms are typically based on k-nearest
neighbor queries for each of the points with NULL values against the set of

Outline of the Thesis 15

complete vectors. The missing values can be computed e.g. as the weighted
means of the values of the k nearest neighbors. Then, the k-distance diagramisa
technique for a suitable parameter selection for data mining. In the core step, i.e.
data mining, many algorithms such as clustering and classification are based on
k-nn queries. In al these agorithms, it is possible to replace alarge number of k-
nn queries which are originally issued separately, by asingle run of ak-nn join.
Therefore, the k-nn join gives powerful support for all stages of the KDD pro-
cess. In this chapter, we show how some of these standard algorithms can be
based on top of the k-nearest neighbor join.

* Chapter 10. Processing k-Nearest Neighbor Joins Using MuX
In this chapter, we show how the operation of a k-nearest neighbor similarity
join can be efficiently implemented on top of a multidimensional index struc-
ture. In chapter 6 we have shown for the distance range join that it is necessary
to optimize index parameters such as the page capacity separately for CPU and
I/O performance. We have proposed a new index architecture (Multipage Index,
MuX) (cf. chapter 7) which allows such a separate optimization. The index con-
sists of large pages which are optimized for 1/O efficiency. We have shown that
the distance range join on the Multipage Index has an 1/0 performance similar
to an R-tree which is purely 1/0 optimized and has a CPU performance like an
R-tree which is purely CPU optimized. We believe that also the k-nnjoin clearly
benefits from the separate optimization, because the optimization trade-offs are
very similar. We give an algorithm to efficiently compute the similarity join on
MuX. This algorithms applies two strategies, the loading and processing strat-
egy. We propose strategies that clearly optimize query processing.

* Chapter 11. Optimizing the Similarity Join.
Our 11th chapter is devoted to an optimization technique which can be applied
on top of al join algorithms proposed in this thesis and also on most agorithms
described in the related work chapter. The most important cost factor with
respect to CPU operations are the finalizing distance calculations between the
feature vectors. Our optimization technique accelerates these distance calcula-
tions by selecting the dimension with the highest selectivity and sorting the

16 I ntroduction

points along this optimal dimension. Therefore, we call this technique the opti-
mal dimension order. To select an optimal dimension our technique considers
the regions which are assigned to the considered partitions. It is not restricted to
index based processing techniques but can also be applied on top of hashing
based methods or grid based approaches such as the size separation spatial join,
the e-kdB-tree or our € Grid Order.

Finally, chapter 12 concludes our thesis. We will summarize our contributions to the
research field of applications and algorithms for the similarity join. We believe that we
have illustrated this field both in its broadness as well as in its depth. Nevertheless,
several research issues also remain for future work, in particular approximate join algo-
rithms and the similarity join on non-vector metric data. We will indicate the most prom-
ising research directions.

Chapter 2
Defining the Similarity Join

Inthe current literature, there are several different kinds of similarity join known, found-
ing on the concepts of range-queries and nearest neighbor queries. Further definitions
may follow in future work. Therefore, we will first give an intuitive definition of what
we understand to be a similarity join in general (which isinformal by nature), and then
give the precise formal definitions of the known approaches.

2.1 General Notion of Similarity Joins

We postul ate three requirementsfor asimilarity join. First, the similarity joinisajoinin
the sense of the relational database model i.e. two sets R and S are combined into one
such that the new set contains pairs of objects of R and Sthat fulfill ajoin condition.
Every join can also be expressed as a selection operation (which corresponds to the join
condition) on the cartesian product R x S,

The second property of asimilarity join is that the sets R and Sare not regular rela-
tions, i.e. sets of tuples of an arbitrary record type but are either sets of pointsin a
multidimensional vector space (or at least that some point information is contained in
each tuple) or sets of multimedia objects with a distance metric defined upon. The third

18 Defining the Similarity Join

property of ageneral similarity join isthat the join condition must involve the similarity
between the objects in R and S. In the case of multidimensional point sets, the join
condition involves the Euclidean distance or some other distance metric for vector spac-
es. For general multimedia objects, analogously the defined similarity metric is used.
Note that, to the best of our knowledge, currently there is no publication dealing with
joins on non-vector metric spaces. The concepts, however, are directly transferable and
there are numerous applications of the similarity join upon non-vector multimedia ob-
jects.

Theway inwhich similarity isinvolved inthejoin may vary. Aswewill see, thereare
join definitions which postulate that the object pairs in the result set have a distance
(dissimilarity) not exceeding agiven join parameter € (cf. sections 2.2). Other join defi-
nitions combine exactly those objects which are most similar to each other
(cf. section 2.3). Summarizing, we give the following

Definition 2 General Similarity Join
A similarity join R =1 Sof two finite sets Rand Shas the following properties:
» thejoinresult isasubset of the cartesian product
R < S O RxS

» each tuple of the sets R and S contains either
— point data from a multidimensional vector space or
— amultimedia object with an associated similarity metric

e avector space metric or the associated similarity metric is used in the join pred-
icate.

2.2 Distance Range Based Similarity Join

The most prominent and most evaluated similarity join operation is the distance range
join. Therefore, the notions similarity join and distance range join are often used inter-
changably. Unless otherwise specified, when speaking of the similarity join, often the
distance range join is meant by default. For clarity in thisthesis, we will not follow this
convention and always use the exact notions.

19

x Points of R
» e Pointsof S

Figure 6: The Distance Range Join (g-Join)

As depicted in figure 6, the distance range join R > Sof two multidimensional or
metric sets R and Sis the set of pairs where the distance of the objects does not exceed
the given parameter €. Formally:

Definition 3 Distance Range Join (g-Join)

Thedistancerangejoin R ><I Sof two finite multidimensional or metric setsRand Sis
the set

R < Si={(ri,5) URx S Iri = sl < €}
The distance range join can also be expressed in a SQL like fashion:
SELECT * FROM R, SWHERE ||R.obj — Sobj||< ¢

In both cases, ||-|| denotes the distance metric which is assigned to the multimedia ob-
jects. For multidimensional vector spaces, |||| usually corresponds to the Euclidean dis-
tance.

As we will point out later, the distance range join can be applied in density based
clustering algorithms which often define the local data density as the number of objects
in the e-neighborhood of some data object. This essentially corresponds to a self-join
using the distance range paradigm. In the following we note that

Lemma 1. the distance range self join issymmetrici.e.

(ri,rj) OR D8<] R < (rj,ri) OR D£<] R

20 Defining the Similarity Join

Proof follows from the symmetry of any distance metric: [|ri-rjl[< € < [|r;—r;l| < € for
any distance metrico

Like for plain range queries in multimedia databases, a general problem of distance
range joins from the users' point of view isthat it is difficult to control the result cardi-
nality of thisoperation. If € ischosen too small, no pairs are reported in the result set (or
in case of aself join: each point isonly combined with itself). In contrast, if € ischosen
too large, each point of R is combined with every point in Swhich leads to a quadratic
result size and thusto atime complexity of any join algorithmwhichisat least quadratic;
moreexactly o (|R|:|S]). Therange of possible e-valueswheretheresult setisnon-trivia
and the result set size is sensible is often quite narrow, which is a consequence of the
curse of dimensionality. Provided that the parameter € is chosen in a suitable range and
also adapted with an increasing number of objects such that the result set size remains
approximately constant, thetypical time asymptote of advanced join algorithmsis better
than quadratic.

2.3 Nearest Neighbor Based Similarity Join

It is possible to overcome the problems of a selectivity which is difficult to control by
replacing the range query based join predicate by a (k-)nearest neighbor based condition.
In contrast to range querieswhich retrieve potentially the whol e database, the selectivity
of a (k-)nearest-neighbor query is (up to tie situations) clearly defined. There are two
ways in which the concept of the nearest neighbor queries can be integrated into the
similarity join. Both methods inherit from the nearest neighbor query the advantage that
the size of the result set is (unlessties occur) previously known.

2.3.1 (k-) Closest Pair Queries

Thefirst nearest neighbor based similarity joinisthe k-closest pair query. Thisoperation
retrievesthose k pairs from R x Shaving minimum distance. Closest pair queries do not

Nearest Neighbor Based Similarity Join 21

o 3)

Sx x Points of R
49 o e Pointsof S
1T o

[]
. o2

Figure 7: The k-Closest Pair Query (for k = 4)

only play an important role in the database research but have also a long history in
computational geometry [PS 85]. In the database context, the operation has been intro-
duced by Hjaltason and Samet [HS 98] using the term distance join. The (k-)closest pair
guery can be defined as follows:

Definition 4 (k-) Closest Pair Query R < S

RI><l Sisthe smallest subset of R x Sthat contains at least
k pairs of pointsand for which the following condition holds:

Ors) ORI S O(r,s) URxS\RPL S [r=sf| < [|r" 5|

This definition directly corresponds to the definition of (k-) nearest neighbor queries,
where the single data object o isreplaced by the pair (r,s). Here, tie situations are broken
by enlargement of the result set. It isalso possible to change definition 4 such that thetie
is broken non-deterministically by arandom selection. [HS 98] defines the closest pair
guery (non-deterministically) by the following SQL statement:

SELECT * FROM R, S
ORDER BY ||R.obj — Sobj||
STOP AFTER k

We give two more remarks regarding self joins. Obviously, the closest pairs of the self-
join R><] Rare the n pairs (rj,r;) which have trivially the distance O (for any distance
metric), where n = |R| isthe cardinality of R. Usually, these trivial pairs are not needed,
and, therefore, they should be avoided in the WHERE clause. Like the distance range

22 Defining the Similarity Join

- 'IX/Z x Points of R
© e . * Pointsof S

5 ®
° ._XI. N

Figure 8: The k-Nearest Neighbor Join (for k = 2)

selfjoin, the closest pair selfjoinissymmetric (unless nondeterminism applies). Applica-
tions of closest pair queries (particularly self joins) include similarity querieslike

» find all stock quotain adatabase that are similar to each other
» find music scores which are similar to each other
* noise-robust duplicate elimination of any multimedia application

For plain similarity search in multimedia-databases, it isoften useful to replace k-nearest
neighbor queries by ranking queries which retrieve the first, second, third,... nearest
neighbor in a one-by-one fashion. The actual number k of nearest neighbors to be
searched is initially unknown. The user (or some application program on top of the
database) decides according to a criterion which is unknown to the DBM S whether or
not further neighbors are required. This kind of processing can also be defined on top of
the closest pair query, e.g. by cancelling the STOP AFTER clause in the SQL statement
above. The query results are passed to the application program using some cursor con-
cept. It isimportant to avoid computing the complete ranking in the initialization phase
of the cursor, because determining the complete ranking is unnecessarily expensive if
the user decides to stop the ranking after retrieving only afew result points.

2.3.2 (k-) Nearest Neighbor Join

Even more important isthe last kind of similarity join operation which does not find the
best ones among all arbitrary pairs of points but rather combines each point of Rwith its
nearest neighbor (or its k nearest neighbors) in S. In computational geometry, this oper-
ation is called the all nearest neighbor search. In contrast to the closest pair query, here

Nearest Neighbor Based Similarity Join 23

¢ Pointsof R
v N

Figure 9: The NN-Join (k = 1) is not symmetric

it is guaranteed that each point of R appears in the result set exactly once (or exactly k
times, respectively). Points of S may appear once, more than once (if a point is the
nearest neighbor of several pointsin R) or not at al (if apoint isthe nearest neighbor of
no point in R). Formally, we define the k-NN-join asfollows:

Definition 5 k-NN-Join R % S

R P, Sisthesmallest subset of R x Sthat containsfor each point of Rat least k points
of Sand for which the following condition holds:

Org ORPS, S U(s) ORxS\RPS S r=g| < |[r=s||

Here, the notion of k-nearest neighbor queries has been transformed to point sets on a
basis“per point of R.” Again, inthisdefinition, tie situations are broken deterministical -
ly by enlarging the result set. Another possibility is random selection. Hjaltason and
Samet define the k-NIN-Join in SQL style asfollows:

SELECT * FROM R, S
GROUP BY R.obj

ORDER BY ||R.0bj — Sobj||
STOP AFTER k

For the selfjoin, we have again the situation that each point is combined with itself which
can be avoided using the WHERE clause. Unlike €-join and k-CP query, the k-NN self-
join is not symmetric as the nearest neighbor relation is not symmetric (cf. the smple
counterexamplein figure 9). The k-NN-Join can be successfully applied in simultaneous

24 Defining the Similarity Join

nearest neighbor classification of a high number of query objects which is usual for
domains such as

» Astronomical observation:
A high number of newly detected objects is compared to a very high number of
known reference objects

* Online customer scoring:

Some thousand new customers are probed against some millions of known pat-
terns.

Chapter 3
Related Work

This chapter is dedicated to the previous approaches to the similarity join. Most of the
fundamental s of the similarity join base on the spatial join which is prevalent in spatia
databases supporting geographic information systems (GIS). Many agorithms for the
gpatial join can be adopted for the similarity join which isrelatively ssimple. In our pre-
sentation of these approaches we show the necessary modificationsto take the similarity
predicate into account.

3.1 Preliminaries: Indexing High-Dimensional Spaces

We begin with ashort description of the index structures used to organize feature spaces
and the corresponding query processing techniques. The interested reader isreferred to
more elaborate surveys of multidimensional and high dimensional indexing techniques
such as[GG 98, BBK 01]. In this section, we give only a short introduction to make the
needed material readily available and to make this thesis more self-contained. We con-
centrate on techniques which are needed later in this text. We put some emphasis on
algorithms for plain similarity queries, especially nearest neighbor queries, because
these algorithmswill be later (cf. section 3.3 and chapter 10) used as building blocks for
join algorithms upon nearest neighbor join predicates.

26 Related Work

leve: Root:

Directory Pages
1
0O [o]e]e[e] [[e[e[e] | | [e[e[e] | |[e[e]e[e]e][e[e[e[e] | } DataPages

Figure 10: Hierarchical Index Structures.

3.1.1 Structureof High-Dimensional Indexes

High-dimensional indexing methods are based on the principle of hierarchical clustering
of thedataspace. Structurally, they aresimilar tothe B*-tree[BM 77, Com 79]: Thedata
vectors are stored in data nodes such that spatially adjacent vectorsarelikely toresidein
the same node. Each data vector is stored in exactly one datanode, i.e. there is no object
duplication among the datanodes. The datanodesare organized in ahierarchically struc-
tured directory. Each directory node points to a set of subtrees. Usually, the structure of
the information stored in data nodes is completely different from the structure of the
directory nodes. In contrast, the directory nodes are uniformly structured among all lev-
elsof theindex. Thereisasingle directory node which is called the root node. It serves
as an entry point for query and update processing. The index structures are height-bal-
anced. That means, the lengths of the paths between the root and all data pages are
identical, but may change after insert or delete operations. The length of apath from the
root to adatapageis called the height of theindex. The length of the path from arandom
node to adata pageis called the level of the node. Data pages are on level zero.

3.1.1.1 Management

The high-dimensional access methods are designed primarily for the secondary storage.
Data pages have a data page capacity Cpay datar dEfining how many data vectors can be
stored in adata page at most. Anaogously, the directory page capacity Cyax ¢y gives an
upper limit to the number of subnodes in each directory node. The original idea was to

27

choose Cyyax data @d Cax gir SUCh that dataand directory nodesfit exactly into the pages
of the secondary storage. However, in modern operating systems, the page size of adisk
drive is considered as a hardware detail hidden from programmers and users. Even
though, consecutive reading of contiguous data on disk is by orders of magnitude less
expensive than reading at random positions. It isagood compromiseto read data contig-
uously from disk in portions between afew kilobytes and afew hundred kilobytes. This
isakind of artificial paging with a user-defined logical page size.

All index structures presented here are dynamic, i.e. they allow insert and delete
operationsin O (log n) time. To cope with dynamic insertions, updates and deletes, the
index structures allow dataand directory nodesto befilled under their capacity Ca. IN
most index structuresthe ruleis applied that all nodes up to the root node must be filled
to about 40% at least. Thisthreshold iscalled the minimum storage utilization Su,i,. The
root isgenerally allowed to break thisrule.

For B-trees, it is possible to derive an average storage utilization analytically, called
the effective storage utilization sug;. In contrast, for high-dimensional index structures,
the effective storage utilization isinfluenced by the specific heuristics applied in insert
and delete processing. Since these indexing methods are not amenable to an analytical
derivation of the effective storage utilization, it hasto be determined experimentally.

For comfort, we will denote the product of the capacity and the effective storage
utilization as the effective capacity C of apage:

Ceft daa = SUeft data “Crmax,data Cettair = SUett cir FCmax.dir -

3.1.1.2 Regions

For efficient query processing it isimportant that the dataiswell clustered into the pages,
i.e. that data objects which are close to each other arelikely to be stored in the same data
page. Assigned to each page is a so-called page region which is a subset of the data
space. The page region can be ahypersphere, a hypercube, amultidimensional cuboid, a
multidimensional cylinder or aset-theoretical combination (union, intersection) of these
possibilities. For most, but not all high-dimensional index structuresthe pageregionisa
contiguous and convex subset of the data space without holes. For most index structures,

28 Related Work

Figure 11: Corresponding Page Regions of an Indexing Structure.

regions of pagesin different branches of the tree may overlap, athough overlaps|ead to
bad performance behavior and have to be avoided if possible or at least minimized.

The regions of hierarchically organized pages always have to be completely con-
tained in theregion of their parent node. Analogously, all data objects stored in a subtree
are always contained in the page region of the root page of the subtree. The page region
is always a conservative approximation for the data objects and the other page regions
stored in asubtree.

In query processing, the page region is used to exclude branches of the tree from
further processing. For example, in case of range queriesif a page region does not inter-
sect with the query range, it isimpossible that any region of ahierarchically subordered
page intersects with the query range. Neither isit possible that any data object stored in
this subtree intersects with the query range. Only pages where the corresponding page
region intersects with the query have to be investigated further. Therefore, a suitable
algorithm for range query processing can guarantee that no false drops occur.

For nearest neighbor queries arelated but slightly different property of conservative
approximations is important. Here, distances to a query point have to be determined or
estimated. It isimportant that distancesto approximations of point sets are never greater

Preliminaries. Indexing High-Dimensional Spaces 29

than the distancesto theregions of subordered pagesand never greater than the distances
to the points stored in the corresponding subtree. Thisis commonly known as the lower
bounding property.

Page regions have always a representation that is an invertible mapping between the
geometry of the region and a set of values storable in the index. For example, spherical
regions can be represented as center point and radiususing d + 1 floating point valuesif
d isthe dimension of the data space. For efficient query processing, it is necessary that
the test for intersection with a query region and the distance computation to the query
point in case of nearest neighbor queries can be performed efficiently.

3.1.2 Algorithmsfor Insert, Delete and Update

In this section, we will present some basic algorithms on high-dimensional index struc-
tures for index construction and maintenance in a dynamic environment as well as for
guery processing. Although some of the algorithms are published for aspecific indexing
structure, here they are presented in amore general way.

Insert, del ete and update are the operations which are most specific to the correspond-
ing index structures. Even though, there are basic algorithms capturing all actionswhich
arecommon to al index structures. Inserts are generally handled asfollows:

» Search asuitable data page dp for the data object do.
e Insert dointo dp.

* If the number of objects stored in dp exceeds Cy o gatar then split dp into two
data pages

* Replace the old description (the representation of the region and the background
storage address) of dp in the parent node of dp by the descriptions of the new

pages
* If the number of subtrees stored in the parent exceeds Cipa gir, SPIit the parent

and proceed similarly with the parent. It is possible that all pages on the path
from dp to the root have to be split.

30 Related Work

» |If the root node has to be split, let the height of the tree grow by one. In this
case, anew root node is created pointing to two subtrees resulting from the split
of the original root.

Individual heuristicsfor the specific indexing structure are applied to handle the fol low-
ing subtasks:

* The search for a suitable data page (commonly called the PickBranch proce-
dure). Due to the overlap between regions and as the data space is not necessar-
ily completely covered by page regions, there are generally multiple alternatives
for the choice of a data page in most multidimensional index structures.

» The choice of the split, i.e. which of the data objects/subtrees are aggregated
into which of the newly created nodes.

Someindex structurestry to avoid splitsby aconcept named forced re-insert. Some data
objects are deleted from a node having an overflow condition and reinserted into the
index. The details are presented later in this chapter.

The choice of heuristics for insert processing may affect the effective storage utiliza-
tion. For example, if a volume-minimizing algorithm allows unbalanced splitting in a
30:70 proportion, then the storage utilization of the index is decreased and the search
performance is negatively affected. On the other hand, the presence of forced reinsert
operations increases the storage utilization and the search performance.

Until now, few have been done to handle deletions from multidimensional index
structures. Underflow conditions can generally be handled by three different actions:

» Baancing pages by moving objects from one page to another
* Merging pages
» Deleting the page and reinserting al objectsinto the index.

For most index structuresit is a difficult task to find a suitable mate node for balancing
or merging actions.

An update-operation is viewed as a sequence of a delete-operation followed by an
insert-operation. No special procedure has been suggested, yet.

Preliminaries. Indexing High-Dimensional Spaces 31

3.1.3 Exact Match and Range Query

Exact match queries are defined as follows: Given aquery point g, determine whether q
is contained in the database or not. Query processing starts with the root node which is
loaded into the main memory. For all regions containing point g the function Exact-
MatchQuery is called recursively. Since an overlap between page regionsisallowed in
most index structures presented in this chapter, it is possible that several branches of the
indexing structure have to be examined for processing an exact match query. The result
of ExactMatchQuery istrueif any of the recursive callsreturnstrue. For data pages, the
result istrue if one of the points stored on the data pagefits. If no point fits, the result is
false.

The algorithm for range query processing returns a set of points contained in the query
range as result to the calling function. The size of the result set is previously unknown
and may reach the size of the entire database. The algorithm isformulated independently
from the applied metric. Any L, metric including metrics with weighted dimensions
(ellipsoid queries, [Sal 97, SK 97]) can be applied if there exists an effective and effi-
cient test for the predicates IsPointinRange and RangelntersectRegion. Also partial
range queries, i.e. range queries where only a subset of the attributesis specified, can be
considered asregular range querieswith weights (the unspecified attributes are weighted
with zero). Also window queries can be transformed into range-queries using awei ghted
L max Metric.

The algorithm for the range search performs arecursive self-call for each child-page
the page region of which intersects the query range. The union of the results of all recur-
sive callsisbuilt and passed to the caller.

3.1.4 Nearest Neighbor Query

There are two different approaches to process nearest neighbor queries on multidimen-
sional index structures. One was published by Roussopoulos, Kelley and Vincent
[RKV 95] and isinthefollowing called RKV algorithm. The other algorithm (‘HSalgo-
rithm’), was published by Hjaltason and Samet [HS 95]. Dueto their importance for our
further work, these algorithms are presented in detail.

32 Related Work

We start with the description of the RKV algorithm because it is more similar to the
algorithm for range query processing in the sense that a depth-first traversal through the
index isperformed. RKV isan agorithm of thetype*branch and bound”. In contrast, the
HS algorithm loads pages from different branches and different levels of theindex in an
order induced by the proximity to the query point.

Unlike range query processing, there isno fixed criterion, known a priori, to exclude
branches of the indexing structure from processing in nearest neighbor algorithms. Ac-
tually, the criterion is the nearest neighbor distance but the nearest neighbor distance is
not known until the algorithm has terminated. To cut branches, nearest neighbor algo-
rithms have to use pessimistic (conservative) estimations of the nearest neighbor dis-
tance which will change during the run of the algorithm and will approach the nearest
neighbor distance. A suitable pessimistic estimation of the nearest neighbor distanceis
the closest point among all points visited at the current state of execution (the so-called
closest point candidate cpc). If no point has been visited yet, it isaso possible to derive
pessimistic estimations from the page regions visited so far.

3.14.1 TheRKYV Algorithm

The authors of the RKV algorithm define two important distance functions, MINDIST
and MINMAXDIST. MINDIST is the actual distance between the query point and a
pageregioninthe geometrical sense, i.e. the nearest possible distance of any point inside
the region to the query point. The definition in the original proposal [RKV 95] islimited
to R-treelike structures where regions are provided as multidimensional intervalsl (i.e.,
minimum bounding rectangles, MBR) with

| = [Ibg, ubg] X ... x [lby_y, uby_,].

Then, MINDIST isdefined as follows:
Definition 6 MINDIST. Thedistanceof apoint qtoregion|, denoted MINDIST (g, I) is:

2
d-1td b, —q, if qi<IbiE
MINDIST*(@.1) = ¥ [o otherwise U
i=ofgq—ub;, if ub<q QO

Preliminaries. Indexing High-Dimensional Spaces 33

0

pro pra

r I A
" % pra %, éo pra
z Y| &
s
meﬁ MINDIST T pry <
4 $ Mﬂb
Q WP S
Pra Pra

Figure 12: MINDIST and MAXDIST.

Anexampleof MINDIST ispresented on theleft side of figure 12. In pageregionspr ;
and pr 3, the edges of the rectangles define the MINDIST. In page region pr 4 the corner
defines MINDIST. As the query point lies in pr,, the corresponding MINDIST is0. A
similar definition can also be provided for differently shaped page regions, such as
spheres (subtract the radius from the distance between center and g) or combinations. A
similar definition can be given for L, and L5 mMetric, respectively. For a pessimistic
estimation, some specific knowledge about the underlying index structure is required.
One assumption which is true for al known index structures is that every page must
contain at least one point. Therefore, we could define the following MAXDIST function

determining the distance to the farthest possible point inside aregion:

d-1] _ g
MAXDISTAq1) = A bi—a| if b -] > g —ubj J
< L0 |o — uby) otherwise 0
':OE[D 0

MAXDIST is not defined in the original paper as it is not needed in R-tree like struc-
tures. An example is shown on the right side of figure 12. Being the greatest possible
distance from the query point to a point in a page region, the MAXDIST is not equal to
0 even if the query point islocated inside the page region pr.

34 Related Work

Figure 13: MINMAXDIST.

In R-trees, the page regions are minimum bounding rectangles (MBR), i.e. rectangu-
lar regionswhere each surface hyperplane contains one datapoint at least. Thefollowing
MINMAXDIST function provides a better (i.e. lower) but still conservative estimation
of the nearest neighbor distance:

MINMAXDIST*(q,1) = min ([g,-rmf*+ § [ag-rM|*)
O<k<d ik
O<i<d

where:
O Ib, + ub O Ib; + ub.
. k k . i i
rm, = Elbk if qks—T— and M, = Elbi if qg= 5
E ub, otherwise E ub, otherwise

The general ideaisthat every surface hyperareamust contain a point. The farthest point
on every surface is determined and among those the minimum is taken. For each pair of
opposite surfaces, only the nearer surface can contain the minimum. Thus, it is guaran-
teed that a data object can be found in the region having a distance less than or equal to
MINMAXDIST (g, 1). MINMAXDIST (q, I) is the smallest distance providing this
guarantee. The example onfigure 13 showson theleft side the considered edges. Among

Preliminaries. Indexing High-Dimensional Spaces 35

each pair of opposite edges of an MBR, only the edge closer to the query point is consid-
ered. The point yielding the maximum distance on each considered edge is marked with
acircle. The minimum among all marked points of each page region defines the MIN-
MAXDIST as shown on theright side of figure 13.

This pessimistic estimation cannot be used for spherical or combined regions because
no property similar tothe MBR property isfulfilled. Inthiscase, MAXDIST (q, I) which
is an estimation worse than MINMAXDIST has to be used. All definitions presented
with the Lo-metric in the original paper [RKV 95] can easily be adapted to L1 or L4
metrics as well asto weighted metrics.

The algorithm proposed by Roussopoulos et a. performs accesses to the pages of an
index in adepth-first order (“branch and bound”). A branch of the index is always com-
pletely processed before the next branch starts. Before child nodes are loaded and recur-
sively processed, they are heuristically sorted according to their probability of contain-
ing the nearest neighbor. For the sorting order, the optimistic or pessimistic estimation or
acombination thereof may be chosen. The quality of sorting iscritical for the efficiency
of the algorithm because for different sequences of processing the estimation of the
nearest neighbor distance may approach more or less fast to the actual nearest neighbor
distance. The paper [RKV 95] reports advantages for the optimistic estimation. The list
of child nodes is pruned whenever the pessimistic estimation of the nearest neighbor
distance changes. Pruning means to discard all child nodes having a MINDIST larger
than the pessimistic estimation of the nearest neighbor distance. It is guaranteed that
these pages do not contain the nearest neighbor because even the closest point in these
pagesisfarther away than an already found point (lower bounding property). The pessi-
mistic estimation is the lowest among all distances to points processed so far and all
results of the MINMAXDIST (q, I) function for all page regions processed so far.

To extend the algorithm to k-nearest neighbor processing is adifficult task. Unfortu-
nately, the authors make it easy by discarding the MINMAXDIST from path pruning,
sacrificing the performance gains obtainable from the MINMAXDIST path pruning.
The k-th lowest among all distances to points found so far must be used. Additionally
required isabuffer for k points (the k closest point candidate list, cpcl) which alows an
efficient deletion of the point with the highest distance and an efficient insertion of a

36 Related Work

random point. A suitable data structure for the closest point candidate list is a priority
gueue (also known as semi-sorted heap [Knu 75]).

Considering the MINMAXDIST imposes some difficulties, since the algorithm has
to assure that k points are closer to the query than agiven region is. For each region, we
know that at |east one point must have a distance less than or equal to MINMAXDIST.
If the k-nearest neighbor algorithm would prune a branch according to MINMAXDIST,
it would assume that k points must be positioned on the nearest surface hyperplane of the
pageregion. The MBR property only guarantees one such point. We further know that m
points must have a distance less than or equal to MAXDIST where mis the number of
points stored in the corresponding subtree. The number m could be, for example, stored
in the directory nodes or could be estimated pessimistically by assuming minimal stor-
age utilization if the indexing structure provides storage utilization guarantees. A suit-
able extension of the RKV algorithm could use a semi-sorted heap with k entries. Each
entry is either a cpc or a MAXDIST estimation or a MINMAXDIST estimation. The
heap entry with the greatest distanceto the query point g isused for branch pruning. It is
called the pruning element. Whenever new points or estimations are encountered, they
are inserted into the heap if they are closer to the query point than the pruning element.
Whenever anew page is processed, all estimations based on the according page region
have to be deleted from the heap. They are replaced by the estimations based on the
regions of the child pages (or the contained points if it is a data page). This additional
deletion implies additional complexities because a priority queue does not efficiently
support the deletion of elementsother than the pruning element. All these difficultiesare
neglected in the original paper [RKV 95].

3.1.4.2 TheHSAlgorithm

The problems arising from the need to estimate the nearest neighbor distance are ele-
gantly avoided inthe HS algorithm [HS 95]. The HS algorithm does not accessthe pages
in an order induced by the hierarchy of the indexing structure such as depth-first or
breadth-first. Rather, all pages of the index are accessed in the order of increasing dis-
tance to the query point. The algorithm is allowed to jump between branches and levels
for processing pages.

Preliminaries. Indexing High-Dimensional Spaces 37

APL:
P31 MM D3

[
o N
P3 b
P311
P312
P33
/) P111
13 P2
P11 P112 P112
P111 P32

P12 P13
P1 P12

P32

P33

Figure 14: The HS Algorithm for Finding the Nearest Neighbor.

The agorithm manages an active pagelist (APL). A pageiscalled activeif its parent
has been processed but not the page itself. Since the parent of an active page has been
loaded, the corresponding region of all active pagesis known and the distance between
region and query point can be determined. The APL stores the background storage ad-
dress of the page aswell asthe distance to the query point. The representation of the page
region is not needed in the APL. A processing step of the HS algorithm comprises the

following actions:

» Select the page p with the lowest distance to the query point from the APL.
* Load p into the main memory.
* Deletep fromthe APL.

* |If pisadatapage: Determine whether one of the points contained in this pageis
closer to the query point than the closest point found so far (called the closest

point candidate cpc).

» Otherwise: Determine the distances to the query point for the regions of al child

pages of p and insert all child pages and the corresponding distances into APL.

38 Related Work

The processing step is repeated until the closest point candidate is closer to the query
point than the nearest active page. In this case, no active page is able to contain a point
closer to g than cpc due to the lower bounding property. Likewise, no subtree of any
active page may contain such apoint. Asall other pages have already been |looked upon,
processing can stop. Again, the priority queue is the suitable data structure for APL.

For k-nearest neighbor processing, a second priority queue with fixed length k is
required for the closest point candidate list.

3.1.4.3 Ranking Query

Ranking queries can be seen as generalized k-nearest neighbor queries with apreviously
unknown result set size k. A typical application of aranking query requests the nearest
neighbor first, then the second closest point, the third and so on. The requests stop ac-
cording to acriterion which is external to the index-based query processing. Therefore,
neither a limited query range nor a limited result set size can be assumed before the
application terminates the ranking query.

In contrast to the k-nearest neighbor algorithm, aranking query algorithm needs an
unlimited priority queue for the candidate list of closest points (cpcl). A further differ-
enceisthat each request of the next closest point isregarded as a phase that ends report-
ing the next resulting point. The phases are optimized independently. In contrast, the k-
nearest neighbor algorithm searches all k points in a single phase and reports the com-
plete set.

In each phase of a ranking query agorithm, al points encountered during the data
page accesses are stored in the cpcl. The phase endsif it is guaranteed that unprocessed
index pages cannot contain a point closer than the first point in cpcl (the corresponding
criterion of the k-nearest neighbor algorithm is based on the last element of cpcl). Before
beginning the next phase, the leading element is del eted from the cpcl.

It does not appear very attractiveto extend the RKV algorithm for processing ranking
gueries due to the fact that effective branch pruning can be performed neither based on
MINMAXDIST or MAXDIST estimates nor based on the points encountered during the
data page accesses.

Preliminaries. Indexing High-Dimensional Spaces 39

In contrast, the HS algorithm for nearest neighbor processing needs only the modifi-
cations described above to be applied as aranking query algorithm. The original propos-
al [HS 95] contains these extensions.

The magjor limitation of the HS algorithm for ranking queries is the cpcl. It can be
proven that the length of the cpcl is of the order O (n). In contrast to the APL, the cpcl
containsthefull information of possibly all dataobjectsstored intheindex. Thus, itssize
is bounded only by the database size questioning the applicability not only theoretically,
but also practically. From our point of view, apriority queueimplementation suitablefor
background storageis required for this purpose.

3.1.5 R-tree, R*-tree, and X-tree

The R-tree [Gut 84] uses solid minimum bounding rectangles (MBR) as page regions.
An MBRisamultidimensional interval of the data space, i.e. axis-parallel multidimen-
sional rectangles. MBRs are minimal approximations of the enclosed point set. There
existsno smaller axis-parallel rectangle al so enclosing the compl ete point set. Therefore,
every (d—1)-dimensional surface area must contain at least one data point. Space par-
titioning is neither complete nor digoint. Parts of the data space may be not covered at
all by data page regions. Overlapping between regions in different branchesis allowed,
although overlaps deteriorate the search performance especially for high-dimensional
data spaces [BKK 96]. The region description of an MBR encompasses for each dimen-
sion a lower and an upper bound. Thus, 2 d floating point values are required. This
description allows an efficient determination of MINDIST, MINMAXDIST and
MAXDIST using any L, metric.

R-trees have originally been designed for spatial databases, i.e. for the management
of 2-dimensional objects with a spatial extension (e.g., polygons). In the index, these
objects are represented by the corresponding MBR. In contrast to point objects, it is
possible that no overlap-free partition for a set of such objects exists at all. The same
problem occurs also when R-trees are used to index data points but only in the directory
part of theindex. Pageregions aretreated like spatially extended, atomic objectsin their
parent nodes (no forced split). Therefore, it is possible that a directory page cannot be
split without creating an overlap among the newly created pages [BKK 96].

40 Related Work

According to our framework of high-dimensional index structures, two heuristics
have to be defined to handle the insert operation: The choice of a suitable page to insert
the point and the management of page overflow. When searching for asuitable page, one
out of three cases may occur:

* Thepoint is contained in exactly one page region.
In this case, the corresponding page is used.

* Thepointiscontained in severa different page regions.
In this case, the page region with the smallest volume is used.

* Noregion contains the point.
In this case, the region is chosen which yields the smallest volume enlargement.
If several such regions yield a minimum enlargement, the region with the small-
est volume among them is chosen.

Theinsert algorithm starts with the root and chooses in each step a child node by apply-
ing the rules above. Therefore, the suitable data page for the object isfound in O (log n)
time by examining asingle path of the index.

Page overflows are generally handled by splitting the page. Four different algorithms
have been published for the purpose of finding the right split dimension (also called split
axis) and the split hyperplane. They are distinguished according to their time compl exity
with varying page capacity C:

* Theexponential algorithm [Gut 84]:
This algorithm encounters all 2 distributions and determines the distribution
with the lowest volume.,

* The quadratic agorithm [Gut 84]:
Here, the distribution process starts with the two objects which would waste the
largest volume put in one group (the seeds). Iteratively, two groups are built by
determining the volume enlargement in group 1 and group 2 (ve; and ve,,
respectively) for each object not yet assigned to a group. The element where the
difference between ve; and ve, reaches its maximum is assigned to the group
with the smaller enlargement.

Preliminaries. Indexing High-Dimensional Spaces 41

* Thelinear algorithm [Gut 84]:
The linear algorithm is identical with the quadratic algorithm up to the seed
determination. For each dimension, the rectangle with the smallest lower bound-
ary and the rectangle with the highest upper boundary are chosen. The distance
Is normalized by the sum of the extensions of all rectangles. The pair having the
largest normalized distance is used as seed.

* Greene'sagorithm [Gre 89]:
First, the split axis is chosen. Then, the objects are distributed into two equally
sized groups by sorting according to the lower boundary of the object in the cor-
responding dimension. The choice of the split axis is handled similar to the
determination of the seedsin the quadratic algorithm.

While Guttman [Gut 84] reports only dlight differences between the linear and the qua-
dratic algorithm, an evaluation study performed by Beckmann, Kriegel, Schneider and
Seeger [BKSS 90] reveals disadvantages for the linear algorithm. The quadratic algo-
rithm and Greene’s algorithm are reported to yield similar search performance.

The R'-tree [BK SS 90] is an extension of the R-tree based on a careful study of the
R-tree algorithms under various data distributions. In contrast to Guttman who optimiz-
esonly for asmall volume of the created page regions, the authors of the R” -treeidentify
the following optimization objectives:

e minimize overlap between page regions
e minimize the surface of page regions
* minimize the volume covered by internal nodes

* maximize the storage utilization.

The heuristic for the choice of a suitable page to insert a point is modified in the third
aternative: No page region contains the point. In this case, the distinction is made
whether the child page is a data page or a directory page. If it is a data page, then the
region is taken which yields the smallest enlargement of the overlap. In case of atie,
further criteria are the volume enlargement and the volume. If the child nodeis adirec-
tory page, theregion with the smallest volume enlargement istaken. In case of doubt, the
volume decides.

42 Related Work

Like in Greene's algorithm, the split heuristic has two phases. In the first phase, the
split dimension is determined as follows:

» For each dimension, the objects are sorted according to their lower bound and
according to their upper bound.

* A number of partitionings with a controlled degree of asymmetry is encoun-
tered.

* For each dimension, the surface areas of the MBRs of all partitionings are
summed up and the least sum determines the split dimension.

In the second phase, the split plane is determined, minimizing the following criteria:

» overlap between the page regions
* indoubt, least coverage of dead space.

Splits can often be avoided by the concept of forced re-insert. If anode overflow occurs,
a defined percentage of the objects with the highest distances from the center of the
region are deleted from the node and inserted into the index again, after the region has
been adapted. By this means, the storage utilization will grow to afactor between 71 %
and 76 %. Additionally, the quality of partitioning improves because unfavorable deci-
sionsin the beginning of the index construction can be corrected in this way.

Performance studies report improvements between 10 % and 75 % over the R-tree. In
higher-dimensional data spaces, the split algorithm proposed in [BKSS 90] leads to a
deteriorated directory. Therefore, the R"-treeis not adequate for these data spaces, rather
it hasto load the entireindex in order to process most queries. A detailed explanation of
thiseffectisgivenin [BKK 96].

The R-tree and the R’ -tree have primarily been designed for the management of spa-
tially extended 2-dimensiona objects, but also been used for high-dimensiona point
data. Empirical studies [BKK 96, WJ 96], however, showed a deteriorated performance
of the R"-trees for high-dimensional data. The major problem of R-tree-based index
structuresin high-dimensional dataspacesisthe overlap. In contrast to low-dimensional
spaces, there exists only few degrees of freedom for splits in the directory. In fact, in
most situations there exists only asingle “good” split axis. An index structure that does

Preliminaries. Indexing High-Dimensional Spaces 43

Split Tree
@ 2)
A B B : @ (3
B] (1) A'El(H) [C
Nodes 8" [D] B [D
A A B A B C A B CD ||ANBCDE

Figure 15: Example for the Split History.

not use this split axis will produce highly overlapping MBRs in the directory and thus
show adeteriorated performancein high-dimensional spaces. Unfortunately, this specif-
ic split axismight lead to unbalanced partitions. In this case, asplit should be avoided in
order to avoid underfilled nodes.

The X-tree [BKK 96] isan extension of the R"-treewhich is directly designed for the
management of high-dimensional objects and based on the analysis of problems arising
in high-dimensional data spaces. It extends the R’ -tree by two concepts:

* overlap-free split according to a split-history
* supernodes with an enlarged page capacity

If one records the history of data page splitsin an R-tree based index structure, this
resultsin a binary tree: The index starts with a single data page A covering almost the
whole data space and inserts dataitems. If the page overflows, the index splits the page
into two new pages A" and B. Later on, each of these pages might be split againinto new
pages. Thus, the history of all splits may be described as a binary tree, having split
dimensions (and positions) as nodes and having the current data pages as |eave nodes.
Figure 15 shows an example for such a process. In the lower half of the figure, the
according directory node is depicted. If the directory node overflows, we have to divide

44 Related Work

the set of datapages (theMBRsA”, B”, C, D, E) into two partitions. Therefore, we have
to choose a split axisfirst. Now, what are potential candidatesfor split axisin our exam-
ple? Say, we choose dimension 5 as a split axis. Then, we had to put A” and E into one
of the partitions. However, A" and E have never been split according to dimension 5.
Thus, they span almost the whole data space in this dimension. If we put A” and E into
one of the partitions, the MBR of this partition in turn will span the whole data space.
Obvioudly, thisleadsto ahigh overlap with the other partition, regardless of the shape of
the other partition. If one looks at the example in figure 15, it becomes clear that only
dimension 2 may be used as a split dimension. The X-tree generalizes this observation
and uses always the split dimension with which the root node of the particular split tree
is labeled. This guarantees an overlap free directory. However, the split tree might be
unbalanced. In this case it is advantageous not to split at all because splitting would
create one underfilled node and another almost overflowing node. Thus, the storage
utilization in the directory would decrease dramatically and the directory would degen-
erate. In this casethe X-tree does not split and creates an enlarged directory node instead
—asupernode. The higher the dimensionality, the more supernodes will be created and
the larger the supernodes become. To operate on lower-dimensional spaces efficiently,
the X-tree split algorithm also includes a geometric split algorithm. The whole split
algorithm works as follows: In case of adata page split, the X-tree uses the R’ -tree split
algorithm or any other topological split algorithm. In case of directory nodes, the X -tree
first triesto split the node using a topological split algorithm. If this split would lead to
highly overlapping MBRs, the X-tree applies the overlap-free split agorithm based on
the split history as described above. If this leads to a unbalanced directory, the X-tree
simply creates a supernode.

The X-tree shows a high performance gain compared to the R"-trees for all query
typesin medium-dimensional spaces. For small dimensions, the X-Tree shows a behav-
ior amost identical to the R-trees, for higher dimensionsthe X-tree al'so hasto visit such
alarge number of nodes that alinear scan is less expensive. It isimpossible to provide
the exact values here because many factors such asthe number of dataitems, the dimen-
sionality, the distribution, and the query type have a high influence on the performance
of an index structure.

Preliminaries. Indexing High-Dimensional Spaces 45

Figure 16: Situation in the SS-tree where no Overlap-Free Split is Possible.

3.1.6 SS-treeand TV-tree

In contrast to al previously introduced index structures, the SS-tree [WJ96] uses
spheres as page regions. For efficiency, the spheres are not minimum bounding spheres.
Rather, the centroid point (i.e. the average value in each dimension) is used as center for
the sphere and the minimum radius is chosen such that all objects are included in the
sphere. Therefore, the region description comprises the centroid point and the radius.
This allows an efficient determination of the MINDIST and the MAXDIST, but not of
the MINMAXDIST. The authors suggest using the RKV algorithm, but they do not
provide any hints how to prune the branches of the index efficiently.

For insert processing, thetree is descended choosing the child node whose centroid is
closest to the point, regardless of volume or overlap enlargement. Meanwhile, the new
centroid point and the new radius is determined. When an overflow condition occurs, a
forced reinsert operationisraised, likeinthe R"-tree. 30% of the objectswith the highest
distances from the centroid are deleted from the node, all region descriptions are updat-
ed, and the objects are reinserted into the index.

The split determination is merely based on the criterion of variance. First, the split
axisis determined as the dimension yielding the highest variance. Then, the split plane
is determined by encountering al possible split positions which fulfill the space utiliza-
tion guarantees. The sum of the variances on each side of the split plane is minimized.

46 Related Work

The general problem of spheresisthat they are not amenable to an easy, overlap-free
split as depicted in figure 16. Therefore, the SS-tree outperforms the R -tree by afactor
of 2, however, it does not reach the performance of the L SD"-tree and the X -tree.

The TV-tree [LJF 95] is designed especially for real datathat is subject to the Kar-
hunen-Loéve-Transform (also known as principal component analysis), a mapping
which preserves distances and eliminateslinear correlations. Such datayield ahigh vari-
ance and therefore, a good selectivity in the first few dimensions while the last few
dimensions are of minor importance for query processing. Indexes storing KL-trans-
formed data tend to have the following properties:

* Thelast few attributes are never used for cutting branches in query processing.
Therefore, it is not useful to split the data space in the corresponding dimen-
sions.

* Branching according to the first few attributes should be performed as early as
possible, i.e. in the topmost levels of the index. Then, the extension of the
regions of lower levels (especially of data pages) is often zero in these dimen-
sions.

Regions of the TV-tree are described by so-called Telescope Vectors (TV), i.e. vectors
which may be dynamically shortened. A region hask inactive dimensionsand a active
dimensions. The inactive dimensions form the greatest common prefix of the vectors
stored in the subtree. Therefore, the extension of the region is zero in these dimensions.
Inthe a active dimensions, the region hasthe form of an L ;-spherewhere p may be 1, 2
or o . Theregion has an infinite extension in the remaining dimensions which are sup-
posed either to be activein thelower levels of theindex or to be of minor importance for
guery processing. Figure 17 depicts the extension of atelescope vector in space.

The region description comprises a floating point values for the coordinates of the
center point in the active dimensions and one float value for the radius. The coordinates
of the inactive dimensions are stored in higher levels of the index (exactly in the level
where a dimension turns from active into inactive). To achieve a uniform capacity of
directory nodes, the number a of activedimensionsisconstant in all pages. The concept
of telescope vectors increases the capacity of the directory pages. It was experimentally

Preliminaries. Indexing High-Dimensional Spaces 47

,,,

Kk inactive
dimensions
(common prefix)

7%
XZ
/., Rk = Rd-G
777/"“ L A
Z ? Rir1 = Roa+1
s £
o
,,, Rg
Ra+1
Rn1
Ry

—

r

Figure 17: Telescope Vectors

determined that alow number of active dimensions (a = 2) yieldsthe best search per-
formance.

The insert-algorithm of the TV-tree chooses the branch to insert a point according to
the following criteria (with decreasing priority):

e minimum increase of the number of overlapping regions
* minimum decrease of the number of inactive dimensions
e minimum increase of the radius

* minimum distance to the center.

48 Related Work

To cope with page overflows, the authors propose to perform are-insert operation, like
in the R"-tree. The split algorithm determines the two seed-points (seed-regionsin case
of adirectory page) which have the least common prefix or (in case of doubt) the maxi-
mum distance. The objects are then inserted into one of the new subtrees using the above
criteria for the subtree choice in insert processing while the storage utilization guaran-
tees are considered.

The authors report a good speed-up in comparison to the R -tree when applying the
TV-treeto datathat fulfills the precondition stated in the beginning of this section. Other
experiments [BKK 96] however show that the X-tree and the L SDM-tree outperform the
TV-tree on uniform or other real data (not amenable to the KL transformation).

3.2 Algorithmsfor the Distance Range Join

After this short introduction to index structures for the usual similarity search we can
turn ourselves to the similarity join algorithms. First we start with a few very ssimple
algorithms following the nested loop paradigm. Dueto their ssmplicity such agorithms
can be applied to the vast mgjority of join predicates. Then we introduce the more so-
phisticated approaches applying index structures. Most of these algorithms have not
been proposed for the similarity join but for the spatial join whichisprevalentinthe map
overlay operation of ageographical information system. We show how these algorithms
can be transformed for high-dimensional data spaces and for distance based join predi-
cates rather than the polygon intersection.

3.2.1 Nested Loop Join

In relational join processing, the simplest approaches are severa algorithms following
the nested loop approach [Ull 89]. Due to their smplicity these algorithms can also be
used for complex join predicates such as distance range joins, and also for k-closest pair
gueries and k-nearest neighbor joins.

Pure nested |oop joins generate the complete set of point pairs (the cartesian product
R x §) and evaluate thejoin predicate for each point pair (r,s) 0 R x S, Both point setsare

Algorithms for the Distance Range Join 49

not organized by index structures, hashing or similar concepts but are stored in flat files
without any specific order. Nested loop joins are thus the anal ogon of the sequential scan
for smple similarity queries.

From the point of view of CPU, these algorithms are quite similar, as each point pair
is generated and evaluated (i.e. the distance between the points is computed and com-
pared to €). A few optimizations of the CPU operations are possible but most optimiza-
tions of the nested loop join are concerned with I/O processing. Nested loop joins can be
distinguished according to the strategy of the traversal of the two files.

3.2.1.1 The Simple Nested L oop Join

Thesimple nested loop joiniteratesin afirst loop over all elementsof R (therefore called
the outer relation/point set) and in asecond loop, nested inthefirst one, over al elements
of S

foreach r 0 Rdo
read (r) ;
foreach s[J Sdo
read () ;
if |Ir — 9| < € then output (r,s) ;

Thus, theinner point set Sis scanned |R| timeswhere |R| denotesthe cardinality of the set
R. Thisis usually not acceptable. Although most similarity join algorithms are clearly
CPU bound on today’s architectures, the ssimple nested loop join is /O bound asreading
of one point of Sisusually more expensive than the corresponding distance calculation.
Animprovement of the simple nested loop join is described in the following.

3.2.1.2 Nested Block Loop Join

Rather than reading the outer set point by point and scanning theinner relation for each
R-point, we can reserve alarge block of the cache for the outer set R, read the outer set
blockwise and scan theinner set Sfor each such block. This correspondsto thefollowing
algorithm:

foreach block rb 0 Rdo
read (rb) ;

50 Related Work

foreach block sb 0 Sdo
read (sb) ;
foreach r O rbdo
foreach s sbdo
if |Ir — 9| < € then output (r,s) ;

In contrast to the simple nested |oop join the nested block loop join scansthe inner data
set Sonly |R|/ |rb| times. As we will show in chapter 7 it is beneficial to optimize the
block capacities |rb| and [sb| carefully. Generally, the block capacity |rb| of the outer set
should be chosen larger (or in case of standard page sizes, rb should consist of more
physical/logical pages) than the inner block capacity, because the larger the outer block
is the fewer scans of Sare due. However, if the remaining block capacity of sb is too
small, the corresponding accesses become too expensive as for each access we have to
take arotational delay of the disk drive into account.

From a CPU point of view, the nested block loop join is equally expensive as the
simple nested loop join as the number of distance calculations also corresponds to
IR - |9 and the management overhead is negligible. Typically, the nested block loop join
is CPU bound. It may be competitive or even superior to more sophisticated methods
whenever the selectivity of the join result is bad or whenever the applied indexing or
sorting methods yield a bad performance (bad index selectivity) due to the curse of
dimensionality).

3.2.1.3 Indexed Nested L oop Join

The indexed nested loop join needs a multidimensional index structure for the inner
point set S. Therefore, it can also be classified as a join method upon preconstructed
indexes (section 3.2.2). Theterm nested loop isadditionally miseading aswe have only
one loop iterating over the points of R and performing an index based similarity query
(in this case, range query) which does not ssmply correspond to a loop but is a more
complex database primitive. However, due to its ssmplicity and flexibility (it can be

Algorithms for the Distance Range Join 51

easly transformed into an algorithm for other join predicates such as k-closest pairs or
k-nearest neighbors) we describe it here. The corresponding algorithm is given below:

foreach r 0 Rdo
read (r) ;
sresult := RangeQuery (r, S €) ;
foreach s [sresult do
output (r,s) ;

As the outer set is not ordered, typically a cache (which could be applied in the range
guery processor) does not exhibit any locality. Depending on the index structure and
algorithm which is applied to process the range queries, the indexed nested loop join is
typically 1/0O bound as the range query is /O bound. Typically the indexed nested loop
join is not competitive with other more sophisticated methods (including nested block
loops). The only exception are situations where the index yields a very good perfor-
mance and the outer point set is small, such that simultaneous processing of several
similarity queries cannot bear any improvement, anyway.

3.2.1.4 Multiple Queries

The general idea of the Multiple Queries approach [BEKS 00] isto select a number of
points of R and to evaluate the corresponding queries simultaneously while traversing
the index structure (R-tree) constructed for S. Thisway, many different types of similar-
ity joins can be implemented, the distance range join as well as join operations with
nearest neighbor based join predicates. The authors of the multiple queries technique
were not conscious about the fact that this technique can efficiently support the similar-
ity join operation. Rather, they directly supported algorithms of similarity search and
data mining by the simultaneous execution of queries. From this point of view, the mul-
tiple queries technique is a competitor of the similarity join as a database primitive for
high performance data mining. A comparative evaluation [Bra 00] of this aspect had the
result that it is often easier to implement data mining algorithms on top of the multiple
gueries paradigm than on top of the similarity join. The efficiency potential of the mul-
tiple queries technique, however, is much more limited.

52 Related Work

Besides the general idea to evaluate similarity queries simultaneously while travers-
ing the index structure, [BEK S 00] also proposes atechnique to accelerate and partially
avoid the distance computations between point pairs. The ideais to exploit the triangle
inequality to avoid distance cal cul ations between feature vectors.

The following algorithm in pseudocode describes the general idea of the implemen-
tation of the distance range join using the multiple queries paradigm. In contrast to the
algorithm in section 3.2.1.3 (indexed nested loop join) the outer loop iterates over the
blocks of R. Instead of the usual range query, the multiple query version iscalled.

foreach block rb 0 Rdo
read (rb) ;
sresult := MultipleRangeQuery (rb, S €) ;
foreach (r,s) O sresult do
output (r,s) ;

To evaluate the multiple range query, we give a recursive schema which performs a
depth-first index traversal similarly to a single range search. In detail we list only the
recursive part (directory pages):

function MultipleRangeQuery (rb, pg, €): set of pair of Point
var match: bool:=false;
var result: set of pair of Point :=[;
foreachr Orbdo
If mindist (r, pg) < € then
match := true;
if match then
read (pg) ;
if 1sDirectoryPage (pg) then
foreach p [pg.children do
result ;= result J MultipleRangeQuery (rb, p, €) ;
else

Algorithms for the Distance Range Join 53

OENO
Op

Ya x Points of R
N e Pointsof S
00

Figure 18: Cube approximation of points

3.2.2 Algorithmsupon Preconstructed | ndexes

In this section, we describe the R-tree spatial join (RSJ) [BKS 93] and afew variants of
this algorithm. Generally, RSJ is not an algorithm for the similarity join but for the
gpatia join which is primarily used in geographical applications for the map overlay
operation. There, the joined objects are 2D polygons and the join predicate is the inter-
section of the polygons. However, RSJ can be easily generalized to higher dimensions
and to distance based predicatesfor pointsrather than intersection predicatesfor spatial-
ly extended objects.

The most obvious way of this generalization is to approximate the points of the two
sets by hypercubes of side length € (cf. figure 18). This way, we get a conservative
approximation, because if two points have a distance of no more than €, the associated
hypercubes must intersect. In higher dimensions, the selectivity of thisfilter step deteri-
orates because a cube is a quite coarse approximation. Moreover, if the distance param-
eter € changes, it would be necessary to construct a new index.

A better ideaisto store the points without approximation in amultidimensional index
and to consider the distance predicate in join processing. In the leaf level of the index,
obviously the distances between points must be computed as usual. More complex isthe
determination of the distance between page regions to decide whether or not a pair of
pages must be considered. We need a distance measure which considers apair of pages

54 Related Work

i N

Figure 19: MINDIST for similarity search (I.) and join (r.)

if and only if it is possible to contain a pair of matching points. For plain similarity
search, a suitable distance measure for that purpose isthe MINDIST between the query
point and the page region which is defined below and depicted on the left side of
figure 19. This distance measure forms a sum over the dimensions. In each dimension,
the distance between the corresponding coordinate of the query point g; and theinterval
of the page region [R.Ib;, R.ub;] is determined:

[
p o (RIb-g)* ifRIb >
mindist™ = % O 0 otherwise
O<i<d

[l
E (g, —R.ub;)? if g >Rub;

Thisprinciple can be generalized for the distance between two page regions by summing
up the squared differences between the intervals. The MINDIST between two page re-
gionsisvisualized on the right side of figure 19.

O
o E(R.Ibi—s.ubi)z if RIb; > Sub
mindist” = Z U 0 otherwise

<i U
o<l <d5 (Slb;—R.ub,)2 if Slb, > Rub;

3.2.2.1 R-tree Spatial Join

The R-tree Spatial Join (RSJ) [BKS 93] performsastrict depth first traversal of the two
index structures. Both trees are descended simultaneoudly, in the most basic form of RSJ

Algorithms for the Distance Range Join 55

without any prioritization. Provided that both indexes are of equal height, the algorithm
proceeds asfollows: First the two roots are considered. If the two page regions associ at-
ed with theroots haveadistance (MINDIST) of no morethan €, then theroots areloaded
from disk and the algorithm considers all pairs of child pages. For each pair of child
pages, the MINDIST is determined, and, provided this distance does not exceed €, the
algorithmis called recursively. The corresponding pseudocode is given below.

procedure rtree_similarity_join (R, S page)
load (R) ;
load (S) ;
if is_data page (R) and is_data_page (S) then
foreachr 0 Rdo
foreach s[J Sdo
if |Ir — || < € then output (r,s) ;
else (* both pages directory pages *)
foreachr O Rdo
foreach s[J Sdo
if MINDIST (r, s) < € then
rtree_similarity_join (r, s) ;

Asingeneral, each pageispaired with several pages of the other set, it isoften necessary
to load a page more than once from disk. A cache isintended to avoid or shadow many
of these redundant accesses. In order to exhibit a high cache hit ratio, it is possible to
apply some strategy to determine the order in which the pairs of child pages are generat-
ed. The authors of RSJ propose the local application of a plane sweep algorithm instead
of the two simple nested loops in the else-branch of the algorithm above (cf. figure 20).
It has been shown by Huang et al. [HIR 97] that globa optimization yields a higher
optimization potential than the local plane sweep algorithm (cf. section 3.2.2.3).

3.2.2.2 Parallel RSJ
The parallel version of RSJ[BK'S 96] consists of three phases,

» task creation (non parallel),

» task assignment to processors (non parallel), and

56 Related Work

\
¢

(e2]

‘smeep line
2

-

N

Figure 20: Plane sweep as alocal optimization of RSJ

[CPU,| [CPUJ [CPU
4
i / 4 5/ L]

\/Ej

Figure 21: Task definition and static range assignment

» task execution (completely executed in parallel).

The notion of atask is here defined asa pair of (joining) subtrees which are generated at
avery highlevel, i.e. typically thefirst or second level underneath of the root. The level
is chosen such that the number of tasksis high enough to allow good load balancing but
not too high to keep the management overhead for task creation and assignment low. In
the following example depicted in figure 21 we have 5 tasks corresponding to 5 pairs of
regions which are associated for instance with the nodes of the first tree level following
the root.

Algorithms for the Distance Range Join 57

The tasks are generated by a plane-sweep algorithm as shown before in figure 20 to
preserve locality among subsequent tasks. The authors define several strategies for the
assignment of tasksto processors.

o Static range assignment (cf. figure 21):
Each of the p processorsreceivesn/ p + 1 subsequent tasks where n is the num-
ber of tasks. This strategy preserves most locality for the processors, i.e. least
effort for data redistribution.

e Static round robin assignment:
Tasks are dispatched in a round robin fashion. Locality is not preserved, but a
better load balancing is achieved.

e Dynamic task assignment:
The processors request a new task (i.e. basically round robin) whenever they are
idle. Best load balancing.

In the experiments, the authors report for spatial data a near-linear speed-up if the num-
ber of disksisscaled up together with the number of processors.

3.2.2.3 Breadth-First R-tree Join

Like RSJ, the breadth-first R-tree join (BFRJ) [HJR 97] has been proposed for spatial
databases and an intersection join predicate but can be generalized for similarity predi-
cates in a straightforward way. The authors address shortcomings of RSJ which are
caused by its strict depth-first traversal. As in a depth-first strategy each pair of tree
branches must be processed to its end before a new pair of branches can be started it is
not possibleto apply global optimization strategiesfor ordering of the pairs. It ismerely
possible to apply local ordering strategies which are applied when determining the pairs
of child pagesfor asingle pair of parent pages. The optimization potential, however, is
higher if inthe access strategy alarger setisconsidered, e.g. the set of pairsof acomplete
R-treelevel.

To organize abreadth-first traversal of atreeindex structure, the authors propose aso-
called intermediate join index (1J1), alist of al joining page pairs of an index level. The
agorithm starts with 13l = [{rootg,rootg)L] Then in each step, al entries of the 1l are
expanded, i.e. the corresponding pages are retrieved from disk and replaced by the join-

58 Related Work

2

2|1 Intermediate Join
2|2 Indexat Leve O

e
N

1 2. 1 2.
314] [56 34 (56
oldR oldS
5|5 | . .
616 ntermediate Join
514 Index at Level 1
Level-2 Join >
3: 4. 5: 6: 3: 4. 5: 6:
1718/ (910 1112 1314 Y 17/8/ (910 1112 1314
111 9
13]13
12|10
1110, Candidate Set
14]13

Figure 22: Breadth-first traversal and intermediate join index

ing pairs of child pages until the leaf level of both indexes is reached. This concept is
visualized in figure 22 for the first three levels of the R-trees: First, the two roots (with
ID=0) are joined (level-0 join). The result is the intermediate join index with the two
pairs (2,1) and (2,2) which isthe basisfor the level-1 join.

Global optimization strategiesare applied by sorting the entriesof the 1 JI. For suitable
ordering criteria, the corresponding MBRs of the pages can be used. The authors pro-
pose 5 different strategies:

Algorithms for the Distance Range Join 59

* No particular order
Note that this does not correspond to a random order but is influenced by the
hierarchical order of the tree. Nodes in a common branch of the tree are always
adjacent in the 1Jl without any particular order.

» Lower x-coordinate (r.Ibg) of the nodes of R

» Thesum of the centers of the x-coordinates of Rand S
(rdbg+r.ubg) /2 + (slbg+s.ubg) /2

e The x-coordinate of the center of the common MBR of Rand S
(min {r.Ibg, s.Ibg} + max {r.ubg, s.ubg}) /2
e The Hilbert-value of the center of the common MBR of Rand S.

The authors present only experiments on 2d polygon data which are not representative
for high-dimensional similarity joins. In these experiments, the simple strategy of order-
ing only according to the lower x-coordinate of R is the winner. The more sophisticated
strategies are even outperformed by the strategy no particular order which takes the
child pairs in the order in which they are generated. The standard RSJ algorithm is
outperformed but only by a small factor.

3.2.3 Index Construction on-the-Fly

If no preconstructed index for the two joining sets exist, it is possible to construct the
corresponding index structures temporarily for the join. The usual R-tree construction
methods by repeated call of the INSERT operation for each data object, however, turns
out to be too expensive. During the last years a few methods for a fast bottom-up con-
struction of R-tree like index structures have been proposed which do not in every case
generate an index of high quality (e.g. Hilbert-R-trees are typically outperformed by
original R-trees or R*-trees). In most cases, the quality of bottom-up constructed index
structures is high enough to speed up join operations such that the index construction
cost is amortized. Well-known index construction methods are:

* Hilbert R-trees [KF 94] sort the data points according to a space-filling curve
(the Hilbert curve) and pack sequences of adjacent points into pages which are
then grouped into directory pages. For each page, the MBR is determined.

60 Related Work

» Buffer trees [BSW 97] are a generic technique for any kind of index structure.
The idea is to delay insert operations by additional buffers for data records
which are associated to non-leaf nodes of the tree. Points are propagated to the
next deeper level on buffer overflows.

* Repeated partitioning [JW 96, BBK 98] sort the data set according to different
dimensions and partition thus the data set until the data page capacity isreached.

In contrast to these methods for the fast construction of general purposeindex structures
for similarity search and similar applications, also a few methods have been proposed
that construct specialized index structures which are particularly suited for spatial joins
and similarity joins. These approaches are introduced in this section.

3.2.3.1 Seeded Trees

The genera assumption of the idea of seeded trees [LR 94] is that only one of the two
joined sets (say R) is supported by an index. If neither of the two sets is indexed, the
index for R can be constructed bottom-up. The idea is then to exploit the knowledge
about the partitioning of Rto construct an index for Swhich can be efficiently matched
with the other tree. An obvious observation is that two index structures can be particu-
larly efficiently matched if both partition the data set in asimilar way (cf. figure 23). On
the |eft side, we show the partitions of the index of set R denoted by R, to R, and afew
objects of the set S (small squares). In the middle, atypical partitioning for Sis shown
which is generated by a dead space minimization of the R*-tree. In this scenario, each of
the R-partitionsisjoined with two partitions of S(assuming aspatial intersection join or
asimilarity joinwith asmall parameter €). On theright side, Sis partitioned such that the
R-partitions are used astempl ates. Although these S-partitions cover more spacethan the
partitioning depicted in the middle, considerably fewer pairs must be formed.

Theideaof seeded treesis, therefore, to use thefirst few levelsof theindex for Rasa
template for theindex S. Instead of beginning theindex construction with an empty root
node, we begin with atemplate tree the leaf nodes of which are empty. For this purpose,
thefirst levelsof Rare simply copied (seeding phase). The template tree with the empty
leavesis called the seed level of the seeded tree. The empty leaves which are associated
with a minimum bounding rectangle but not stored on disk (represented by empty point-

Algorithms for the Distance Range Join

61

Rl.!!Rz

R, MSH 2 :
Cam T "R4 E

Rs R, Rs

Figure 23: Matching of similar and dissimilar partitions

/ n
grownf/w 2 o seed node
m grown node

subtrees "-------- -

Figure 24: The seeded tree

ers) are called dots. During the tree construction (the growing phase) this seed level is
not changed. The points areinserted to the tree by applying the choose_subtree strategy
of the R-tree. Whenever an inserted object reaches an empty slot, anew node is generat-
ed whichisfurther treated like the root node of ausual R-tree, i.e. itisnot forced to have
acertain storage utilization and upon an overflow of thisnode, anew “root” isallocated
and the compl ete subtree grows by onelevel. Asdepicted infigure 24, the corresponding
subtrees are called grown subtrees and the levels of the tree are called grown levels.
Although each grown subtree is balanced the seeded tree asawhole is unbalanced. Note

that the property of balance is actually not needed for join processing.

62 Related Work

13

Figure 25: Grid partitioning of the e-kdB-tree

3.2.3.2 Epsilon-kdB-tree

The general idea of the e-kdB-tree [SSA 97] isto apply a grid partitioning of the data
space where the distance of the partitioning planes exactly corresponds to the query
parameter € (cf. figure 25). The general advantage of such agrid approach isthat the part
of the data spacein which ajoin partner of apoint may be positioned iswell restricted to
neighboring grid cells (shaded area). With increasing dimension, however, the number
of neighboring grid cellsincreases drastically to 39 - 1. Therefore, it isno good ideato
consider the grid cells one by one or even to retrieve them separately from disk. Grid
based approaches have to apply more sophisticated ideas to avoid this problem. The
approach of the e-kdB-treeisto use only apart of the dimensionsfor partitioning. Aswe
will describe later, it uses as many dimensions for partitioning as are needed to achieve
asuitable number of points per cell.

In order todo I/0 processing, even only one dedicated dimensionisused for partition-
ing. The authors assume that the data file is already sorted according to this dedicated
dimension. Therefore, for thisfirst partitioning step, no further sorting is necessary. The
file can be partitioned into stripes by simply reading as many points until the next stripe
boundary is reached (cf. figure 26). As the authors further assume that each pair of
neighboring stripesfits into main memory, no external sorting step is needed at all.

Once a pair of stripes has been loaded into main memory, for each of the stripes a
main memory data structure called e-kdB-tree is constructed (cf. figure 27). The e-kdB-

Algorithms for the Distance Range Join 63

free free free
matching matching matching
A Y

Figure 26: Join agorithm of the e-kdB-tree

root

Figure 27: Structure of the e-kdB-tree

tree is an unbalanced tree where each inner node partitions the data set according to a
selected dimension. The fan-out of a node corresponds to 1/ provided that the data
space is normalized to [O..l]d. Some of the child pointers may be NULL if the corre-
sponding grid cell does not contain any data point. Leaf nodes are data nodes and have a
defined capacity to store data points. The e-kdB-tree is constructed top-down by repeat-
edly sorting and partitioning of the data set until the defined node capacity is reached.
Each e-kdB-tree must be matched with itself and with the two trees for the neighboring

64 Related Work

stripes. This is done in a straightforward way. Matching of e-kdB-trees performs very
efficiently and isafilter step with arelatively good selectivity. After processing apair of
stripes, the data structure of the first stripe is discarded and replaced by the tree for the
next stripe. Thefileis processed in astrictly linear way never accessing any part more
than once.

The most important limitation of the approach is the assumption that any pair of
stripesfitsinto the main memory, which may be unrealistic for skewed and high-dimen-
sional data sets. Skew may lead to the situation that one datastripe contains considerably
more points than the rest. But even for uniformly distributed points it has been shown
[BK 014] that € = 0.3 isatypica situation for high-dimensional data spaces. Therefore,
a pair of stripes contains about 60% of al database points. For such situations, the &-
kdB-tree approach is not really scalable. To solve this problem, the authors propose to
partition the data space according to more than one dimension in the first step. This
solution, however, removes most of the advantages of the approach. The file must be
explicitly sorted according to two dimensions at the beginning. And later, there is no
strictly linear access pattern but a complex one which reads parts of the file multiple
times. Finally, the problem of a high memory requirement is not really solved, because
for our running example (€ = 0.3) our algorithm must simultaneously hold 4 adjacent
cells which contain approximately 0.3% = 9% of the data points each. A total of 36% of
the data must be held simultaneously in main memory.

3.2.3.3 Parallel e-kdB-trees

Shafer & Agrawal [SA 97] have also proposed a parallel version of the e-kdB-tree. As
both the construction of the e-kdB-tree as well as matching of two trees are expensive,
both is parallelized. The assumption is that the data set is randomly distributed over all
processors each of which has approximately N/ p points. Each processor constructs an
e-kdB-tree of its own set. During this construction the processors exchange information
about their splitsto enforce that all constructed trees have the same structure as depicted
infigure 28 where the gray linesindicate splitswhich are introduced by this split broad-
cast. Finally aunion operation for all trees of the processorsisexecuted and if node sizes
arestill too large, the leaf nodes of the resulting tree are further split. Then, the workload

Algorithms for the Distance Range Join 65

M
split broadcast

Figure 28: Enforcing equal structures for all e-kdB-trees

for tree matching is statically distributed according to the estimated cost. The cost of a
leaf nodeis estimated by the following formulas:

* |r| - |s| for the join of different |leaves

|- (r| +1)/2for the self join of aleaf.

The join units are clustered to preserve locality and minimize the redistribution effort
and replication. Data redistribution is performed asynchronously to avoid network
flooding.

3.2.3.4 Plug & Join

Plug & Join [BSS 00] is a generic technique which is suitable for several different join
operations including spatial join and similarity join. The idea is to construct a main
memory R-tree template from a sample of R. Instead of data nodes, the |eaves are asso-
ciated with partitions on the disk and with main memory buffers. After construction of
the tree template, the set R is partitioned by inserting points into the tree (i.e. actualy,
only the choose_subtree procedure is called). At the leaf level, the points are inserted
into the buffers which are flushed to disk on overflow (cf. figure 29). After this first
partitioning phase, some of the partitions are flushed to disk, others may still lie com-
pletely in the buffer. In the next phase, Sis also partitioned according to the template R-
tree. The difference, however, isnow that partitioning of Sintroduces object replication.
Each object is dispatched to every joining partition. If the joining partition has never
been flushed to disk, then the corresponding pairs can beimmediately answered from the

66 Related Work

— N

112153 I_I_I |_+2_| |_+3_| I?t_l
(0 o

Figure 29: Plug & Join

buffer. Otherwise, the S-object is stored in the buffer. Upon buffer overflow, all buffered
objects are joined with the corresponding partition on disk.

3.2.4 Join Algorithm Based on Object Replication

In 1996 and 1997, two groups proposed spatial join algorithms based on spatial hashing.
Both of approachesinvolve object replication.

3.2.4.1 Spatial Hash Join

The general method proposed by Lo and Ravishankar in [LR 96] isto partition the set R
without any replication. Then, the object set Sis partitioned according to the buckets of
R. This second step involves object replication whenever an S-object intersects more
than one bucket region of R. Finally, only pairsof corresponding buckets must bejoined.

To generate the initia partitioning of R, the idea of the seeded tree [LR 94] isreused
(cf. section 3.2.3.1). Theinitial process of generating the slots of the seed level iscalled
bootstrap seeding: A suitable number ns of slotsis determined. Then, the set Ris sam-
pled with asample size of ¢ timesthe number of slotswith some small constant c. Using
some simple clustering method, in the set R a number of ns cluster centers are deter-
mined which are used as dots in the seeded tree (initially without spatial extension).

Algorithms for the Distance Range Join 67

nsdotsare
determined
by clustering

Figure 30: Bootstrap Seeding of the Spatial Hash Join

Then the seeded tree grows by applying the criterion of minimum slot enlargement (cf.
figure 30).

For partitioning of S the seeded tree of R with all bucket extents is copied. In the
origina proposal for the spatial intersection join each object s of Sis assigned to all
buckets b which areintersected by s. This approach can be generalized for the similarity

join which hasto assign each object s [1 Sto all buckets b with
mindist (b,s) < €.
This step involves the object replication.

All corresponding bucket pairs(r, s) arejoined by constructing aquadratic split R-tree

onr. Each object in sis probed to the R-treeonr.

3.2.4.2 Partition Based Spatial Merge Join

The other spatial join method called Partition Based Spatial Merge Join (PBSM) also
uses object replication. Originally, it has also been proposed as a join method for the
intersection join predicate of spatial polygon sets and can be extended to the similarity
join. In contrast to the spatial hash join, PBSM does not construct any hierarchical index
but decomposes the data space regularly into tiles of the same size. The partitions either

directly correspond to such tiles or are determined from the tiles using hashing (cf.

68

Related Work

Tile O/Part O

Tile 1/Part 1

Tile 2/Part 2

Tile 3/Part O

Tile4/Part 1

Tile 5/Part 2

Tile 6/Part O

Tile 7/Part 1

Tile 8/Part 2

Tile 9/Part O

Tile 10/Part 1

Tile 11/Part 2

Figure 31: Partition Based Spatial Merge Join)

figure 31 wherethetiles are canonically numbered and the partitions are assigned by the
“modulo 3" hashing function applied to the tile number).

The Partition Based Spatial Merge Join potentially replicates both the outer set R as
well astheinner set S. A spatially extended objectsis assigned to every partition which
is intersected by it. Consequently, for the similarity join, we assign each object to all
partitions to which it has a distance (mindist) not exceeding €/2. This is done for the
objects of R and S. The advantage of this approach is that each partition of R must be
joined with exactly one other partition of S. In contrast, for the Spatial Hash Join, it is
possible that an Spartition intersects with more than one R partitions. The disadvantage,
however, isthat both sets are subject to object replication. The consequenceisin partic-
ular that also the object pairs which are generated by the join algorithm may contain
some duplicate pairs. Thisiseven afrequent condition because whenever an object pair
is hashed to the same two partitions, the join result contains such duplicates. These
duplicates must be eliminated e.g. by sorting or hashing according to the pair of object
identifiers (OID,,OIDy).

Algorithms for the Distance Range Join 69

Theinitial numbers of partitionsis determined according to the following formula:

nitial = (1 +) pySze-pont_]
size_memory

Thisformulaintendsto choose the number of buckets such that each pair of correspond-
ing bucketsfitsinto the main memory. However, it does not take into account

* oObject replication

e and data skew

for the estimation which clearly limits the value of thisformula.

3.2.5 Join Algorithms Based on Sorting
3.25.1 Z-Order

Several approaches are based on the concept of spacefilling curves such asthe Z-order,
Gray codes or the Hilbert curve. The principle of space filling curves is depicted on
figure 32 (left side). First we start with the data space which must have fixed space
boundaries. The complete data space is associated with an empty bitstring [In the 2-
dimensional case, the data space is regularly decomposed into 4 quadrants which are
associated with the 4 bitstrings [00L) (010} (100 and (110] The exact order of the 4 quad-
rants depends on the type of the space filling curve (the Z-order has a different assign-
ment of bitstrings than Hilbert or Gray-codes). Each of these quadrants can be further
decomposed in arecursive way, which generates longer bitstrings. In the case of agen-
eral dimensionality (d), the data spaceis decomposed into 29 cellsin each stepwhichare
described by bit strings of length d. The decomposition stopswhen aspecified resolution
isreached.

If space-filling curves are used for the similarity join, it is necessary to consider the
points as extended objects (spheres of radius €/2) which are approximated by the grid
cells. Obvioudly, if two such objectsare completely contained in different cellsasdepict-
ed in the leftmost example in figure 33, then they are guaranteed to have a distance of
more than € and are thus not ajoin result. Therefore, candidates can be efficiently gener-

70 Related Work

Z-Order Gray-Code Hilbert

/ 00 01 - [_1\ ﬁ_] HH
/w0 1 Zh i il e

0000/ 0001 | 0100\ 0101\

0010/ 0010| 0110\ 0111\

1000/ 1001 | 1100\ 1101\

1010 /1011 | 1110\ 1111\

Figure 32: Spacefilling curves
0001
o0 e 00 * 00«

0011

Figure 33: Joins on space-filling curves with and without replication

ated by grouping together objects by cell identifiers, e.g. by sorting according to the bit
strings (i.e. asort-mergejoin).

Unfortunately, the spheres are not often completely contained in agrid cell. Typically,
the grid cell boundaries are intersected as in the second and all following examples of
figure 33. Inthis case, the join partners could bein all cellswhich are intersected by the
sphere. One solution to this problem could beto replicate the objects and store them once
for each intersected cell. Note, however, that the number of intersected cellsis exponen-
tial in the data space dimension.

Algorithms for the Distance Range Join 71

Another possible solution is depicted in the third example on figure 33. Not only grid
cells at the basic resolution are considered as approximations but at every resolution
which is generated by the recursive decomposition process. Each sphere is approximat-
ed by the smallest cell in which the sphere is completely contained. In the extreme case
where asphereisintersected by thefirst split line, only the complete data space [lican be
used. As depicted on the right side of figure 33 two points can be join mates if they are
in the same cell or if one of the cellsis contained in the other. In terms of bit strings, a
cell ¢y iscontained in ¢, if the bitstring which is associated with ¢, isa prefix of that of
c,. Therefore, our filter has to match the files such that each bitstrings b(r) of R are
matched with all bitstrings of Swhich are either prefixes of b(r) or of which b(r) isa
prefix.

The agorithm of Orenstein [Ore 91] sorts each of the files R and S according to the
bit stringsin lexicographical order and performs basically a sort merge join. To find not
only exact matches between the bit strings but also prefix matches, the algorithm ex-
ploits the property of the lexicographical order that a prefix p(b) of abitstring b appears
in the sequence before the bitstring b. When performing the sort mergejoin, all elements
of Rand Sthe bitstrings of which are prefixes of the current element of Rand S, respec-
tively, are stored temporarily in a suitable data structure. They are deleted from the data
structure as soon as they lose the prefix property of the current element. When an ele-
ment is deleted from the data structure, the fileswill not contain any further join partners
of the deleted element. A suitable data structure is depicted in figure 34. A stack orga-
nizes all prefixes of the current element of Rand S, respectively. The points which are
associated with the corresponding bit strings are stored by linked lists. Whenever the
current element changes, the algorithm checks which prefixes have changed (only bit
operations are needed for that check) and the corresponding linked lists are discarded.
Orenstein al so proposed methods to optimize replication in his algorithm [Ore 89]. An-
other method which is based on a cost model is GESS[DS 01].

3.2.5.2 Multidimensional Spatial Join

Koudas and Sevcik proposed the Sze Separation Spatial Join (SSSJ) for 2D polygon
databases [KS 96] and the Multidimensional Spatial Join (MSJ) for the similarity join

72 Related Work

Stack: Linked list: Stack: Linked list:
10011108 15 {16 | 001110k Sg -+ So |
| 0011 f={ 7 |»{ g »{ g | | 0011 f—= S4 |
. 00 f—{r3]

[fir1 r2 M S —{S]
FileR: FileS
100111000: r17 00111001: r4g ... |001111: 51| 01: Sy ...

Figure 34: Data Structure for Orenstein’s Spatial Join

[KS 97]. Both algorithms are also based on the Z-order of the associated bit strings. In
contrast to Orenstein’s algorithm, their algorithm first dispatches the points into so-
called level files. A level file contains all points where the associated bit strings have a
defined length, e.g. the level-0 file contains all points which are associated with the bit
string of length O, etc. Then, amultiway sort mergejoinisperformed over al level files
of Rand Sto match all bitstrings with their prefixesin the other data set.

It has been pointed out in [BK 01] that both MSJ as well as Orenstein’s algorithm
suffer from similar performance problems as the e-kdB-tree in high-dimensiona data
spaces. E.g. for uniformly distributed points of an 8-dimensional dataspacewithe = 0.3,
the probability that the first intersection line is intersected, corresponds to 30%. Of the
remaining 70%, another 30% intersects the second partitioning line, and so on. This
leadsto atotal expected value of 46% of the datafilesto be held in main memory. These
results could al so be experimentally confirmed for real dataof a CAD application which
needed 26% of al datasimultaneously in main memory.

3.3 Nearest Neighbor Based Join Algorithms

The most important drawback of the distance range joinisthat it is difficult for the user
to control the selectivity of thisjoin operation. The distance range join behavessimilarly

Nearest Neighbor Based Join Algorithms 73

to therange query where the user may get an empty result if € ischosen too small and the
complete database if € is chosen too large. With increasing data space dimension, the
range of € where the query result corresponds to neither of these two trivial cases be-
comes more and more narrow. Likewise the result of the similarity join becomestrivial
if € isnot suitably chosen. If € is chosen too small, the join result is (almost) empty. If €
is chosen too large, the join result (nearly) corresponds to the cross-product of the two
data sets.

To overcome this drawback of the range distance join, we have defined in chapter 2
the join operations with a nearest neighbor based join predicate. Previously published
algorithms are presented in this section. For nearest neighbor based join algorithms, the
cardinality of the result is (up to tie situations) defined in the specification of the join
guery. In chapter 2, we distinguish between closest pair queries (also known as k-dis-
tance join) and the k-nearest neighbor join. We will see that there are no previous publi-
cationsthat concentrate on the latter join operation.

3.3.1 Closest Pair Queries According to Hjaltason& Samet

In [HS 98], Hjaltason and Samet propose the algorithm for three join operations which
belong to the group of closest pair queries on both point data as well as polygon data
(extended spatial objects):

» k-distancejoin (i.e. k-closest pair query)
corresponds to the original k-closest pair query. The user specifies the parameter
k and the system retrieves those k pairs from R x Shaving least distance.

e incremental distance join
similar to the k-distance join but the parameter k is not previously defined.
Rather, the first, second, third, etc. pair is retrieved by repeated calls of a func-
tion GetNext. The caller decides according to the results whether or not more
pairs are needed.

* k-distance semijoin
similar to the k-distance join but a GROUP BY operation is performed on one of
the point sets (R). Only the first pair is reported for each point of R, subsequent

74 Related Work

pairs where the same point of R is reported again, are discarded. Therefore, the
k-distance semijoin retrieves those k points of R which have the smallest nn-dis-
tance with respect to S This operation can also be used to implement the special
case of the k-nearest neighbor join where k corresponds to 1 (the k in the k-dis-
tance join and in the k-nearest neighbor join have a different meaning). For this
purpose, the k of the k-distance semijoin must be set to the cardinality of R:
k=|R].

Although this is up to future work, we do not believe that this leads to a good
efficiency of the 1-nearest neighbor join. The k-nearest neighbor join for k# 1

cannot be implemented using this technique.

In [HS 98], Hjaltason and Samet extend their algorithms for the usual nearest neighbor
qguery and the distance ranking which have been proposed in [HS95] (cf. adso
section 3.1.4) to the similarity join. The basic ideais to replace the two priority queues
by different ones. For plain similarity search, we have one priority queue which stores
the active pages (called active page list APL) ordered by increasing distance from the
guery point. The other priority queue storesthe k candidate points ordered by decreasing
distance from the query point. For the k-distance join, the APL stores pairs of pages
ordered by increasing distance from each other. Likewise, the candidatelist storesk pairs

of points.

The agorithm for the k-distance join in each step takes the top pair of pages (P;, Q)
fromthe APL. Then, one of thetwo pages of thepair (say P;) isexpanded, i.e. |oaded into
the main memory. If P; is a directory page, the set of child pages {P; ;...P; |} of P; is
determined and the pairs (P; 1, Qj), ..., (P;, Q;) areinserted into the priority queue. This
kind of expansion of an APL entry is called the unidirectional node expansion because
of the top pair (P;, Q) only one page P; or Q; is expanded (cf. figure 35). The authors
also propose an algorithm which performs asimultaneous expansion of P; and Q; which
is called bidirectional node expansion. For the bidirectional node expansion, plane
sweeping can be applied. Hjaltason and Samet also propose various strategies for tie
breaking (i.e. several page pairs have the same distance) and for the tree traversal.

Nearest Neighbor Based Join Algorithms 75

APL APL
Ps F————n unidirect.
[Q, | (P3Q2) |7 oge ™ [(P3Q)
=al expenson
I r T |
P, pllv---L= 0 I (P3,Q1) (P (P1,Q1)
| 11

Figure 35: Principle of the k-distance join by Hjaltason& Samet

The agorithm for the incremental distance join works like the algorithm for the k-
distance join with some minor modifications: The candidate list isinfinite and ordered
by increasing distance. The agorithm stops whenever the top candidate pair isvalidated
to be the next closest pair. In fact, the authors store both kinds of pairs, page pairs and
object pairs in the same priority queue. The next closest pair is validated whenever an
object pair appears at the top of the queue.

The distance semijoin isimplemented using the incremental distance join asabuild-
ing block. To retrieve the k points of R which have the smallest nearest neighbor dis-
tance, theincremental distancejoinisrepestedly called. For each result (01,0,) of sucha
call the algorithm checks whether 0, has already been reported before. If so, the pair
(04,0-) isdiscarded, otherwise reported as a result of the k-distance semijoin. The algo-
rithm stops when k pairs have been reported. Several additional strategies for the tree
traversal of the semijoin are mentioned in [HS 98].

3.3.2 Alternative Approaches

Shin et a. [SML 00] propose severa modifications of the algorithm of Hjaltason and
Samet to improve the performance. They propose a method for selecting the sweep axis
and direction for the plane sweep method in bidirectional node expansion which mini-
mizes the computational overhead of this expansion. Moreover, they apply aggressive
pruning methods to further optimize the distance join processing. This pruning is based

76 Related Work

Figure 36: Mindist, maxdist, and minmaxdist of a page pair

on estimated valuesfor the pruning distance. Compensation methods ensure the correct-
ness of the algorithm in the casethat thisestimationfails. The estimateisinitially chosen
and then during query processing dynamically corrected.

Corral eta. [CMTV 00] aso propose a collection of five algorithms for the k-closest
pair query. In contrast to Hjaltason and Samet, they consider 5 different algorithms for
the nearest neighbor search and systematically transform them such that they implement
the k-closest pair query. Thefive approaches are:

* Naive: Traverse both indexes depth first without any pruning. I.e., every possi-
ble page pair is formed.

* Exhaustive: Like naive, but prune those page pairs the mindist of which exceed
the current candidate distance

» Simplerecursive: Additionally prune according to the minmaxdist criterion

» Sorted distance recursive: before descending the tree, sort the pairs of child
pages according to their mindist. This algorithm is basically the extension of the
RKV-algorithm for nearest neighbor search [RKV 95] to the k-closest pair
query.

* Heap algorithm: Similar to [HS 98] with some differences of minor importance

Basically the first three approaches are only limited versions of the fourth. Two of the
algorithms perform pruning based on the minmaxdist criterion. The minmaxdist of apair

Conclusions 77

of pages is the maximum pruning distance which can be encountered after processing
the corresponding subtrees. The mindist, maxdist, and minmaxdist for apair of pagesare
depicted in figure 36. Several new strategies for tie breaking and processing of trees of
different height are proposed.

3.4 Conclusions

We have seen that there are several algorithms that implement the distance range join.
However, most of them are based on the spatial join and, therefore, do not yield avery
high performance in high dimensional data spaces. Even the most important approaches
that have exclusively been published for the ssmilarity join suchasMDJ[KS 974] or the
€-kdB treeruninto serious problemsfor high dimensional data spaces. Therefore we see
the need for further research inthisarea. Thereissomerelated work for the k-closest pair
guery. We will not consider thiskind of join operation in our further work, because this
operation is not very important for our applications. The k-nearest neighbor join, in
contrast, has a high importance. There is almost no related work for this operation.
Therefore, the k-nnjoin will also play an important rolein our thesis.

78

Related Work

Chapter 4

Density Based Clustering on the
Distance Range Join

When considering algorithms for KDD, we can observe that many algorithms rely
heavily on repeated similarity queries (i.e. range queries or nearest neighbor queries
among feature vectors) which are a database primitive prevalent in most multimedia
database systems. For example, the algorithm for mining spatial association rules (ex-
tracting associations between objects based on spatial neighborhood relations) proposed
in[KH 95] performsasimilarity query for each object of aspecified type such asatown.
Another example is the algorithm for proximity analysis proposed in [KN 96] which
uses the features of neighboring objectsin order to explain the existence of known clus-
ters. Thisalgorithm performs a similarity query for each object contained in the consid-
ered cluster. For various other KDD algorithms, this situation comes to an extreme: a
similarity query has to be answered for each object in the database which obviously
leads to a considerable computational effort. Examples include algorithms for the iden-
tification of outliersin large databases [KN 97, KN 98, BKNS 00] and numerous clus-
tering algorithms [Sib 73, Mur 83, JD88, HT 93, EKSX 96, ABKS 99].

In order to accelerate this massive similarity query load, multidimensional index
structures [BKSS 90, LJF 95, BKK 96] are usually applied for the management of the

80 Density Based Clustering on the Distance Range Join

feature vectors. Provided that the index quality is high enough, which can usually be
assumed for low and medium dimensional data spaces, such index structures accelerate
the similarity queriesto alogarithmic complexity. Therefore, the overall runtime com-
plexity of the KDD algorithmisin O(n log n). Unfortunately, the overhead of executing
all smilarity queries separately is large. The locality of the queries is often not high
enough, so that usual caching strategiesfor index pages such as LRU fail, which results
in serious performance degenerations of the underlying KDD agorithms. Several solu-
tions to alleviate this problem have been proposed, e.g. sampling [GRS 98] or dimen-
sionality reduction [FL 95].

The benefits of these kinds of data reduction, however, are limited. Especialy clus-
tering algorithms are not insensitive with respect to sampling, because clusters consist-
ing of avery small number of pointsarelost if too few pointsare in the sample. In order
to maintain the completeness of the result, guidelinesfor the bounds of the sampling rate
have been proposed recently [GRS 98]. Dimensionality reduction of the data can be
done either by manual feature selection (which requires substantial domain knowledge)
or by some standard method such as Principal Component Analysis, Discrete Fourier
Transform, or the FastM ap algorithm proposed in [FL 95]. However, thereduction of the
dimensionality of the dataimplies someloss of information and thus may not always be
applicable. Theintroduction of parallelism isalso apromising approach in order to sup-
port query intensive KDD algorithms efficiently. The development of paralel ago-
rithms, however is complex and expensive. While the benefits of the acceleration tech-
niques mentioned above are limited, they can also be applied in combination with our
technique proposed in this chapter to further improve the performance.

The basic intention of our solution is to substitute the great multitude of expensive
similarity queries by another database primitive, the similarity join, using a distance-
based join predicate, without affecting the correctness of the result of the given KDD
algorithm: Consider a KDD algorithm that performs a range query (with range €) in a
large database of points P; (0<i<n) for alarge set of query points Q; (0<j<m). During the
processing of such an algorithm, each point P; in the database is combined with each
query point Q; which hasadistance of no morethan €. Thisisessentially ajoin operation
between the two point sets P and Q with a distance-based join predicate, a so-called

81

distance join or similarity join. The general idea of our approach is to transform query
intensive KDD al gorithms such that the transformed algorithms are based on asimilarity
joininstead of repeated similarity queries. In this chapter, we concentrate on algorithms
which perform arange query for each point in the database. In this case, the similarity
joinisaself-join on the set of points stored in the database. Nevertheless, our approach
is also applicable for many other KDD algorithms where similarity queries are not is-
sued for each database object, but which are still query intensive. Additionally, since a
large variety of efficient processing strategies have been proposed for the similarity join
operation, we believe that our approach opens a strong potential for performance im-

provements.

Note that this idea is not applicable to every KDD algorithm. There is a class of
algorithms which is not meant to interact with a database management system and thus
is not based on database primitiveslike similarity queries, but instead works directly on
the feature vectors. What we have in mind is the large class of algorithms which are
based on repeated similarity queries (or, at least, can be based on similarity queries).
Examples of methods where our idea can be applied successfully are the distance based
outlier detection algorithm RT [KN 98], the density based outliers LOF [BKNS 00], the
clustering algorithms DBSCAN [EKSX 96], DenClue [HK 98], OPTICS [ABKS99],
nearest-neighbor clustering [HT 93], single-link clustering [Sib 73], spatial association
rules [KH 95], proximity analysis [KN 96], and other algorithms. In this chapter, we
demonstrate our idea on the known clustering algorithm DBSCAN and on the recently
proposed hierarchical clustering method OPTICS.

The remainder of this chapter which is the extended version of [BBBK 00] is orga-
nized asfollows:. Section 4.1 describes the most important clustering algorithmsin more
details. Section 4.2 proposes aschemafor transforming KDD algorithms using repeated
range queries into equivalent algorithms using similarity joins. The sections 4.2.2 and
4.2.3 describe in detail the transformations of the data mining algorithms DBSCAN and
OPTICS, respectively. In section 4.3, we present acomprehensive experimental evalua-

tion of our technigque, and section 4.4 concludes this chapter.

82 Density Based Clustering on the Distance Range Join

4.1 Clustering Algorithms

Existing clustering algorithms can be classified into hierarchical and partitioning clus-
tering algorithms (see e.g. [JD 88]). Hierarchical algorithms decompose a database D of
n objects into several levels of nested partitionings (clusterings). Partitioning algo-
rithms, on the other hand, construct a flat (single level) partition of a database D of n
objectsinto aset of k clusters such that the objectsin a cluster are more similar to each
other than to objects in different clusters. Popular hierarchical agorithms are e.g. the
Sngle-Link method [Sib 73] and its variants (see e.g. [JD 88, Mur 83]) or CURE
[GRS 98]. Partitioning methods include k-means [McQ 67], k-modes [Hua 97], k-me-
doid [KR 90] algorithms and CLARANS[NH 94]. The basic idea of partitioning meth-
odsisto determine the set of pairwise distances among the points in the data set. Points
with minimum distances are successively combined into clusters.

Density based approaches apply alocal cluster criterion and are popular for the pur-
pose of datamining, becausethey yield very good quality clustering results. Clustersare
regarded asregionsin the data spacein which the objects are dense, separated by regions
of low object density (noise). These regions may have an arbitrary shape and the points
inside a region may be arbitrarily distributed. The local densities are determined by
repeated range queries. We can distinguish between algorithms that execute these range
gueriesdirectly and algorithmsthat replace these range queries by agrid approximation.

Repeated range queries are executed directly in the DBSCAN a gorithm [EKSX 96].
The basic ideais that for each point of a cluster, the neighborhood of a given radius ()
has to contain at least a minimum number of points (MinPts) where € and MinPts are
input parameters. Here the mutual distances between the points are determined by eval-
uating exactly one range query for each point stored in the database. Such arange query
can be processed by the sequential scan approach or by theindex approach. The sequen-
tial scan reads the whol e database and determines all distancesin astraightforward way.
Inthiscase, the runtime of DBSCAN isquadratic. Theindex based approach accelerates
guery processing under certain boundary conditionsto alogarithmic complexity. There-
fore, the time complexity of DBSCAN isin O(n log n). While DBSCAN as a partition-
ing algorithm computes only clusters of one given density, OPTICS[ABKS 99] gener-

Clustering Algorithms 83

ates a density based cluster-ordering, representing the intrinsic hierarchical cluster
structure of the dataset in a comprehensible form. Both DBSCAN and OPTICS execute
exactly onee-range query for every point in the database. They will be presented in more
detail in sections 4.2.2 and 4.2.3, respectively.

Due to performance considerations several proposals rely on grid cells [JD 88] to
accelerate query processing. The dataspaceis partitioned into anumber of non-overlap-
ping regions or cells which can be used as afilter step for the range queries (multi-step
query processing [KSF+ 96]). All pointsin the result set are contained in the cellsinter-
secting the query range. To further improve the performance of the range queriesto a
constant time complexity, query processing islimited to a constant number of these cells
(e.g. the cell covering the query point and the direct neighbor cells) and the refinement
step is dropped, thereby trading accuracy for performance. Cells containing arelatively
large number of objectsare potential cluster centers and the boundaries between clusters
fall in cellswith fewer points. The success of thismethod depends on the size of the cells
which must be specified by the user. Cells of small volume will give a very “noisy”
estimate of the density, whereas large cells tend to overly smooth the density estimate.
Additionally, smple grid based methods degenerate in high dimensional spaces. For
example, partitioning every dimension in a 20-dimensional space only once, resultsin
220 > 1,000,000 grid cells. Algorithms using gridsinclude WaveCluster [SCZ 98], Den-
Clue[HK 98] and CLIQUE [AGGR 98]. For low dimensional spaces, these algorithms
work and perform very well. In order to scale to medium dimensional spaces, they em-
ploy sophisticated techniques to find an acceptable trade-off between accuracy and
speed. In high dimensional spacestheir performance aswell asaccuracy break down due
to the problems mentioned above.

For example, the basic ideaof DenClue[HK 98] isthat the influence of each point on
the density of the data space can be modeled formally using a mathematical function
(e.g. the Gaussian function), called influence function. The overall density of the data
space can be cal culated asthe sum of theinfluencefunctions of all the datapoints. Inthis
model, cluster centers arethelocal maximaof the overall density function, which can be
found by a hill-climbing procedure guided by the gradient of the overall density func-
tion. The gradient at a point p is approximated by considering the influences of data

84 Density Based Clustering on the Distance Range Join

Figure 37: Segquence of Range Queriesfor A;

points close to p only, as most points do not actually contribute to the overall density
function, because they are so far away, that their influence is negligible. Obviously, this
basic idea can be very easily and accurately implemented using repeated range queries.
Instead, the authors of [HK 98] chose agrid based approach, trading accuracy for speed
and limiting the algorithm to moderate dimensions.

4.2 Similarity-Join Based Clustering

4.2.1 General ldea

In section 4.1, we have seen that density based clustering algorithms perform range
gueries in a multidimensional vector space. Since a range query is executed for each
point stored in the database, we can describe those algorithms using the following sche-

maAj:

Algorithmic SchemaAq:

foreach Pointp 00 D {
PointSet S:= RangeQuery (p, €) ;
foreach Pointgq 0 S
DoSomething (p,g) ;

Similarity-Join Based Clustering 85

|:>l I:)2 P3
o ° °
. .
® °
° e e ad

Figure 38: An Index Pagination for the Sample Data Set

In order to illustrate this algorithmic schema, we consider as an example task the
determination of the core point property for each point of the database. According to the
DBSCAN definition, apoint isacore point if thereis at least anumber of MinPts points
in its e-neighborhood (for aformal definition see [EKSX 96]). For this task, the proce-
dure DoSomething (p,q) will simply increment a counter and set the core point flag if
the threshold MinPts is reached. Assume a sample data set with one cluster as depicted
on theleft side of figure 37. On theright side of figure 37 isthe start of a sequence order
inwhich schema A | may evaluate the range queries. Since A does not use the informa-
tion which points belong to which page of the index, the sequence of the range queries
does not consider the number of page accesses or even optimize for alow number of
page accesses.

Under the assumption of a page capacity of 4 data points, a pagination as depicted in
figure 38isquitetypical and, for our sample sequence, the following page accesses must
be performed: Query Q; accesses page P; and the queries Q, and Q3 both access the
pages P, and P,. The query Q, accesses al three pages P;, P, and P3, and so on. After
processing the upper part of the cluster, range queries for the lower part are evaluated
and thus P; is accessed once again. But at this point in time, P; is eventually discarded
from the cache and therefore P; must be loaded into main memory again.

However, by considering the assignment of the points to the pages, a more efficient
sequence for the range queries can be derived, i.e. loading identical data pages several
times into main memory can be avoided: First, determine al pairs of points on page Py

86 Density Based Clustering on the Distance Range Join

having a distance no more than €; then, all pairwise distances of points on page P,; and
afterwards, all cross-distances between points on page P, and P,. Then, P; is no longer
needed and can be deleted from the cache. Finally, we load page P3 from secondary
storage and determine the pairs on P3 and the cross-distances between P, and P3. Since
the distance between the pages P, and P3 is larger than €, there is no need to determine
the corresponding cross-distances. Processing the data pagesin thisway clearly changes
the order in which data points with a distance no more than € are combined. The only
difference from an application point of view, however, isthat we now count the e-neigh-
borhoods of many points simultaneously. Therefore, we simply need an additional at-
tribute for each point which may be adatabase attribute unless all active countersfit into
main memory.

What we have actually done in our example is to transform the algorithmic schema
A, into anew agorithmic schemaA , and to replace the procedure DoSomething (p,q)
by a new, but quite similar procedure DoSomething’ (p,q). The only difference be-
tween these two procedures isthat the counter which isincremented in each call isnot a
global variable but an attribute of the tuple p. The changesin the algorithmic schemaA,
are more complex and can be expressed as follows:

Algorithmic Schema A,:

foreach DataPage P
LoadAndPinPage (P) ;
foreach DataPage Q
If (mindist (P,Q) <€) then
CachedAccess (Q) ;
/* Run Algorithmic Schema A, with */
/[* restriction to the pointson P and Q: */
foreach Pointp 0 P
foreach Point g 0 Q
if (distance (p,q) <€) then
DoSomething’ (p,q) ;
UnPinPage (P) ;

Similarity-Join Based Clustering 87

Here, mindist (P,Q) isthe minimum distance between the page regionsof Pand Q, i.e.

0 (PIb; = Q.uby)2 if P.Ib; > Q.uby
. . 2
mindist"(P, Q) = % 3 (Qllb; ~P.uby)2 if Qb; > P.uby

0Si<dD 0 otherwise

where Ib; and ub; denote the lower and upper boundaries of the page regions.
CachedAccess (...) denotes the access of a page through the cache. Thus, a physical
page accessis encountered if the pageis not available in the cache. In order to show the
correctness of this schema transformation, we prove the equivalence of schemaA; and
A, inthefollowing lemma

Lemma 2. Equivalence of A; and A,.

(1) The function DoSomething’ is called for each pair (p,q) in the algorithmic schema
A, for which DoSomething iscalled in schemaA;.

(2) DoSomething is called for each pair (p,q) for which DoSomething’ iscalled.
Proof:

(1) If DoSomething (p,q) iscalled in A4, then g isin the e-neighborhood of p, i.e. the
distance |p - g| < €. The points are either stored on the same page P (case a) or on two
different pages P and Q (case b).

(a) Asmindist (P,P) = 0 < e thepair of pages(P,P) isconsidered in A,. Thepair of points
(p,q) is then encountered in the inner loop of A, and, thus, DoSomething’ (p,q) is
called.

(b) Astheregions of the pages P and Q are conservative approximations of the pointsp
and g, the distance between the page regions cannot exceed the distance of the points, i.e.
mindist(P,Q) < |p - q| < €. Therefore, the pair of pages (P,Q) is considered in A, and
DoSomething’(p,q) iscalled.

(2) If DoSomething’ iscalledin A,, then |p - g| < €. Asqisin the e-neighborhood of p,
DoSomething (p,q) iscalledin A;.g.e.d.

88 Density Based Clustering on the Distance Range Join

We note without aformal proof that for each pair (p,q) both DoSomething and Do-
Something’ are evaluated at most once. Considering the algorithmic schema A,, we
observe that this schema actually represents an implementation of a join-operation
which is called pagewise nested loop join. More precisely, it is a self-join operation
where the join predicate is the distance comparison [p - | < €. Such ajoinisalso caled
similarity self-join. If we hide the actual implementation (i.e. the access strategy of the
pages) of the join operation, we could also replace the algorithmic schemaA, by amore

general schemaA; where D m D denotes the similarity self-join:

Algorithmic Schema As:
foreach PointPair (p,q) O (D m D)
DoSomething’ (p,q) ;

This representation alows us not only to use the pagewise nested loop join but any
known evaluation strategy for similarity joins. Depending on the existence of an index

or other preconditions, we can select the most suitable join implementation.

When transforming a KDD algorithm, we proceed in the following way: First, the
considered KDD method is broken up into several subtasks that represent independent
runs of the similarity join algorithm. Additional stepsfor preprocessing (e.g. index gen-
eration) and postprocessing (e.g. cleaning-up phases) may be defined. Then, the original
algorithmin A, notation is transformed such that it operates on a cursor iterating over a
similarity join (A3 notation). Next, we consider how the operations can be further im-
proved by exploiting the knowledge of not only one pair of points but of all points on a
pair of index pages. In essence, this meansthat the original algorithm runsrestricted to a

pair of data pages.

In summary, our transformation of aK DD algorithm allows usto apply any algorithm
for the similarity self-join, be it based on the sequential scan or on an arbitrary index
structure. The choice of the join algorithm and the index structure is guided by perfor-

mance considerations.

Similarity-Join Based Clustering 89

4.2.2 Application to DBSCAN

In this section we will shortly introduce the algorithm DBSCAN and then show how to
baseit onthe similarity self-join. The key ideaof density based clustering isthat for each
object of acluster the neighborhood of agiven radius (€) has to contain at least a mini-
mum number of objects (MinPts), i.e. the cardinality of the neighborhood hasto exceed
agiven threshold. For adetailed presentation of the formal definitions see [EKSX 96].

Definition 7 (directly density-reachable)
Object p is directly density-reachable from object g wrt. € and MinPts in a set of
objectsD if

1) PO Ng(9)
2) INg(q)| =2 MinPts

where N(q) denotes the subset of D contained in the e-neighborhood of g.

The condition [Ng(g)| = MinPtsiscalled the core object condition. If this condition holds
for an object p then we call p a core object. Other objects can be directly density-reach-
able only from core objects.

Definition 8 (density-reachable and density-connected)

An object p is density-reachable from an object g wrt. € and MinPts in the set of
objects D if thereis achain of objects pq, ..., Py, P1 = 4, P, = P Such that p; CD and
pi+1 isdirectly density-reachable from p; wrt. € and MinPts.

Object pisdensity-connected to object g wrt. € and MinPtsin the set of objectsD if there
isan object o [ID such that both p and q are density-reachable from o wrt. € and MinPts
inD.

Density-reachability is the transitive closure of direct density-reachability. Density-
connectivity isasymmetric relation.

A density based cluster is now defined as a set of density-connected objectswhichis
maximal wrt. density-reachability and the noiseisthe set of objectsnot contained in any
cluster.

90 Density Based Clustering on the Distance Range Join

Definition 9 (cluster and noise)

Let D beaset of objects. A cluster C wrt. € and MinPtsin D isanon-empty subset of
D satisfying the following conditions:
1) Maximality: Op,q OD: if p OC and g isdensity-reachable from p wrt. € and
MinPts, then also g [IC.
2) Connectivity: Op,q 0 C: pisdensity-connected to qwrt. € and MinPtsin D.
Every object not contained in any cluster is noise.

Note that a cluster contains not only core objects but also objects that do not satisfy
the core object condition. These objects - called border objects of the cluster - are direct-
ly density-reachable from at least one core object of the cluster (in contrast to noise
objects).

The agorithm DBSCAN, which discovers the clusters and the noise in a database
according to the above definitions, is based on the fact that a cluster is equivaent to the
set of all objectsin D which are density-reachable from an arbitrary core object in the
cluster (cf. lemmal and 2 in [EKSX 96]). Theretrieval of density-reachable objectsis
performed by iteratively collecting directly density-reachable objects. DBSCAN checks
the e-neighborhood of each point in the database. If the e-neighborhood N¢(p) of apoint
p has more than MinPts points, anew cluster C containing the objectsin N¢(p) is created.
Then, the e-neighborhood of al points g in C, which have not yet been processed, is
checked. If N¢(qg) contains more than MinPts points, the neighbors of g, which are not
already in C, are added to the cluster and their e-neighborhood is checked in the next
step. This procedureis repeated until no new point can be added to the current cluster C.
Then the next point without cluster id is considered.

In contrast to executing exactly one range query for every point in the database, we
propose to base DBSCAN on the result of asimilarity self-join of the database. Materi-
alizing the result of the join, however, requires space potentially quadratic in the size of
the database, so we adapt DBSCAN to run directly on the joining pages, using the sche-
ma given in section 4.2.1. This algorithm, called J-DBSCAN (which returns the same
clustering as DBSCAN), consists of three steps. In step 1, the core points are deter-

Similarity-Join Based Clustering 91

mined, in step 2, apartial clustering of the database is computed and in step 3, these are
merged into the final clustering (clean-up phase).

Step 1. To determine whether a point p satisfies the core object condition we need the
cardinality of p’s e-neighborhood. We keep a counter p.counter in p’'s data page, initial-
ized to zero. We then execute asimilarity self-join. For every pair of joining pages page;
and page, and every pair of points o [J page;, p U page, with dist(o, p) < €, we incre-
ment o.counter and p.counter if 0 # p, or p.counter if o = p.

Oncethejoin finishes, g.counter contains |Ng(qg)| for every point g.

Step 2: We assign tentative cluster ids to the data points, by executing a second similar-
ity join and, in principle, running DBSCAN on every pair of joining data pages. The
tentative cluster ids are assigned in such a way, that the following two conditions hold:
1) Points having the sametentative cluster id bel ong to the same cluster. 2) If two points
belonging to the same cluster are assigned different tentativeids, then these two tentative
idswill be in the same maximally connected component of the graph represented by the
nmer gelLi st. The mer geLi st isthe adjacency list representation of an undirected
graph, itsnodes arethetentative cluster idsand edges areinserted whenever thetwo core
points with different tentative cluster idsjoin (cf. case (1) given below).

Asan example consider figure 39. Assume that page; isfirst joined with itself. Then
thefive clusters on page; will be assigned five different cluster ids U to [J. Next, assume
that page; and page, are joined, such that point X from page; isjoined with every point
p from page, with dist(X, p) < € and point Y from page, isjoined with every point p from
page, with dist(Y, p) < €. Then some points of the cluster on page, will be assigned
cluster id [0 and others will be assigned cluster id [I. Finally, page, isjoined with itself,
and apoint with cluster id [J isjoined with a point having cluster id (1. Thus, the pair of
cluster ids (01, [0) isadded to the mer geLi st . Therefore, the U-shaped cluster will be
identified correctly.

Accordingto definition 9, whenever two core pointsjoin, they haveto be assigned the
same cluster id. Whenever a core point and a non-core point join, they should be as-
signed the same cluster id. Note however, that a non-core point may join with two core

92 Density Based Clustering on the Distance Range Join

Page, ') ®oooe N °
.83 1 [] .?:%.Ds .: PR
[
point X .g oee] point Y
o8 ool
*h 830
‘o':‘ S 'r

page otanee’

2

Figure 39: Tentative Cluster Ids

points from different clusters. In this case, the non-core point may be assigned either one
of the cluster ids. From thisweinfer the (symmetric) matrix giveninfigure 40. For every
pair of joining points (p;, po), we execute the action given in figure 40, explained in
detail in the following:

(2) If both points are core points and both already have cluster ids, we need to merge
these two clusters. The actual merging will be done in step three of the algorithm. Here
in step two we only insert the pair of cluster idsinto thelist of “cluster idsto be merged”
(mer gelLi st). Thisis equivalent to adding an edge between the two tentative cluster
ids to the graph, and thereby merging the two maximally connected components they
belong to.

(2) If both points are core points and only one already hasacluster id C, the other oneis
assigned this cluster id C.

(3) If one point, assume p4, isacore point with acluster id and the other, p,, anon-core
point with acluster id, then p, isaborder point of the cluster to which p; belongs. In this
case, nothing needsto be done. Thisisobvious, if their cluster idsare equal. If they have
different cluster ids, then there are two possible cases. Case 1: p, isaborder point of two
different clusters, i.e. no point o with 0 # p; and 0 # p, exists such that p; and p, are
density connected through o. Then p, may be assigned to either cluster, and nothing
needs to be done. Case 2: p; and p, belong to the same cluster, i.e. apoint o with o Z p;
and o # p, exists such that p; and p, are density connected through o. This chain of core

Similarity-Join Based Clustering 93

points connecting p; and p, guarantees that the two cluster ids will end up in the same
maximally connected component intheer geLi st graph. Again, nothing needsto be
done.

(4) If one is a core point with a cluster id C and the other a non-core point without a
cluster id, the non-core point is a border point of the cluster and therefore assigned the
clusterid C.

(5) If both are core points without cluster ids, they are directly density reachable and
belong to the same cluster. A new cluster id is generated and assigned to both points.

(6) If, without loss of generality, p; is anon-core point with a cluster id and p, a core
point without a cluster id, we do nothing. We cannot safely assign p, the cluster id of p;.
We could assign a new cluster id to p,, however, we do not want to do thisin order to
keep the number of cluster ids as small as possible. If p, joinswith acore point having a
cluster id sometime later, it will be assigned this cluster id. If that does not happen, p,
will eventually join with itself leading to case (5). Thus we can safely defer assigning a
cluster id to p,.

Py CORE POINT NON-CORE POINT
P, ID NULL ID NULL
ID mergeif P,.ID = P,.I1D =
P,.1D#P,.1D P,.ID P,.1D
CORE (D) (2 3 4
POINT N P,.ID = P,.ID = P..ID =
U P,.1D P,.ID = P,.I1D =
L new ID new |D
L (2) (6) (7
ID ©) (6)) (8)
NON- ~ _
core | N [7S | ppe
1- 2.l =
POINT L new 1D
L (4) (7 (8) (8

Figure 40: }DBSCAN matrix

9 Density Based Clustering on the Distance Range Join

(7) If oneisacore point and the other is not, both having no cluster ids, anew cluster id
is generated and assigned to both. We cannot defer this as in case (6) because the non-
core point may then end up without a cluster id.

(8) If both points are non-core points, they are not directly density reachable so nothing
needs to be done.

In order to keep mer geLi st asshort aspossible wetry to defer cases (5) and (7) as
much as possible. For two different joining pages, we do this by making two passes over
the joining points, first handling all other cases. Thereby, the number of times we exe-
cute cases (5) and (7) isminimized. For apagejoining with itself we can further improve
this by making depth first passes starting (in turn) with al the core points having cluster
ids.

Step 3: Thefinal cluster ids are computed, using the entriesin the mer gelLi st . Recall
that the mer geLi st represents an undirected graph, the nodes are the cluster ids and
for every entry (p,, p,) in thelist there exists an edge between p, and p,. We now deter-
mine the maximally connected components of this graph by a depth first search. Each
such component is one cluster, so the tentative cluster ids are replaced by final cluster
ids, if necessary. In all our experimentsthe size of themer geLi st wasvery small and
step three took negligible time.

When J-DBSCAN terminates, all points belonging to clusters will have been as-
signed cluster ids according to their cluster membership and all noise pointswill have a
cluster id of NULL.

4.2.3 Application to OPTICS

While DBSCAN can only identify a “flat” clustering, the newer algorithm OPTICS
[ABKS 99] computes an order of the points augmented by additional information (the
core-distance and a reachability-distance) representing the intrinsic hierarchical (nest-
ed) cluster structure. Theresult of OPTICS, the cluster-ordering, can be used as a stand-
alone tool to get insight into the distribution of a dataset. Depending on the size of the
database it can either be represented graphically (for small datasets) or visualized using
an appropriate visualization technique (for large datasets). Thus, it is possible to explore

Similarity-Join Based Clustering 95

interactively the clustering structure, offering additional insights into the distribution
and correlation of the data. Furthermore, not only ‘flat’ clustering information, but also
the hierarchical clustering can be automatically extracted using an efficient and effective
algorithm.

Asinthe previous section, we will shortly introduce the definitions and the algorithm
and then show how to base OPTICS on the similarity join.

Definition 10 (core-distance)
Let p be an object from a database D, let € be a distance value, let N¢(p) be the &-
neighborhood of p, let MinPts be a natural number and let MinPts-dist(p) be the dis-
tance from p to its MinPts-th neighbor. Then, the core-distance of p, denoted as core-
diste pminpts(P) is defined as MinPts-dist(p) if [Ng(p)| = MinPts and UNDEFINED oth-
erwise.

Definition 11 (reachability-distance)
Let p and o be objects from a database D, let N¢(0) be the e-neighborhood of o, let
dist(o,p) be the distance between o and p, and let MinPts be a natural number. Then,
the reachability-distance of p with respect to o denoted as reachability-distg pinpts(Ps
0) is defined as max(core-distg pinpis(0), dist(0,p)) if [Ng(0)| = MinPts and UNDE-
FINED otherwise.

Note that the reachability-distance of an object p depends on the core object with respect
towhichit is calculated.

The agorithm OPTICS creates an ordering of a database, additionally storing the
core-distance and a suitable reachability-distance for each object. Itsmain data structure
isaseedlist, containing tuples of points and reachability-distances. Initially the seedlist
isempty and all points are marked as not-done. The algorithm works as follows:

Algorithm OPTICS:
repeat
If the seedlist isempty then
if all points are marked “done”, then terminate;
find “not-done” point q closest to the origin;

96 Density Based Clustering on the Distance Range Join

add (g, infinity) to the seedlist;
(p,r) := seedlist entry with smallest reachability value;
remove (p,r) from seedlist;
mark p as “done”;
output (p,n);
update-seedlist(p);

The function update-seedlist(p) executes an e-range query around the point p. For every
point g in the result of the range query it computesr = reachability-distg pinpts(d,). If
the seedlist already containsan entry (q,), itisupdated to (g, min(r, s)), otherwise(q, r)
is added to the seedlist.

The similarity join based algorithm J-OPTICS, which computes the same result as
OPTICS, consists of three steps. In step 1 the core-distances of all pointsare determined.
In step 2 thereachability valuesfrom every point to every point initse-neighborhood are
materialized. Asthe number of these reachability-distancesis quadratic inthe number of
points, we do not save al of them but prune as many as possible. In step 3 the order of
the pointsis computed.

Step 1. To calculate the core-distance of a point, we need to know if there are at |east
MinPts pointsinits e-neighborhood and, if thisisthe case, the distance of the MinPts-th
neighbor. For every point, we keep an array of distances of size MinPts, in which we
record the distances of the closest MinPts neighboring points seen so far. Initialy all the
entries in this array are set to infinity. We then execute a similarity join and for every
joining pair of points, calculatetheir distance and update the array accordingly. After the
joinisfinished, the maximal entry inthe array isthe core-distance, or infinity if the core-
distanceis UNDEFINED.

Step 2: Given the core-distance for a point, we can calculate the reachability-distances
from this point to every other point in its e-neighborhood by executing asecond similar-
ity join. As the number of reachability-distances is potentially quadratic in the number
of points, we employ the following techniquesto filter most of them. We have to distin-
guish the following two cases:

Similarity-Join Based Clustering 97

Case 1: A page joining with itself, containing m points. For every pair of joining points
on this page, we calculate the reachability distances, leading to am x mmatrix R, with
R[p,o]=reachability-distg \inpts(0, P). Because of the rules OPTICS uses to chose the
next point, we can easily prove by acase analysisthat if

R[p,0] <R[p,q] and R{o,q] < R[p,d],

then OPTICSwill never use R[p,q]. Inall our experiments, we eliminated approximately
70% of therelevant (i.e. not infinity) entriesin Rusing thisrule.

All entries R[p,0] that have not been eliminated are added to the reachability-dis-
tance-list for point p.

Case 2: Two different pages page; and page, joining, containing m; and m, points,
respectively. We compute two matrices, an m; x m, matrix Rand an m, x my matrix P
with

R[o,p] = reachability-distg pinpts(P: 0)

P[p,0] = reachability-distg pinpts(0; P)
for o [page;, p LI page,. Because we do not have access to the reachability distances
from one point in a page to another point in the same page, we cannot use the condition
givenin case 1to eliminate unnecessary reachability-distances; instead we use theeasily
provable condition that if R[p,0] < R[p,q] and P[o,r] < R[p,q] and R[r,q] < R[p,q], then
OPTICS will never use R[p,g]. In our experiments, this rule allowed us to eliminate at
least 90% of the relevant entriesin P and R. All entries R[p,0] and P[p,0] that have not
been eliminated are added to the reachability-distance-list for point p.

Step 3: To compute the order of the points, a modified version of the original OPTICS
algorithm is run, in which update-seedlist(p) fetches the reachability-distance-list for p
instead of executing arange query around p. Becausethislist containsall relevant reach-
ability-distances, the result of J-OPTICS is guaranteed to be the same as the result of
OPTICS.

98 Density Based Clustering on the Distance Range Join

4.3 Experimental Evaluation

In order to show the practical relevance of our method, we applied the proposed schema
transformation to two effective datamining techniques. In particul ar, we transformed the
known clustering algorithm DBSCAN and the hierarchical cluster structure analysis
method OPTICS such that both techniques use a similarity self-join instead of repeated
range queries. Note again that theresulting cluster structures generated by DBSCAN and
OPTICS based on the similarity self-join are identical to the cluster structures received
from the origina techniques (the only exception are non-core point objects which are
density reachable from more than one cluster; for both versions of DBSCAN and OP-
TICS these points can be arbitrarily assigned to any of the clusters from which they are
density reachable). We performed an extensive experimental evaluation using two real
data sets. first, an image database containing 64-d color histograms of 112,000 TV-
snapshots, and second, 300,000 feature vectors in 9-d representing weather data. For
both data set, we used the Euclidean distance. We used the original version of the R*-tree
and a 2-level variant of the X-tree. In al experiments, the R*-tree and the X-tree were
allowed to use the same amount of cache (10% of the database size). Additionally, we
implemented the similarity query evaluation based on the sequential scan. Thejoinalgo-
rithm we used is similar to the algorithm proposed in [BKS 93], i.e. the basic join strat-
egy for R-tree like index structures. Advanced similarity join algorithms can further
improve the performance of our approach. All experiments were performed on an HP-
C160 under HP-UX B.10.20. In the following, Q-DBSCAN denotes the original algo-
rithm, i.e. when DBSCAN is performed with iterative range queries, and J-DBSCAN
denotes our new approach, i.e. based on a similarity self-join. In the same way we will
use Q-OPTICS and J-OPTICS. In all experiments, we report the total time (i.e. 1/0 plus
CPU time). The sequential scan methods on the file were implemented efficiently, such
that the fileis scanned in very large blocks. Therefore, the 1/O cost of scanning afileis
considerably smaller than reading the same amount of data pagewise from an index.

4.3.1 Page Size

In our first set of experiments, we performed DBSCAN and OPTICS with varying page
sizesin order to determinethe optimal page sizeswith respect to the used access method.

Experimental Evaluation

99

In figure 414, the runtimes of Q-DBSCAN and J-DBSCAN on 100,000 points from the
weather data with € = 0.005 and MinPts = 10 are shown. The page size is given as the
average number of points|located on a data page. We can observe that for all page sizes
the runtime of Q-DBSCAN is considerably larger than the runtime of J-DBSCAN and
thisholdsfor the R*-tree, for the X-tree and for the sequential scan. The speed-up factor
of J-DBSCAN compared to Q-DBSCAN for the optimal page sizesis 20 for both index
structures, i.e. J-DBSCAN based on the R*-tree is 20 times faster than Q-DBSCAN
based on the R*-tree (and the same speed-up factor is achieved for the X-tree).

(@ 1000000
100000
o'
[}
2,
o 10000
E
c
2 1000 X4
100 -
0 2000 4000 6000 8000 10000
pagesize [avg. # points per data page]
(b) 1000000
N -0
100000 — oo o
g & -B~—-—-0p - _g-—__g___
o 10000 |
E A,

c A A A LA A AL A
= 1000——)"’<'><'—>< ———— X - —o x"_'_Ax_"A"_AX
100 ‘ ‘ ‘

0 100 200 300
pagesize [avg. # points per data page]
—-©0— - Q-DBSCAN (Seg. Scan) —eo—— Q-DBSCAN (R*-tree)
— 13- — Q-DBSCAN (X-tree) ---A--- J-DBSCAN (R*-tree)
— - % - — J-DBSCAN (X-tree)

Figure41: DBSCAN for increasing page size on (@) weather data and (b) image data

100 Density Based Clustering on the Distance Range Join

Performing Q-DBSCAN on the sequential scan clearly yields the worst runtime,
which is 556 times the runtime of J-DBSCAN using the X-tree. Note that we used a
logarithmic scale of the y-axisin figure 41 since otherwise the runtimes of J-DBSCAN
and J-OPTICSwould hardly bevisible. Figure 41b showsthe results for theimage data.
We clustered 40,000 points with € = 0.08 and MinPts = 10. For this data set, the perfor-
mance improvement of J-DBSCAN compared to Q-DBSCAN using the R*-treeiseven
higher: the speed-up factor is 54 when the R*-tree is the underlying access method and
19 using the X-tree. For small page sizes, performing Q-DBSCAN on the sequentia
scan yields a better runtime than using the R*-tree. However, when the page size of the
R*-tree is well adjusted, the Q-DBSCAN on the sequential scan again has the slowest
runtime. We can also observe, that the J-DBSCAN variants on the R* -tree and on the X -
tree are relatively insensitive to page size calibrations.

For OPTICS, we observed similar results. Again, we varied the page size and ran
Q-OPTICS and J-OPTICS on both data sets. Figure 42a shows the runtimes of Q-OP-
TICSand J-OPTICS on the weather data set for € = 0.01 and MinPts = 10. For the opti-
mal pagesizes, all query based approachesare clearly beaten by thejoin based approach-
es, and, once again, the X-tree outperforms the R*-tree. The speed-up factor of
J-OPTICSover Q-OPTICS s 3.4 using the R*-tree, and 5.6 using the X-tree. The runt-
ime of Q-OPTICS based on the sequential scan is 51 times the runtime of J-OPTICS
based on the X-tree. Figure 42b presents the results for the image data for € = 0.1 and
MinPts = 10. The speed-up factor of J-OPTICSover Q-OPTICSis 22 using the R*-tree,
and 12 using the X-tree. Note that because of the high-dimensionality of the database,
the sequential scan outperformsthe R*-tree for aimost all page sizes.

Independently from the underlying page size, the join based techniques outperform
the query based techniques by large factors. Therefore, page size optimization is neither
absolutely necessary to achieve good performance, nor is it possible to outperform our
new techniques simply by optimizing the page size parameter of the query-based algo-
rithms. Since the X-tree consistently outperformed the R*-tree on both data sets, we
focus on the X-tree and on the sequential scan in the remainder of our experimental
evaluation.

Experimental Evaluation 101

4.3.2 Database Size

Our next objective was to investigate the scalability of our approach when the database
sizeincreases. Weran Q-DBSCAN and J-DBSCAN on both data sets and increased the
number of points from 50,000 to 300,000 (weather data) and from 10,000 to 110,000
(image data). The used parameter values were € = 0.005, MinPts = 10 on the weather

OPTICS on weather data (9-d)

(@
1000000

)
()
2,
()
E - 1
— -——————0-—"
§ 10000 T A/?x

\‘/Ax

1000 1 1 1
0 200 400 600
pagesize [avg. # points per page]
(b) OPTICS on image data (64-d)
1000000

— \\?9\6\9\4 o—
2 100000 EELEL~EL
o e b = e - R
S
= A
S 10000 -+ A”_.A' X

AA-‘ -X'z

Xye Y

1000 1 1 1
0 100 200 300

pagesize [avg. # points per datapage]

---0--- Query (Seq. Scan)
— 1+ — Query (X-tree)
---A--- Join (R*-tree)
—-%-=Join (X-tree)

—o— Query %R*-tree)

Figure 42: OPTICS for increasing page size on (a) weather data and (b) image data

102 Density Based Clustering on the Distance Range Join

dataand € = 0.08, MinPts = 10 on the image data. Asfigure 43 depicts, the query based
approach Q-DBSCAN scales poorly when the iterative range queries are processed by
the sequential scan. The reason is that DBSCAN yields a quadratic time complexity
when using a sequential scan as the underlying access method.

The scalability of Q-DBSCAN on top of the X-tree is obviously better due to the
indexing properties of the X-tree. For J-DBSCAN, however, we clearly observe the best
scalability as the database sizes increase: the speed-up factor compared to Q-DBSCAN
using the X-tree increasesto 23 for 300,000 points of the weather data and the speed-up
factor for 110,000 points of theimage datais 20.

We also investigated the scalability of Q-OPTICS and J-OPTICS. Theresultsfor the
weather data with € = 0.01 and MinPts = 10 are depicted in figure 44a. In this experi-
ment we increased the number of points from 50,000 up to 300,000. As before, the
scalability of the query based approach is poor whereas the join based approach scales
well. The speed-up factor of J-OPTICS over Q-OPTICS increases to 6. Figure 44b
shows the same experiment for the image database for € = 0.1 and MinPts = 10, where
weincreased the number of pointsfrom 10,000 to 110,000 and again found the scal abil-
ity of J-OPTICS clearly better than the scalability of Q-OPTICS. The speed-up factor
increases from 7.6 for 10,000 pointsto 14 for 110,000 points.

4.3.3 Query Range

For the performance of Q-DBSCAN and Q-OPTICS, the query range € is a critica
parameter when the underlying access method is an index structure. When € becomes
too large, arange query cannot be performed in logarithmic time since almost every data
page has to be accessed. Consequently, performing Q-DBSCAN and Q-OPTICS on the
sequential scan canyield better runtimesfor large e-values since the sequential scan does
not cause random seeks on the secondary storage. In order to analyze our join based
approach when € becomes large, we ran J-DBSCAN and J-OPTICS with increasing €-
values.

Figure 45adepictsthe resultsfor Q-DBSCAN and J-DBSCAN on 100,000 points of
the weather dataand figure 45b showsthe results on 40,000 points of theimage data. For

Experimental Evaluation 103

both data sets we set MinPts = 10. We can clearly observe that the runtime of Q-DB-
SCAN substantially increases with € whereas the runtime of J-DBSCAN shows only
moderate growth, thus leading to aspeed-up factor of 19 for € = 0.02 on the weather data
and on the image data the speed-up factor was 33 for € = 0.2. Note, in figure 45 we
omitted the runtimes of Q-DBSCAN on the sequential scan since even for large values

€) 150000

120000 +

90000 -

60000 -

runtime [sec]
(0]
\
i

30000 -

=
0 & Y VS X

T 7%

0 80000 160000 240000
size of database [points]

(b) 150000

120000 | .
90000 + sl

60000 -

runtime [sec]
\
\

30000 +

0 30000 60000 90000

size of database [points]

---©--- Q-DBSCAN (Seq. Scan)
— -0 — Q-DBSCAN (X-tree)
— - % - —J-DBSCAN (X-tree)

Figure 43: Scalability of DBSCAN on (@) weather data and (b) image data

Density Based Clustering on the Distance Range Join

(@ OPTICS on weather data (9-d)
®
120000 T N
". ,E
= 90000 + N ’
(D) ,' //
[} R V4
;‘ : ,/
g 60000 + . ’
'; " /’
c .
. Z
2 . _”
30000 @ R
-7 _.X
--g -
= e —- —-X T
0 K==x=2K" | | | |

50000 100000 150000 200000 250000 300000
size of database [points]

(b) OPTICS on image data (64-d)
250000 :
ys
200000 | ; e
. -
> : ’
9 150000 + ; ,’
o 7z
E 0 e
S 100000 | e
E - ,/
"‘ ,,
50000 + K ’
"' ’Z
~'/z” . __¢—-—’><
0 &7 — ==X |

0 20000 40000 60000 80000 100000
size of database [points]

----®----Query (Seqg. Scan) — - - -Query (Lean-tree)
— - —- Join (Lean-tree)

Figure 44: Scalability of OPTICS on (a) weather data and (b) image data

Experimental Evaluation 105

of € the runtimes applying the sequential scan was by factors larger compared to a pro-
cessing on top of the X-tree (e.g. for € = 0.2 and the image data the runtime of Q-DB-
SCAN on the sequential scan still was about 5 times the runtime of Q-DBSCAN based
on the X-tree).

We also performed Q-OPTICS and J-OPTICS with increasing € on 100,000 points of
the weather data set and for 40,000 points of the image data, both for MinPts = 10 (cf.
figure 46). For the weather database, the runtime for Q-OPTICS based on the sequential

€) 16000
_ -4\
12000 | =
— =
S =
2,
o 8000 |
E — 0 — Q-DBSCAN (X-tree)
c
3 4000 1 — - - —J-DBSCAN (X-tree)
0 MmN X
0,000 0,005 0,010 0,015 0,020
epsilon
(b) 70000 | [_; — Q-DBSCAN (X-tree) A
60000 | | — - - — J-DBSCAN (X-tree) Rl
~
5 50000 + e
() P -
% 40000 + L~
£ 30000 | R
S 20000 | -2
’
10000 + o
0 c SERVINURIESZNE SE ST TS Foo—— X
0,00 0,05 0,10 0,15 0,20
epsilon
Figure 45: DBSCAN for varying query range on (a) weather data and (b) image data

106 Density Based Clustering on the Distance Range Join

(@ OPTICS on weather data (9-d)
/Zl
20000 -
ol
16000 -
o =7
) _-t
212000 1 A
(] ’
E @
5 8000 -+
4000 + - -X
R
0 : 1 1
0.000 0.010 0.020 0.030
epsilon
— —B@--Query (Lean-tree) —-¢—- Join (Lean-tree)
(b) OPTICS on image data (64-d)
140000
i ..---O
120000 10 .. oot c
7’
- 100000 + /,/
() ,/
©, 80000 | @
() ’
£ 60000 g
E ol
= 40000 — ,IZI,
7’
20000 | - S o x
0 Fmxmne. oo - |
0 0.1 0.2 0.3
epsilon

----@----Query (Seq. Scan) — -3 - -Query (Lean-tree)
— - X — - Join (Lean-tree)

Figure 46: OPTICS for increasing query range on (a) weather data and (b) image data

Conclusions 107

scan isnot shown, asit is about 6 times higher than the runtime of Q-OPTICS based on
the X-tree even for €=0.03. For the image data set, the runtime of Q-OPTICS based on
the X-tree quickly increases and eventually reaches the runtime of Q-OPTICS based on
the sequential scan. Obviously, when increasing € further, Q-OPTICS on the sequential
scan will outperform Q-OPTICS based on the X -tree since the X-tree will read too many
data pagesfor each range query while paying expensive random disk seeks. Theruntime
of J-OPTICSfor both data sets, on the other hand, shows a comparatively small growth
when increasing €. J-OPTICS outperforms Q-OPTICS on both the X-tree and the se-
guential scan by alarge factor. This results from the fact that even when the similarity
self-join generates all possible data page pairs dueto alarge €, these are generated only
once whereas Q-OPTICS generates these page pairs many times.

4.4 Conclusions

In this chapter, we have presented a general technique for accelerating query-driven
algorithms for knowledge discovery in databases. A large class of KDD algorithms de-
pends heavily on repeated range-queries in multidimensional data spaces, which, in the
most extreme case, are evaluated for every point in the database. Theserange queriesare
expensive database operations which cause serious performance problemswhen the data
set does not fit into main memory. Our solution is the transformation of such a data
mining technique into an equivalent form based on a similarity join algorithm. We pro-
posed ageneral schemafor rewriting KDD a gorithms which use repeated range queries
such that they are based on a similarity join. In order to show the practical relevance of
our approach, we applied this transformation schemato the known clustering algorithm
DBSCAN and to the hierarchical cluster structure analysis method OPTICS. The result
of the transformed techniques are guaranteed to be identical to the result of the original
algorithms. In a careful experimental evaluation, we compared our transformed algo-
rithms with the original proposals, where the query evaluation is based on various con-
cepts such asthe X-tree, the R*-tree and the sequentia scan. The traditional techniques
are outperformed by factors of up to 33 for the X-tree and 54 for the R* -tree.

108 Density Based Clustering on the Distance Range Join

Chapter 5

Further Applications of the
Range Distance Join

After the complex case of the transformation of DBSCAN and OPTICS, we givein this
chapter a few algorithms for which the evaluation on top of the similarity join is rather
straightforward. The applications presented here arerobust similarity searchin sequence
datawherethejoin leadsin particular to robustness with respect to noise and scaling. We
also present a few generalizations of this technique to similarity of multidimensional
sequences (i.e. raster or voxel data) and to partial similarity. Also presented are applica-
tions like catalogue matching and duplicate detection. It is worth noting, however, that
only few publications from the application areas such as robust similarity search
[ALSS 95] or datamining [BBBK 00] arereally consciousof using the similarity join as
aprimitive operation. Others such as astronomy catalogue matching [VCV S 95] merely
describe their algorithms without becoming aware of the fact that it is actually aredefi-
nition of arather ssmple similarity join algorithm (in most cases the nested loop join). In
particular for these applications, we expect a high potential for performance gainsif the
simple join algorithm is replaced by a more sophisticated and efficient one. It is one of
the intentions of this thesis to promote the concept of the similarity join in prospective
application domains.

110 Further Applications of the Range Distance Join

5.1 Robust Similarity Search

Thetraditional approach for similarity search, range queries or nearest neighbor queries
on the associated feature vectors has severa clear disadvantages with respect to the
robustness of the search. It is difficult to control how flexible the search reacts with
respect to mismatchesin single attributes and to employ apartial smilarity search which
reports database objects which resemble the query object only at a certain region. The
Euclidean distance (and to more or lesser extent also other well-known distance mea-
sures) is rather sensitive with respect to mismatches in a single dimension. The
maximum metric even defines the similarity according to the worst matching dimen-
sion, so it isthe most sensitive among the L, norms. It is clearly application dependent
whether or not such a sensitivity is useful. If it is not desired, then some user adaptable
similarity measure [ALSS 95] may be helpful to assign low weights to mismatching
dimensions. This approach, however, requires that the dimension of mismatch isknown
and constant for all objects. If thisis not the case, the ssmple feature based approach will
not be very effective. This problem that assigning single vectorsto objectsis not robust
with respect to

* noise or mismatch in single attributes and

* gimilarity search for partial objects

has been addressed by Agrawal et al. [ALSS 95] for the domain of time sequence anal-
ysis. The principle can be generalized aso for different domains such as color images,
CAD parts, protein molecules and many others.

5.1.1 Query Decomposition

Features of time sequences can be generated in aquitetrivial way by using the elements
of the sequences asfeatures. The Euclidean distance between two feature vectors corre-
sponds to the squared approximation error when approximating one sequence by the
other which isawell accepted distance measure in the corresponding technical applica-
tion domains such as electrical engineering.

111

To achieve robustness with respect to noise and subsequence matching Aggrawal et
al. propose to decompose both components database objects as well as query objects
using a given sliding window of size w. This is a prominent concept borrowed from
information retrieval where usually strings (words) are decomposed in overlapping n-
lets (typically n = 3) to make the search for words robust with respect to spelling errors.
Here the similarity between two words is measured by the number of matching n-lets,
normalized by the length of the searched word. In asimilar way, the sliding windows of
time sequences can be matched (called window stitching by Agrawal et al. [ALSS 95]).
The robustness with respect to noise can be achieved by alow weighting of individual
mismatches. Partial similarity search is achieved by not enforcing the complete recon-
struction of the complete database object but only of a part of the same length as the
guery object. In essence, matching of decomposed query vectors with decomposed data
vectorsis asimilarity join. As we have to find those (complete) time sequences which
have the maximum number of matching subsequences, we have to apply a groupby
statement which groups according to the object I D and filters the sequences according to

counts of similar subsequences or counts of contiguous similar subsequences.

5.1.2 Application of the Similarity Join

Agrawal et al. [ALSS 95] use the similarity join for matching of the short, elementary
subsequences obtained by the sliding window. For this step, overlapping subsequences
of the length w of the sliding window are matched after a suitable offset translation and
amplitude scaling. The similarity of two such elementary subsequences is given by a
channel around the query subsequence with a defined width of 2-€ as depicted in figure
47. In this example, the window size corresponds to w = 9. Tranglation and scaling is
achieved by normalizing both database and query subsequences to [0..1] in the y-axis
(amplitude). Two elementary sequencesare called similar if oneisintheg-channel of the
other. Asbeing inside the e-channel means that each component of the two vectors hasa
difference of no more than € the similarity measure for elementary subsequences corre-
spondsto the maximum norm (L,,). Finding all pairsof similar elementary subsequences

correspondsto the distance rangejoin between the set of elementary subsequencesof the

112 Further Applications of the Range Distance Join

amplitude A

1 -

- time

o
-t |
m | m

Figure 47: The Similarity Join in Robust Similarity Search

guery sequence and the elementary subsequences of the sequences stored in the data-

base:

subseg-pairs := decomposed (q) ngs decomposed (DB)

Asthefocusof Agrawal et al. [ALSS 95] isonfinding pairs of similar time sequencesin
adatabase, in this special case asimilarity self join on the set of decomposed database
objectsisapplied.

5.1.3 Further Processing

The output of the similarity join are matching pairs of similar elementary subsequences.
To determine subsequences of maximum length Agrawal et al. [ALSS 95] apply an op-
eration called window stitching. Although we do not feel that it is actually required to
apply a particular reconstruction of the subsequences (in information retrieval, thisis
already sufficiently done by matching overlapping character n-lets), we briefly mention
that the window stitching algorithm constructs a graph of similar elementary subse-
guences where the vertices correspond to elementary matches and the edges correspond
to subsequent matches. Window stitching is equivalent to finding longest path in the
match graph as depicted in figure 48. The authors do not show that window stitching
yields improvements over the simple approach of counting and maximizing similar ele-

mentary subsequences.

Robust Similarity Search 113

[D
Al B E |F A"
AC »E»F

Figure 48: Window Stitching

5.1.4 Generalization

The principle of query decomposition can also be applied to other kinds of objects, in
particular objects which have an inherent structure which can be immediately trans-
formed into vectors. Examples are raster images but al so three-dimensional objectslike
CAD parts and protein molecules. For instance, the surface of a protein can be decom-
posed into areaswhich aretypically subject to biochemical interactionsand then, similar
molecules or even docking partners may be found using the similarity join. Here the
object decomposition and/or the similarity measure for the partial objects must also
insure robustnesswith respect torotation. A sliding window for raster imagesisdepicted
infigure 49.

Figure 49: Extension to Raster Images

114 Further Applications of the Range Distance Join

CAD Object: Feature Space:
A
1 A manifold
y S 1withMBR
— >

Figure 50: Continuous Feature Transitions

5.1.5 Continuous Feature Transitions

In some approaches for time sequence similarity [FRM 94] or CAD similarity [BK 97]
either queries or database objects are not only decomposed into afinite set of points but
rather into a continuum of points (manifold, cf. figure 50). An example for partial simi-
larity search on 2D CAD partsisdepicted in figure 50. Here, partial search isdefined as
follows: We are given a part of a contour which is not closed. Find a CAD part in the
database which containsthe query contour (considering invariance with respect to trans-
lation and rotation). The partial contour may start and end at arbitrary points (not neces-
sarily vertices) of the retrieved contour. For partial similarity, the database CAD part
need not to contain exactly the query contour but a contour which issimilar to the query
contour. Berchtold and Kriegel [BK 96] solve the problem by basically storing the set of
all subcontours of a CAD part in the database. Thisset isessentially infinite. Therefore,
all contourswhich start and end at agiven pair of subsequent verticesare assembled into
a manifold. By starting the corresponding subsequence at an arbitrary point S on the
contour, a one-dimensional line (not necessarily a straight line) is generated in the fea-
ture space. As also the ending point E varies on the contour, atwo-dimensional areais
generated (not depicted in figure 50). These manifolds are also decomposed for effec-

tiveness and efficiency. Therefore, we also face a similarity join problem. The corre-

Catalogue Matching 115

sponding similarity join between two extended objects, however, has not yet been con-
sidered and may be subject to future research.

5.2 Catalogue M atching

An application to which the concept of similarity join can be directly applied, is match-
ing of multimedia catalogues stemming from different sources. Examples of such re-
guirements exitsin virtually all application domains of feature based similarity. We use
as arunning example astronomic catal ogues which store information about astronomic
objects such as planets, stars, galaxies, etc.

5.2.1 Known transformation

Features which are stored in such catalogues are not only the positions of the objects
using some appropriate coordinate system but also, for instance, the intensity of the
radiation in different frequency bands. All features are measured using both physical
devices and complex computations. Therefore, each feature is subject to ameasurement
error which is bounded by the device tolerance.

The operation of catalogue matching is defined as follows. Two catalogues, Rand S
are given which store features about objects which are partially common to both sets (R
and Sare generaly neither digoint nor equal). The typical situation is, that both cata-
logues store different but overlapping regions of the universe and that e.g. one of the
catalogues stores fewer objects due to weaker sensitivity of the device. Figure 51 illus-
tratesthetwo catalogues, Rand S. An appropriate € for matching can be derived fromthe
device tolerances. Determining the set of pairs which are common to both catalogues
corresponds to the distance range join R <] Sbetween the two catalogues as indicated
on the right side of figure 51. Our resulting catalogue should also contain information
about all objectswhich are only registered in one of our two catal ogues. The correspond-
ing join operation which takes al so those objects to the result which have no join partner
in the other set (Ileaving the corresponding attributes NULL) is called full outer joinin

116 Further Applications of the Range Distance Join

'
&
° ©
:
Ao
B
D

N
£
&

Figure 51: Catalogue Matching

the relational database theory. It is straightforward to extend the similarity join to a full
outer similarity join.

5.2.2 Unknown Transfor mation

Until now we have implicitly assumed that positions and the remaining features of both
catalogues are stored using acommon coordinate system. If the required transformation
to bring set Sinto the coordinate system used in set Risknown, then we simply can apply
this transformation to each point of Sbefore the similarity join. Particularly for astro-
nomic catalogues it is sometimes unknown what the relative position of two catalogues
is. Inthiscase, we can determinetherelative position directly from the data sets. For this
purpose, in each of the setstriangles are drawn connecting some of the objectswhich are
likely to be included in both sets (e.g. the brightest stars). Then some features of the
triangles which are invariant with respect to the transformation to be determined are
stored in data sets (such as the ratios between angles etc.). Matching pairs of these de-
rived triangle features can be used to determine the actual coordinate transformation.
Matching the triangles again corresponds to a distance range join of the two derived
feature sets.

Duplicate Detection 117

® o R
®
OQ (@)
) e
- ®
: JEEADSS
® o -
® o II

Figure 52: Duplicate Detection

5.3 Duplicate Detection

A problem similar to catalogue matching is the duplicate detection. In contrast to cata-
logue matching, duplicate detection typically involves only one data set R which con-
tains some duplicate feature vectors. Here we also have to assume that the features are
superimposed by some noise. Therefore, duplicate elimination in feature databases does
not involve exact matches but fuzzy matches. To detect duplicates we determine the self
join of the data set using a distance range € which is derived from the noise level of the
feature transformation. If it is not possible to determine an appropriate € it is al so possi-
bleto determine a closest pair ranking. Duplicate detection is depicted in figure 52.

5.4 Conclusions

In this chapter, we have proposed several further application domains for the similarity
join. In contrast to the applications from the data mining domain presented in chapter 4,
the transformation of algorithms such as robust similarity search, duplicate detection,
catalogue matching is relatively simple as demonstrated throughout this chapter. The
major objective of this chapter isto underpin our argumentation for the similarity join as
an important database primitive for various application domains.

118 Further Applications of the Range Distance Join

Chapter 6
A Cost Model for Index Based
Similarity Join Algorithms

After the previous chapters 4 and 5 which concentrated on the applications of the simi-
larity join we are now in thisand the two following chapters focussing on the algorithms
to implement the distance range join.

Due to the high impact of the similarity join operation, a considerable number of
different algorithms to compute the similarity join have been proposed (cf. chapter 3).
From atheoretical point of view, however, the similarity join has not been sufficiently
analyzed. Our feeling is that the lack of insight into the properties of the similarity join
is an obstacle in devel oping new methods with better performance.

Therefore, we develop a cost model for index based similarity join algorithmsin this
chapter. The concept used in this cost model isthe Minkowski sum which is here modi-
fied to estimate the number of page pairs from the corresponding index structures which
haveto be considered. In contrast to usual similarity search, the concept of the Minkows-
ki sum must be applied twice for the similarity join in order to estimate the number of
page pairswhich must bejoined. We will point out that theindex selectivity isthe central
key to the performance analysis. In section 6.1, we will present the formulafor the index
selectivity with respect to the similarity join operation. We will further analyze how

120 A Cost Model for Index Based Similarity Join Algorithms

much selectivity is needed to justify the usage of an index for join processing. The
surprising result is, that for the optimization of the CPU operations, afine-grained index
is indispensable. For the 1/O operations, however, fine-grained indexes are disastrous.
Our conclusion from these results is the necessity of decoupling the CPU optimization

from the 1/0O optimization.

6.1 Problem analysis

In this section, we separately analyze the performance behavior of the similarity join
with respect to CPU cost and 1/0 cost. For this purpose, we assume asimplified version
of an R-treelikeindex structurewhich consists of aset of datapageson theaveragefilled
with anumber C; of pointsand aflat directory. In our smplified index, similarity joins
are processed by first reading the directory in a sequential scan, then determining the
qualifying pairs of data pages, and, finally, accessing and processing the corresponding
data pages.

When using anindex, the only gainisthe selectivity, i.e. not all pairs of pages must be
accessed and not all pairs of points must be compared. For ajoin, theindex selectivity o
is defined as the number of page pairs to be processed divided by the theoretically pos-
sible page pairs:

o = processed page pairs _ processed point pairs
Br [(Bg IR OS ’

where Bg and Bg are the numbers of blocks of the point sets and |R| and |§ are the sizes
of the corresponding data sets (number of points). The index selectivity depends on the
guality of the index and on the parameter € of the similarity join. As a matter of fact,
using an index for ajoin computation induces some overhead. We will first determine
the possible overhead for the index usage. It is important to limit the overhead to a
threshold, say 10%, to avoid that the join algorithm becomes arbitrarily bad in case of a
largee.

121

The distance calculations in the directory are the most important overhead for the
CPU. The calculation of a Euclidean distance between two boxes (time ty,,,) can be
assumed to be by a factor a more expensive than a distance calculation between two
points (time tyo;) With

O = tyox/ togin typically a =5,
becauseit requires 2 additional case distinctions per dimension d (since both times t;
and ty,,, arelinear in d, a does not depend on d). Therefore, the relative CPU overhead

when processing a page filled with C pointsis

Limiting the CPU overhead vcpy < 10% requires C; = 0/ Vpy 2 100 . A similar con-
sideration is possible for the 1/0. Here, the time for reading the directory is negligible
(lessthan 5%). Important are, however, the seek operations which are necessary because
index pages are loaded by random accesses rather than sequentially. The overhead isthe
time necessary for disk arm positioning (ts) and for the latency delay (t,4), divided by
the “productive” time for reading the actual data from disk (t;, is the transfer time per
Byte):

v = lok *la _ B
VO ™ Cy 4d [k, Cg [Ad

withthe hardwareconstant B = (tgq + t4)/t;, (B =40000 for typical disk drives). We
assume 4 bytesfor afloating point value. Limiting the I/O overhead v, < 10% requires

Cyt 2 B/ (4d [V,5) = 100000/ d

which is even for a high data space dimension d = 100 orders of magnitude larger than
the corresponding CPU limit.

Next we analyze how much selectivity is needed to brake-even with the overhead in
index-based query processing. Again, we separately treat the CPU cost and the 1/0 cost.

122 A Cost Model for Index Based Similarity Join Algorithms

mati n%
areawhere — pag

page distance < € (1 |(dist=e)
region: 7
o
Y4
a— @
(Cest/[R) =

Figure 53: The Minkowski Sum for Page Pairs

For the CPU cost, we know that we have to perform one distance calculation for every
pair of pages in the directory. Additionally, for those page pairs which are mates (i.e.
o R 9/ C? pairs) al pairs of the stored points must be distance compared (C%;
distance computations). Altogether, we get o (JR| (]S distance computations for the
points. For join processing without index, |R| (]S distance calculations must be per-

formed. To justify the index, we postul ate:

R
O TR 181 gy + 3 Uy IR 1S

t
andthuso<1——2% =-1_-49

Cgff Dpoi nt) Cgff

For each pair of pageswhich must be processed, we assume that a constant number A
of pages must be loaded from disk. If thereisno cache and arandom order of processing
then A = 2. If acacheisavailable A islower, but we assume that A is not dependent on
the page capacity, becausetheratio of cached pagesisconstant (e.g. 10 %). We postulate
that the cost for the page accesses using a page capacity Cg and a selectivity o must not
exceed the cost for the page accesses for |ow-overhead pages without selectivity:
ttr

IR OY AOROS P
A to T 14 t4dC . 1) S ———""

Problem analysis 123

We obtain the following selectivity which isrequired to justify an index with respect to
the I/O cost:

< Gl 160 B0
BLB+4d L)

The actual selectivity of an index with respect to the similarity join operation can be
modeled asfollows. Aswe assume no knowledge about the data set, we model auniform
and independent distribution of the points in a d-dimensional unit hypercube [O..1]d.
Furthermore, we assume that the data pages have the side length d/Cy/ IRl and
d/Cy/ 19, respectively because C/|R| isthe expected volume of apage region.

The index selectivity can be determined by the concept of the Minkowski sum
[BBKK 97]. A pair of pagesis processed whenever the minimum distance between the
two page regions does not exceed €. To determine the probability of this event, we fix
one page at some place and we (conceptually) move the other page over the data space.
Whenever the distanceislessthan or equal to € we mark the data space at the position of
the center of the second page (cf. figure 53). As we mark the complete area where the
variable page isajoin mate of the fixed page, the probability of an arbitrary pageto bea
mate of thefixed page, correspondsto the marked areadivided by the areaof all possible
positions of the page (which isthe data space, [0..1]9).

The Minkowski sum isaconcept often used in robot motion planning. Understanding
two geometric objects A and B each as an infinite number of vectors (points) in the data
space (e.g9. A={ay, &,}) theMinkowski sum A [J Bisdefined asthe set of the vector
sums of all combinations between vectorsin Aand B, i.e.

AlUB= {a1+b1, a.1+b2, a.2+b1, } .

For cost modeling we are only interested in the volume of the Minkowski sum, not in
its shape. The exampleinfigure 2 isnow constructed, step by step: Ontheleft hand side,
simply the fixed page region with side length d/C/ Rl is depicted. Next we show the
complete area of the data space where the distance from the page region does not exceed
€. This corresponds to the Minkowski sum of the page region and a sphere of radius €.
Then, we show an example of a marginally mating page. The center point of the pageis

124 A Cost Model for Index Based Similarity Join Algorithms

100%
80% | ; ---- 0 needed for CPU
2 60%! o estimated by
2 ! — model (€=0.25,
;%3 40%!; 0.1, and 0.05)
20%;: o needed for I/O

10 100 1000 10000 Cg

Figure 54: Selectivities Needed to Justify an Index

marked, as depicted. If we move this page around the shaded contour, we obtain the
geometric object depicted on the right hand side. It corresponds to the Minkowski sum
of three objects, the two page regions and the e-sphere. The Minkowski sum of the two
cubesisacubewith added side length. The Minkowski sum of the resulting cube and the

g-sphere can be determined by a binomial formula which was derived first in

[BBKK 97]:
090 o Cer . [Cap’™
OMmink = z Ei EE%/T_F—QT +d ‘lg‘ﬂ% [Vi.im. sphere(€)

O<i<d

In figure 54 we compare the required and the estimated selectivities along with vary-
ing block sizes. Thethin, dashed line shows o asit isneeded to justify the CPU overhead
of theindex. The curveisincreasing very fast. Therefore, no good (i.e. low) selectivity
is needed unless the block sizeisvery small (<10). Quite the oppositeistrue for the I/O
cost (thick gray line). Until a block size of at least 10,000 points, an unrealistic good
selectivity is needed. Only for block sizes starting at 10,000, index selectivities above

Optimization of the I/O time 125

10% are allowed. Also depicted are 3 actual selectivities, estimated by our model. These
curves are typical examplesto demonstrate the range of possible curves.

The index usage isjustified if the actual selectivity is below the needed selectivity.
The higher the difference between “actual” and “needed” is, the more the index will
outperform non-index joins. Over a wide range of block sizes, the actual selectivity
curveisbelow the curvefor the CPU cost. The highest differenceis obtained between 10
and 100 points. In contrast the I/O curve needs always a better selectivity than the index
has, if the distance parameter € is high. For lower €, the index isjustified, but only for
very large pages. The differenceis never high.

It would be possibl e to determine the optimum block sizefor the CPU-cost and for the
I/O cost. For this purpose we would have to choose afixed distance parameter €. Asour
objectiveisto create an index which issuitablein every join situation, it would be bad to
optimize for aspecific .

However, we can learn some important lessons from figure 54. Smaller pages are
very good for minimizing the CPU cost. But for the I/O cost, small pages of 10..100
points are disastrous. Large pages, in contrast, minimize the 1/0 cost but are bad for the
CPU cost. Gains at one of the sides are always paid by a higher price on the other side.
Optimizing the overall-cost can merely bring the two cost componentsin balance.

To escape from this dilemma, it is necessary to decouple the I/O cost from the CPU
cost by a new index architecture which will be proposed in chapter 7. This architecture
consists of large blocks which are subject to 1/0. These large blocks accommodate a
secondary search structure with “ subpages’ which are used for reducing the computa-
tional effort.

6.2 Optimization of thel/O time

We have seen in the previous sections that limiting the overhead of 1/0 operations re-
quireslarge pageswith Cg; intheareaof at |east some 10,000s points. Additionally, only
for such large pages, the actual selectivity isbelow the needed selectivity (cf. figure 54).
When the block sizeissmall, the selectivity whichis needed to compensate for the index

126 A Cost Model for Index Based Similarity Join Algorithms

overhead ismuch smaller than the actually achievable sel ectivity of the multidimension-
al index.

We may ask ourselves whether or not the page size has an influence on the perfor-
mance if the selectivity is close to 100%. For similarity queries with a bad index selec-
tivity, the sequential scanisoptimal, i.e. aninfinitely large page size. For joins, however,
the situation may be different and at the end of this section, we will know that a careful
page size optimization isimportant.

In chapter 7 we will propose ajoin algorithm which loads several pages of Rinto the
buffer and combines them with those pages of Swhich have adistance less than or equal
to € to at least one of the buffered S-pages. For such algorithms, the number of page
accessesis

A =Bgrto

Br[Bs _ PR“ .\ 0|'fR/b'| Ofs/b]
C-1 b lc/b]-1

where Bgand By, are the numbers of blocksinto which the point sets are decomposed, C
isthe number of blocks of the buffer, b isthe block sizein Bytes and fg, fs, and c are the
sizes of the point setsand of the buffer in Bytes. Theformula states the fact that the point
set R is scanned once (Bg accesses) and the blocks of S are considered 0Br/ (C—-1)
times. As Sis scanned blockwise we face the following trade-off: If b istoo large, i.e.
closeto ¢/2, then Smust be scanned more often than necessary. In contrast, if b ischosen
too small (e.g. 1 KByte), then the disk yields alatency delay after each block access.

Thetotal cost of the join can be summarized as follows: For every block accessof S
we have the corresponding transfer time b-t;, and the latency delay t,4. Additionally, for
each of the Bg/ (C - 1) traversals of R we have two disk arm positioning operations
(tseex), ONE more latency delay, and the transfer time:

(/b
tio = frly + /b1 ({2t e + t2)

fo/b] T fy/b
A E e L RLER

Optimization of the I/O time 127

1401 !
130
120+ |
110

100 \ // e L]
.y pm

50K 100K 150K 200K b

t0

I/O time [sec]

0 O
o O

Figure 55: Optimizing the Join for 1/0

As Ris scanned only once and in larger blocks than the inner point set, we can neglect
the cost for that. Further we can omit the ceiling-operator in fg/b and f4/b, because the
point sets are much larger than the block size, and thus the relative error by this approx-
imation is negligible, too:

N fr s
ljo=0 Dbz qlc/bl-1) {tjg + b y)

We arelooking for the block size b which minimizest;,o. The only obstaclein optimiza-
tion by setting the derivative to O is the floor-rounding in ¢/b which cannot be neglected
because c>>b is not guaranteed (we are basically out to determine whether the buffer
should be assigned to R and S more balanced or more unbalanced). We solve this prob-
lem by first optimizing a hull function ty,; with t,; = t;,0 if b divides c and ty,; < t;,0

otherwise:

fo F
th = O q#_sb) [ty + b [Ey)

Figure 55 depicts the actual cost function t;,5 and the hull function ty,, for afile size of
10 MByte and abuffer of 500 KByte. It is easy to see that the optimum of t;,5 cannot be
at some position wheret;,q is continuous, because the remaining term

128 A Cost Model for Index Based Similarity Join Algorithms

o g g
ey [ty + b y)

(when the floor-expression is some constant y) is strictly monotonically decreasing. This
can be shown by the derivative. So, the minimum of t;o must be at a position where b
dividesc without rest. Asty, ;| meetst,q at al such positions, we know that the optimum
of tj,o can only be at the first meeting point (t;,o = tj,)) immediately left or right from
the minimum of ty, ;. The minimum of ty,;; can be determined by setting the derivative
to zero which yieldstwo results. Only oneispositive and it isaminimum, which can be
shown according to the second derivative. The positive solution of

0

5Bthu|| =0

is (because 00/ db = 0 for large pages):

Attt g -ty
opt,hull —

b
U

The two possible positions of the actual optimum of t,, are

blz—c b2: C

v R e
bopt,huII bopt,hull

These two values must be substituted in the cost function to determine the actual mini-

mum.

.
By 1o = 0 by if -ty (by) <ty (by)
t, .
> E by if Ty (by) = Ty (by)

As the minimum of t,;, is very stable (cf. figure 55), it is also possible to use e.g. by
without considering b..

Optimization of the CPU time 129

Figure 56 depicts by with a buffer size varying from 0 to 10 MByte for adisk drive
with a transfer rate of 4 MByte/s and a latency delay of 5ms. The optimum for a
10 MByte buffer, for instance, is 455903 Bytes (i.e., 23 buffer pages).

6.3 Optimization of the CPU time

The CPU cost are composed of two components: cost of directory processing (i.e. dis-
tance computations among page regions) and cost of data level processing (i.e. point
distance calculations). In our ssmplified index structure, the distance between every pair
of pages must be calculated, i.e. |R| []§/C%; calculations. The number of point dis-
tance cal culations depends on theindex selectivity andis o [JR| []9 . Thetotal CPU cost
is.

R
tepy = 0 AR O M poine + LLS:S' Mpox

Aswehavet,, = all we can rewrite this and insert our estimate of the selectivi-

ty:

point

C
eff eff
tepy = IRIOS [tpomt% +d/ +2% CeﬁD

We do not want to optimize the index for a specific distance parameter €, because we
must create an index which isgood for every similarity join. Therefore, we consider the
two extreme situations of very low and very high distance parameters. For small €, we
can rewrite our CPU cost formulato

Lowe = IRIOY DPO'm EH:e” E%/; [D C2 D

130 A Cost Model for Index Based Similarity Join Algorithms

400K

300K

200K

optimal block size

100K |

2M 4M 6M 8M huffer-size

Figure 56: I/0O-Optimal Block Size

which isoptimized by

d
_ 1 10
e

If € is very large, then the index cannot yield any selectivity. In this case, it is merely
necessary to limit the overhead asin the beginning of section 6.1. For a10% limit at least
10a points must be stored in adatapage. Therefore, we have the following value for the
effective capacity:

O 1. [100
C.. = max 00,3;\/20/%/:+d-—
op ot R 4s0E

6.4 Conclusions

In this chapter, we have proposed a cost model for the index selectivity of the similarity
join. We have given cost formulas for both CPU and I/O cost and have shown how our
cost model can be used to optimize the page capacity for maximum CPU and I/O perfor-

Conclusions 131

mance, respectively. Our analysis, however, revealed a serious optimization conflict
between these two cost factors. While large pages are needed to optimize the 1/0O perfor-
mance, large pagesruin the CPU performance and viceversafor small pages. In our next
chapter, we propose a solution to this conflict, a new index structure which allows a
separate optimization for CPU and 1/0.

132 A Cost Model for Index Based Similarity Join Algorithms

Chapter 7

MuX: An Index Architecture for
the Similarity Join

This chapter is dedicated to the solution of the optimization conflict detected in the
analysis of chapter 6. Our objective is to develop aindex architecture which allows a
separate optimization for CPU and I/O performance. Therefore, we basically need two
separate page capacities, one for CPU and one for I/O. This goal is achieved by the
multipage index (MuX). Thisindex structure consists of large data and directory pages
which are subject to I/O operations. Rather than directly storing points and directory
records an these large pages, these pages accommodate a secondary search structure
which is used to speed up the CPU operations. To facilitate an effective and efficient
optimization, this secondary search structure has again an R-tree like structure with a
directory and data pages. Thus, the page capacity of the secondary search structure can
be optimized by the cost functions developed in chapter 6, however, for the CPU trade-
off. We show that the CPU performance of MuX is similar (equal up to some small
dilatational management overhead) to the CPU performance of atraditional index which
ispurely CPU optimized. Likewise, we show that the 1/O performance resemblesthat of
an |/O optimized traditional index. Our experimental evaluation confirms thisand dem-
onstrates the clear superiority over the traditional approaches.

134 MuX: An Index Architecture for the Similarity Join

7.1 The Multipage I ndex (M uX)

It has been shown in the previous chapter that it is necessary to decouple the 1/0 and
CPU optimization to achieve a satisfactory performance in multidimensional join pro-
cessing. It was shown how to optimize join processing with respect to 1/0 and CPU
performance. We now introduce an index architecture and the corresponding algorithms
which enabl e the separate optimization. In essence, our index consists of large 1/0 pages
that are supported by an additional search structure to speed up the main-memory oper-
ations. A few index structures with supporting search structures have already been pre-
viously proposed. For instance, Lomet and Salzberg proposethe hB tree [LS 90] which
uses a kd-tree like structure to organize directory pages. Their objective isimprove the
insert operationsin order to achieve an overlap-free space decomposition in their index,
not a separate optimization of CPU and 1/0 operations. Also, some quad tree based
structures can be used in such away. Kornacker [Kor 99] providesaninterface for GIST
that allows the application of supporting search structures in index pages. Our solution
uses asimple R-tree like secondary search structure. In the current chapter, we have not
evaluated which kind of search tree serves the best purpose. Our motivation for using
minimum bounding rectangles for both, the primary and the secondary search structure,
isto be able to apply the same cost model for both optimizations. Using different con-
ceptsfor the primary and secondary search structureisviable, but requires different cost
models and makesthe analysisthus more complex. It remainsas an issuefor futurework
to evaluate different secondary search structures with respect to high-dimensional in-
dexing and similarity join processing.

7.2 Index architecture

The Multipage Index (MuX) is a height-balanced tree with directory pages and data
pages (cf. figure 57). Both kinds of pages are assigned to arectilinear region of the data
space and to ablock on secondary storage. The block sizeis optimized for 1/0 according
to the model proposed in chapter 6. The 1/O optimized pages are called the hosting pag-
es. Asin usua R-trees, both kinds of pages store a number of entries (directory entries

135

‘ page directory ‘ hostin
‘ ¥ <_directc%]ry page
C 10] accommodated

directory buckets

I
‘ page directory ‘ ‘ page directory ‘ hoi
P\ 71\ <o pae
Ly L g mmedated
] | Ol] |f/

Figure 57: Index architecture of the multipage index

and data points). In contrast to usual R-trees, where the entries of pages are stored in
random order in asimple array, MuX uses a secondary search structure to organize the
entries. The compl ete search structure isaccommodated in the hosting pages. Therefore,
search operations in the secondary search structure do not raise any further 1/0 opera-
tions once the hosting page has been loaded.

For the secondary search structure, we use a degenerated R-tree consisting of a flat
directory (called page directory) and a constant number of |eaves (called accommodated
buckets). If the hosting page is a data page, the accommodated buckets are data buckets
and contain feature vectors. If the hosting page is a directory page, the accommodated
buckets are directory buckets which store pairs of aMBR and a pointer to another host-
ing page. The page directory isflat and consists of an array of MBRs and pointersto the
corresponding accommodated buckets. Generally, it would be straightforward to use a
hierarchical page directory. The actual number of buckets accommodated on a hosting
page, however, is not high enough to justify adeep hierarchy. In our current implemen-
tation, the primary directory of MuX also consists of a single level (flat hierarchy),
because hierarchical directories often do not pay off in high-dimensional query process-
ing, asit was pointed out e.g. in [BBJ+ 00Q].

136 MuX: An Index Architecture for the Similarity Join

7.3 Construction and maintenance

For afast index construction, the bottom-up algorithm for X-tree construction [BBK 98]
was adopted. The various R-tree algorithms for insertions and deletions can aso be
adapted to the MuX architecture. Due to space limitations we cannot go into further
details at this point.

7.4 Similarity queries

Similarity range queries can be efficiently processed by a depth-first traversal of the
multipage index. For nearest neighbor queries, k-nearest neighbor queries and ranking
gueries, we propose to adapt the HS algorithm [HS 95] which uses a priority queue for
page scheduling. In our implementation, only the hosting pages are scheduled by the
priority queue. Once ahosting pageisaccessed, the corresponding accommodated buck-
etsare processed in order of decreasing priority. Accommodated buckets can additional-
ly be pruned whenever their query distance exceeds the current pruning distance.

7.5 Join processing

We use the following strategy for join processing: One block of the buffer memory with
the size of one hosting page is reserved for S (the S-buffer). The rest of the buffer (R-
buffer) is used for caching one or more hosting pages of R. In the outermost loop of the
algorithm presented in figure 58, the R-buffer isfilled with achunk of pagesof R. Inline
(*), each hosting page of Swhich is ajoin mate of (at least) one of the accommodated
buckets in the R-buffer is accessed. Then each pair of accommodated buckets having a
distance of at least € is processed, i.e. the point pairs fulfilling the join criterion are
determined.

Join processing 137

algorithm MuX_join
fori:=1toBgrstep C—-1do
load hosting pages Bg(i) .. Bg(i + C—1) ;
for j :=1toBgdo
*) if Bg(j) has some join mate in an accomm.
bucket of Bg(i) .. Bg(i+C-1) then
load hosting page B4(j) ;
for each accomm. bucket of
Br(i) .. Bg(i + C—1) do
for each accomm. bucket of Bg(j)
if distance (buckets) < € then
process pair of buckets;

Figure 58: Join Processing for the Multipage Index

In line (*) our algorithm considers the accommodated buckets of the chunk in the R-
buffer to exclude hosting pages of Sfrom consideration. Note that our algorithm could
also use the hosting pages of R instead of the accommodated buckets. The buckets,
however, exclude more S-pages from processing (i.e. theindex selectivity isimproved).
It would aso be desirable to use the accommodated buckets of Sfor this exclusion test,
but the corresponding MBRs of these buckets are not known until the hosting page is
loaded.

In the following two claims, we will point out why our MuX structure achieves a
separate optimization of CPU and 1/0 performance and why this leads to a superior
performance compared to the conventional R-treejoin. For these claims we assume that
the capacity of an accommodated bucket isat |east 20 data points and that a hosting page
stores at least 10 accommodated buckets.

138 MuX: An Index Architecture for the Similarity Join

Claim 1: The1/O cost of an R-tree and MuX are very similar if the page capacity of
the R-tree corresponds to the capacity of a hosting page of MuX.

Claim 2: With respect to CPU cost, the MuX join performs similarly to an R-tree if
the page capacity of the R-treeis chosen like the accommodated buckets of MuX.

Rationale for claim 1: Provided that the R-tree and the MuX structure apply the same
insertion and splitting rules and provided that the page capacities are equal, both tech-
niques lead to identical paginations. Therefore, the same page pairs have to be consid-
ered which leads to the same number of page accesses. The main differenceisthat MuX
pages have to store additionally the page directory which increases the cost of a page
access. The page directory stores pairs of lower bounds and upper bounds for each ac-
commodated bucket. For each bucket we have to store as much information as for two
data points. As the capacity of a bucket is at least 20 data points, the storage size of a
MuX hosting page is a most 10% larger than the storage size of the R-tree. Therefore,
the 1/O cost of MuX isat most 10% higher than that of the R-tree.

Rationalefor claim 2: Provided that the page capacity of the R-tree correspondsto the
page capacity of the accommodated buckets, and provided that the same insertion and
split strategy has been applied, the two structures exactly compare the same point pairs.
The number of point distance computationsisidentical. The MuX structure determines
at most as many distances between accommodated buckets as the R-tree determines
distances between R-tree pages (in practice even much fewer because not all pairs of
accommodated buckets have to be considered; only those located in mating hosting
pages). The additional CPU cost in the MuX structure are the distance computations
between the hosting pages. Because each hosting page stores more than 10 accommodat-
ed buckets there can be only one successful distance calculation per 10%=100 distance
calculations between accommodated buckets. MuX can in the worst case be 1% worse
than the corresponding R-tree.

We optimize the capacity of the hosting pagesof MuX such that they are I/O optimal.
The capacity of the accommodated bucketsisoptimized such that they are CPU-optimal.
Taken claim 1 and claim 2 together, we obtain a CPU performance which resembles a

Experimental evaluation 139

CPU-optimized R-tree and an 1/0O performance that resemblesan 1/0 optimal R-tree (for
both cases plus the overhead mentioned in the rational es of the claims).

Compared to conventional index join algorithms which traverse the indexes depth-
first [BKS 93] or breadth-first [HIR 97], our new algorithm improves the performance
with respect to CPU and 1/0. The 1/O effort isreduced by two ideas: Thefirstideaisto
use more cache for the point set Rwhich is scanned in the outermost loop. The advantage
isthat in the case of abad index selectivity the number of scans of the other point set S
is minimized. Therefore, the I/O cost cannot become substantially worse than the I/0
cost of anested loop join. In the case of agood index selectivity, in the inner loop only
those S-pages are loaded which are actually needed. Therefore, the performance cannot
become substantially worse than a breadth-first or depth-first index traversal. For these
extreme cases, we have always the performance of the best of the two worlds. nested
loops or tree traversal. In the cases between these extremes, we combine the advantages
of both paradigms and outperform them both clearly. The second idealeading to reduced
I/O cost is that we use the page regions of the accommodated R-buckets to exclude
hosting S-pages. While only 1/O optimized pages are subject to I/O operations, the more
selective bucket regions are used for excluding, leading to a clear advantage in the index
selectivity. The CPU effort is minimized due to the optimization of the bucket size for
minimum computational cost. Additionally, many distance computations between buck-
et regions are avoided, because buckets can only mate if their hosting pages mate, too.

7.6 Experimental evaluation

To show the superiority of our proposal over competitive techniques, we have performed
an extensive experimental evaluation. For this purpose, we implemented our multipage
index join algorithm. For comparison, we also implemented a similarity join algorithm
using nested loops and a similarity join algorithm based on the R-tree spatial join (RSJ)
algorithm [BK'S 93] with three different scheduling and caching schemes.

The cache for the nested loop-join was assigned according to our optimization pre-
sented in chapter 6. All RSJ variants used a caching strategy discarding the page which

140 MuX: An Index Architecture for the Similarity Join

N\

5§

—e— Nested Loop

—&— R-tree Sim. J.
Z-Order-RSJ

—%— Greedy-RSJ

—a— MuX-Join

W
\

Total Time[Sec]
3

8

10\ T T T T
25 50 100 200 400 800

Number of Points ('000)

Figure 59: 4D Uniform Data Varying Database Size

will not be used for the longest time in the future. Note that, in contrast to usual paging
algorithms applied in general-purpose operating systems, the join algorithm allows to
exploit the knowledge of the page schedule in the future. The basic RSJ algorithm ac-
cesses the data pages of the index in arandom order. The cache hit rate can be improved

1000000 /
— 100000 \
52. —e— Nested Loop
_g 10000 - —=—R-tree Sim. J.
- Z-Order-RSJ
E 1000 —»— Greedy-RSJ

—&— MuX-Join
1(x) I T T T T

25 50 100 200 400 800
Number of Points ('000)

Figure 60: 8D Uniform Data Varying Database Size

Experimental evaluation 141

: E

|

—e— Nested Loop

—&— R-free Sim. J.
Z-Order-RSJ

—*— Greedy-RSJ

—a— MuX-Join

*
L 4
L 4

»

Total Time[Sec]
g8 3

=
o

0.2 0.3 0.4 0.5

Epsilon

=
-

Figure 61: 8D Uniform Data

by accessing the pages of the index in an order preserving the spatial proximity. In
[HIR 97], 4 different kinds of page ordering were proposed, including the Hilbert curve,
and an improvement of the cache hit ratio of up to 50% was reported. We implemented
a page scheduling strategy based on Z-ordering and a greedy optimization strategy
which starts with an arbitrary page and accessesin each step the unprocessed page with
the smallest distance to the last previously accessed pages. We will refer to the three
variantsas“ R-tree Smilarity Join (RSJ)”, “RSJ with Z-ordering optimization”, and “ RSJ
with greedy optimization.” All algorithmswere allowed to use the same amount of buffer
memory (5% of the database size).

All our experiments were carried out on HP 9000/780 workstations under HPUX -
10.20. We used a disk device with atransfer rate of 4 MByte/sec, a seek time of 5 msec,
and latency time of 5 msec. Our algorithms do not exploit parallelism between CPU and
1/O, which would be possiblein al approaches. Therefore, our reported total query time
corresponds to the sum of the CPU time and the 1/0O time. The index construction was
not taken into account.

For our experiments, we used synthetic as well as real data. Our synthetic data sets
consist of up to 800,000 uniformly distributed points in the unit hypercube with the

142 MuX: An Index Architecture for the Similarity Join

§
\

/ —e— Nested Loop
I —=&— R-tree Sim. J.
/ Z-Order-RSJ
*— Greedy-RSJ

—a— MuX-Join

Total Time[Sec]
g

;

10

25 50 100 200 400 800
Number of Points ('000)

Figure 62: 9D Real Datafrom a Meteorology Application

dimensions 4 and 8. Our real-world data stem from three application domains. A CAD
database with 16-dimensional feature vectors extracted from geometrical parts, a color
image database with 64-dimensional feature vectors representing color histograms, and
ameteorology database with 9-dimensional feature vectors generated by weather obser-

3§

/ —&— Nested Loop
e .
—&—R-free Sim. J.
/%/‘/ Z-Order-RSJ
;(—*— Greedy-RSJ
l//. —&— MuX-Join
100

Total Time[Sec]

g

25 50 100 200 400 800
Number of Points ('000)

Figure 63: 8D Uniform Data Varying Database Size

Experimental evaluation 143

vation. In the similarity join, we used the Euclidean distance. Appropriate distance pa-
rameters € for each data set were determined such that they are useful in clustering
[EK'SX 96] and that each point of the data set is combined with afew other points on the
average. That meansin particular that we avoided in our experiments the extreme cases
of no resulting pair (or in the case of self joins: each point is only ajoin mate of itself),
or each point is combined with every other point.

Figure 59 shows our experiments on uniformly distributed point data. In the left dia-
gram, the data space is 4-dimensional and an appropriate€ = 0.05 (i.e. intheresult, each
point has an average of 8.5 join mates). The nested loop join has the worst performance
over al scales. With increasing database size, thistechniqueis outperformed by all other
techniques by increasing factors. For low-dimensional data spaces, the scheduling strat-
egy in the R-tree similarity join plays a relatively important role. Therefore, the more
sophisticated strategies which order the page accesses by Z-ordering or agreedy strategy
improve the performance of the R-tree similarity join by factors up to 4.2. The clear
winner over al database sizes is our new technique, the MuX-join. It outperforms the
nested loop join up to 400 times and is up to 10 times faster than the R-tree similarity
join. Even theimproved R-tree join versions are outperformed with factors between 2.3
and 4.6. The diagram in the middle shows our experiments with an 8-dimensional data
space (¢ = 0.3; each point has an average of 22.3 join mates). In this dimension, the
various R-treejoin variants do not differ much. Astheindex selectivity beginsto deteri-
oratein medium-dimensional data spaces, the nested |oop joinismuch more competitive
and is only for the largest database (800,000 points) outperformed by the three R-tree
join variants. Our new technique, in contrast, outperforms the other techniques by a
factor of 6.3 (over R-trees) and 8.1 (over nested loop) for the largest database size. For
100,000 points, the corresponding factors are 7.4 (over R-trees) and 3.1 (over nested
loop). The diagram on the right side depicts the performance of the join algorithmswith
varying distance parameter € (d = 8; n = 50,000). It is obvious that for very large € the
nested loop join must be the winner, because the join result combines each point with
every other point, and the nested loop join has no additional index overhead. Therefore,
the R-tree variants are clearly outperformed. As our new technique strictly limits the
index overhead by an appropriate optimization of 1/0 aswell as CPU, it isnever clearly

144 MuX: An Index Architecture for the Similarity Join

100000
10000 -
(?JA’ 1000 —e— Nested Loop
2 I —=— R-tree Sim. J.
; 100 - /‘ Z-Order-RSJ
e —*— (Greedy-RSJ
= 10 g

—a— MuX-Join

l I T T T
625 125 25 50 100

Number of Points ('000)

Figure 64: 64D Real Data (Color Histograms) form a Multimedia Application

outperformed. Instead, the performance slowly approaches the performance of the nest-
ed loop join with increasing .

Our experiments on real application data depicted in figure 64 clearly confirm our
experiments on uniform data. Partially, the improvement factors are even higher. The
left diagram depicts the results on the 9-dimensional meteorology feature vectors
(¢ =0.0001; 3.9 join mates per point). For the largest database size, our technique was
590 timesfaster than the nested loop join, 5.9 timesfaster than the R-tree similarity join,
and 3.5 timesfaster than RSJwith theimproved scheduling strategies. For the 16-dimen-
sional CAD feature vectors (diagram in the middle; € = 0.01; 7.5 join mates per point)
our techniqueisup to 87 timesfaster than the nested |oop join and between 6 and 7 times
faster than the 3 R-tree similarity join variants. The right diagram shows the results on
our color image database (¢ = 0.0001; 1.1 join mates per point). For the largest database,
our technique yields an improvement factor of 1203 over the nested loop join of 25 over
all R-tree similarity join algorithms.

Conclusions 145

7.7 Conclusions

In the context of chapter 6, a severe optimization conflict between CPU and I/O optimi-
zation has been discovered. To solve this conflict, we have proposed an index architec-
ture which allows a separate optimization of the CPU time and the 1/0O time in this
chapter. Our architecture utilizes large primary pages which are subject to I/O process-
ing and optimized for this purpose. The primary pages accommodate a secondary search
structure to reduce the computational effort. Our experimental evaluation has shown
consistently good performance. Competitive approaches are outperformed by large fac-
tors. An open question for future work is the suitability of our secondary search struc-
ture. For simplicity, and in order to uniformly apply the same cost model for CPU and I/
O optimization, we used minimum bounding rectangles for both, the primary and the
secondary search structure. More sophisticated techniques, however, should have the
potential to even improve our high speedup factors.

146 MuX: An Index Architecture for the Similarity Join

Chapter 8
Epsilon Grid Order: Joining
Massive High Dimensional Data

In this chapter, we develop amethod for massive data sets of at least 1 GByte operating
on avirtual grid partition of the data space. This method is based on the observation that
for the distance range join with a given distance parameter €, agrid partition with agrid
distance of € isan effective means to reduce the search space for join partners of apoint
p. Due to the curse of dimensionality, however, the number of grid cellsin which poten-
tially joining points are contained explodes with the data space dimension and resultsin
an order of O(3d) cells. To avoid considering each of the grid cells one by one, we
introducethe grid partition only in avirtual way asthe basis of aparticul ar sort order, the
€ grid order, which orders points according to grid cell containment. The € grid order is
used as ordering criterion in an external memory sort operator. Later, the € grid order
supports effective and efficient algorithms for CPU and 1/0 processing, particularly for
large data sets which cannot be joined in main memory.

148 Epsilon Grid Order: Joining Massive High Dimensional Data

8.1 The Epsilon Grid Order

In this section, we propose our algorithm for the similarity join on massive high-dimen-
sional data sets. Our algorithm is based on a particular order of the data set, the epsilon
grid order, which isdefined in the first part of this section. Wewill show that the epsilon
grid order isastrict order (i.e. an order whichisirreflexive, asymmetric and transitive).
Then, we will prove aproperty of the epsilon grid order which isvery important for join
processing: We show that all join mates of some point p liewithin aninterval of thefile.
The lower and upper limit of the interval is determined by subtracting and adding the
vector [€,¢,...,€] T to p, respectively. Therefore, we call theinterval the e-interval.

Our join agorithm exploits this knowledge of the e-interval. Assuming a limited
cache size, we have to distinguish two cases: The e-interval of a point fitsinto the main
memory or not. If the e-interval of each database point fits into main memory, then a
single scan of the database is sufficient for join processing. We call thiskind of database
traversal the gallop mode. If the e-interval s of some pointsdo not fit into the main mem-
ory, we haveto scan the corresponding part of the database more than once. The database
is traversed in the so-called crabstep mode. These two modes will be explained in
section 8.1.2. Finally, we will show in section 8.1.3 how sequences of epsilon-grid or-
dered points can be joined efficiently with respect to CPU operations. Epsilon grid or-
dering yieldsthe particular advantage that no directory structure needs to be constructed
for thispurpose. In contrast to index structures that manage main memory datastructures
such as MuX or e-kdB-trees the full buffer size can be used to store point information;
nearly no buffer capacity is wasted for management overhead.

8.1.1 Basic Properties of the Epsilon Grid Order

First we give a formal definition of the Epsilon Grid Order (- g, -). For this order, a
regular grid* islaid over the data space, anchored in the origin, and with agrid distance
of €. We define alexicographical order on the grid cells, i.e. the first dimension dg has

1. Notethat our grid is never materialized. It is neither necessary to determine nor to store
grid cells of the data space. We use the grid cells merely as a concept to order the points,
not asaphysical storage container.

149

the highest weight; for two grid cells having the same coordinates in d,, the next dimen-
sion d, isconsidered, and so on. Thisgrid cell order isinduced to the points stored in the
database: For apair of two points p and q located in different grid cells, welet p g, q be
trueif the grid cell surrounding p islexicographically lower than the grid cell surround-
ing g. Since we want to avoid explicit numbering of grid cells (which would be dlightly
clumsy unless we assume a previously limited data space), the following definition de-
terminesthe order for the points directly, without explicitly introducing the grid cells:

Definition 12 Epsilon Grid Order (- g °)-
For two vectors p, q the predicate p &o d istrueif (and only if) there exists adimen-
sion d; such that the following conditions hold:

o243
olz)3] o

Our first lemma proves that the epsilon grid order is, indeed, an order. We have not
defined the epsilon grid order as areflexive order due to points which are located in the
same grid cell. Such points are not able to fulfill the antisymmetry property which is
usually required for an order. Therefore, we have defined the epsilon grid order as an
irreflexive or strict order which isrequired to beirreflexive, asymmetric, and transitive.
There are amost no consequences from apractical point of view. For instance, the usual
sorting algorithms can cope with an irreflexive order without modification. In the fol-
lowing lemma, we prove the three required properties, one of which (transitivity) isalso
exploited in lemma4 and 5.

Lemma 3. The Epsilon Grid Order isan irreflexive order.
Proof:
Irreflexifity (- P o p):

P &o P cannot hold, because there is no dimension d; for which | p;/e | <| pi/€ |;

150 Epsilon Grid Order: Joining Massive High Dimensional Data

Asymmetry (Pgjo AU ~ ago P):

Since pgo g holds there exists a dimension d; with |p/e|<|g/g]| and
| p/€ | = | g/¢] foralj<i. Therefore, we know that | g;/€ | = | p;/€ | holds but
neither | g;/€ |<|p;/€| nor | /e | = | pi/€ | can betrue, and, therefore, Ao Pis
fase.

Transitivity(peé0 d00go 'Y P&o r):

Since pgo g holds there exists a dimension d; with |p/e|<|g/g]| and
| /€| = | /€] foral j<i. Since qg, r holds there exists a dimension d;: with
|gi/e|<|ry/€e] and | g/¢e]| = |r;/¢e] foral j<i'. Without loss of generality we
assumei <i’ (the other cases are similar). We know that ij/sJ = qu/sJ = Lrj/sj
foralj<iandthat | p;/€|<|qi/€| = | ri/€], and, therefore, p g, T-

O

In the next two lemmata, we show that our join algorithm needs not to consider any
point as ajoin mate of some point p which isless (according to the epsilon grid order)
than the point p - [€.€,...,€] T or greater than the point p + [£.€,...,€] ". We note without a
formal proof that these bounds arein general much tighter than the bounds of the e-kdB-
tree join algorithm: While the e-kdB-tree needs two contiguous stripes of grid cells
simultaneously in the main memory, our algorithm needs only one stripe plus one addi-
tional grid cell for asimilarity self join.

Lemmad4. A point qwithq g P - [€.,€,....€] T cannot be ajoin mate of p or of any point
p’ whichisnot p’ o P

Proof:

Following definition 12, there exists adimension d; such that

Hie
€ €
The monotonicity of the floor function insures that g, <p; — €. Because both € and

(p; —q;) are positive we can rewrite this as (p; —q;)? > €2. This specific square (p; -

The Epsilon Grid Order 151

Figure 65: I/0O Unitsin the Data Space

qi)2 for somei cannot be smaller than the sum of all squares, which corresponds to the

distance betweenp and g:

e2<(p-a)?s y (p—)* = lp—dl?
O<j<d
Dueto thetransitivity of (-eﬁo), thereexistsalso adimension d;- such that ¢, < p} —¢.
Therefore, aso |p’ —q? > €2 isvalid. 0

Lemmab. A point qwithp + [s,s,...,s]Tego g cannot be ajoin mate of p or of any point
p’ whichisnot Pego P'-

Proof. Analogousto lemmad4.

8.1.2 1/0O Scheduling Using the e Grid Order

In the previous section we have shown that our join algorithm must consider all points
between p - [€€,....£] T and p + [g.€,...,€] " to find the join mates of p. In this section we

1. |[a|<[b] canonlybevaidif alsoa<b.

152 Epsilon Grid Order: Joining Massive High Dimensional Data

3456 7 8 Untx

12
L an dh 4 out of
-L e-interval

Figure 66: I/0O Unitsin the Schedule

construct an agorithm which schedules the disk I/O operations for asimilarity self join
on afile of pointswhich is sorted according to the epsilon grid order.

In our agorithm, we want to alow for unbuffered 1/O operations on raw devices.
Therefore, we assume that the block sizefor the1/O unitsisamultiple of some hardware
given system constant. Generally, an 1/0 unit does not contain a whole number of data
point records. Instead, an 1/0 unit is allowed to store fragments of point records at the
beginning and at the end. Our join algorithm solves the corresponding problems by
storing the fragments in separate variables. The number of points contained in an 1/0
unit is to some extent system given. Due to fragmentation, the number of point records
per 1/O unit may vary by £1. In general, the pointsin an I/O unit are not perfectly aligned
to rows and columns of the grid, as in the 2-dimensional example depicted in figure 65.

Figure 66 shows which pairs of 1/0 units must be considered for join processing.
Each entry in the matrix stands for one pair of 1/0 units (taken from the example in
figure 65), for instance, the upper left corner for the pair (1,1), i.e. the self join of “1/O-
Unit 1”. For the self join operation, our agorithm needs not to consider the lower left
triangular matrix due to the symmetry of the pairs. The pair (x,y) isequivalent to the pair

The Epsilon Grid Order 153

(y:x), and, therefore, the lower |eft half iscanceled in thefigure. A large, but less regular
part in the upper right corner is also cancelled. The corresponding pairs, for instance
(1,4), are excluded from processing, because the complete 1/0-Unit 1 is out of the -
interval of 1/0-Unit 4 (and vice versa, due to the symmetry of ‘Ko).

Infigure 66, asmall areaof pairsof I/O-Unitsremains(starting at the diagonal) which
must be schedul ed efficiently. We indicate one of the most obvious scheduling methods,
column-by-column, by arrows in our running example. We start with the pair (1,1),
proceed to (1,2), then (2,2), (1,3), and so on. Additionally, we mark the disk accesses
caused by the schedule assuming main memory buffers for up to 3 1/0-Unitswhich are
replaced using aLRU strategy.

Our column-by-column scheduling method, which we call the gallop mode, is very
efficient (even optimal, because each |/O unit isaccessed only once) until the 6th column
isreached. Since 4 I/O-Unitswhich arerequired for processing the 6th column do not fit
into main memory our scheduling turnsfrom best caseto worst case: For each scheduled
pair an I/O-Unit must be loaded into main memory.

We avoid this I/O thrashing effect by switching into a different mode of scheduling,
the crabstep mode. Since the e-interval does not fit into main memory, obviously, we
have to read some I/O units more than once. For those relational joins which have to
form all possible pairs of 1/0 unitsor at |east many of them (e.g. SELECT * FROM A,B
WHERE A.a#B.b) it iswell known that the strategy of outer loop buffering is optimal.
We adopt this strategy for the epsilon grid order where we do not have to form al possi-
ble pairs of 1/0 units, but only those in a common e-interval. Our algorithm reservesin
this mode only the main memory buffer for one I/O unit for the inner loop. Most of the
buffer spaceisreserved for the outer loop, and the next 1/0 units from the outer loop are
pinned in the buffer. Theinner loop iterates over all 1/0 unitswhich arein the e-interval
of any of the pinned pages. In figure 67, the two scheduling modes are visualized, as-
suming buffer space for up to 4 1/0O units. Figure 67a shows the gallop mode where
enough buffer spaceisavailable. Here, 6 disk accesses are enough to form 24 page pairs.
Figure 67b showsthe case where the gallop mode leadsto 1/0 thrashing (36 disk access-
es for 36 page pairs). In contrast, the crabstep mode depicted in figure 67c requires 16

154 Epsilon Grid Order: Joining Massive High Dimensional Data

8 910111213 91011121314 91011121314

-~
-~

-
-

(a) gallop mode (b) 1/O thrashing (c) crabstep

Figure 67: Scheduling Modes

disk accesses for 36 page pairs. The corresponding scheduling algorithm is shown in
figure 68. Note that for a clear presentation the algorithm is simplified.

In the main loop of the algorithm, first the buffers are determined which can be dis-
carded according to the e-interval (code between marks 1 and 2). If free buffers are
available after this cleanup phase, we load the next I/O unit according to the strategy of
the gallop mode and join the new unit immediately with the I/O units in the buffers
(between marks 2 and 3). If no buffer is free, we have to switch into the crabstep mode.
Initsfirst phase (between 2 and) we discard all buffers up to one and fill them with new
1/O units (which are immediately joined among each other). These new units are pinned
in the cache. In the second phase (from mark “ to the end), we iterate over the discarded
I/O units, reload them, and join them with the pinned units.

8.1.3 Joining Two I/O-Units

It is not optimal to process a pair of 1/O units by direct comparisons between the points
stored in the 1/O units. Instead, our algorithm partitions the point set stored in each 1/0
unit into smaller subsets. In contrast to other partitioning approaches without precon-
structed index, where partitioning requires multiple sorting of the subset according to

The Epsilon Grid Order

155

algor

1

end ;

ithm Schedulel Ounits ()

Load (O) ; JoinBuffer (0,0) ;
1:=1;
whilei < Number|Ounits do

foreach b O Buffers\ LastBuffer do

if b.LastPoint+[¢,g,...,£] o L astBuffer.LastPoint

then MakeBufferEmpty (b) ;
if EmptyBufferAvailable then
(* Gallop Mode *)
Load (i) ;i:=i1+1;
foreach b I Buffersdo
JoinBuffer (b, LastBuffer) ;
else
(* Crabstep Mode *)
n ;= FirstBuffer.lOunitNumber ;
m:=i;

foreach b O Buffers\ LastBuffer do

MakeBufferEmpty (b) ;
LoadAndPin (i) ;i:=i+1;
foreach ¢ [PinnedBuffers do
JoinBuffer (b,C) ;
for j:=ntom-1do
Load (j) ;
foreach b 0 PinnedBuffers do
JoinBuffer (b, LastBuffer) ;
UnpinAllBuffers () ;

Figure 68: Scheduling Algorithm

156 Epsilon Grid Order: Joining Massive High Dimensional Data

different dimensions or the explicit construction of a space-consuming main-memory
search structure, our approach exploitsthe epsilon grid order of the subsets stored on the
I/O units. Therefore, both sorting of the data set during the join phase as well as the
explicit construction of a search structure can be avoided. Our algorithm for joining two
I/O units (two sequences of epsilon-grid-ordered points) follows the divide and conquer
paradigm, i.e. the algorithm divides one of the sequences into two subsequences of ap-
proximately the same number of pointsand performsarecursive self-call for each of the
subsequences unless a minimum sequence capacity is reached or the pair of sequences
does not join (distance exceeds€). For the purpose of excluding pairs of such sequences,
weintroduce a concept called inactive dimensions of a sequence. Theintuitiveideaisas
follows: In general, a sequence of epsilon-grid-ordered points subsumes several differ-
ent grid cells. If the sequence is short, however, it islikely that all these grid cells have
the same position in the dimension dg of highest weight. If so, with decreasing probabil -
ity itisalso likely that the cells al so share the same position at the second and following
dimensions. The leading dimensions which are common, are called the inactive dimen-
sions. The name inactive dimensions is borrowed from the indexing domain [LJF 95]
where an inactive dimension also denotesavalue whichiscommonto al itemsstored in
asubtree.

Definition 13 (active, inactive and unspecified dimension): For asequence [py,p,,...,P0
of k pointswhich are epsilon-grid-ordered (i.e. py g0 P2 o - o Pw) adimension dj
isactiveif and only if the following two conditions hold:

o[2
ol o

If an active dimension exists, al dimensionsd, withj <i are called inactive dimensions.
If no active dimension exists, al dimensions are called inactive. Dimensions which are
neither active nor inactive (i.e. dy with i < < d) are unspecified.

The intuitive meaning of definition 13 is: The active dimension of a sequenceisthe
first dimension where the points are extended over more than one grid cell length (if any
exists). Due to the properties of the order relation, this can be decided according to the

The Epsilon Grid Order 157

d; (active)
<

d, (unspecified)

Figure 69: The active dimension of a sequence

first point p; and the last point py of the sequence. Dimension d; is the first dimension
where p; and py are different after dividing and rounding.

Figure 69 shows for a 3-dimensional data space an example sequence (shaded area)
where d; is the active dimension. The particular property of the inactive dimensionsis
that they can be used very effectively to determine whether two sequences
P = [Pq,py,....p AN Q = [4,05,...,0r0f epsilon-grid-ordered points have to be joined.
They need not be joined if for at least one of the common inactive dimensions the dis-
tance between the cells exceeds €. Formally: If [d; such that d; isinactivein P and d is

CUREY

Active and unspecified dimensions are not used for excluding a sequence from being

inactivein Q and

>2.

join mate. Figure 70 shows our recursive algorithm for the join of two sequences. It has
two terminating cases: (1) the rule discussed above applies and (%) both sequences are
short enough. The cases where only one sequence has more than minlen points are
straightforward and | eft out in figure 70.

158 Epsilon Grid Order: Joining Massive High Dimensional Data

8.2 Optimization Potential

In this section, we illustrate some of the optimization potential which isinherent to our
new technique. Due to the space restrictions, we can only demonstrate two optimization
concepts that integrate particularly nicely into our new technique. Further optimization
techniques which are subject to future research are modifications of the sort order of the

relation - g, - and optimization strategies in the recursion scheme of the algorithm

join_sequences().

8.2.1 Separate Optimization of 1/0 and CPU

It has been pointed out in [BK 01] that, for index-based processing of similarity joins, it
is necessary to decouple the blocksize optimization for 1/0 and CPU. Therefore, acom-
plex index structure has been proposed which utilizes large primary pages for 1/O pro-
cessing. These primary pages accommodate a number of secondary pages the capacity
of which ismuch smaller and optimized for maximum CPU performance.

For our technique, the Epsilon Grid Order, a separate optimization of the size of the
sequences is equally beneficial asin index based join processing. As the algorithm is
based on sequences of points, ordered by a particular relation, we need no complex
structure for the separate optimization. Our algorithm simply uses larger sequences for
|/O processing. Thelength of these sequences can be optimized such that disk contention
isminimized. Later, the algorithm join_sequences decomposes these large 1/0 unitsre-
cursively into smaller subsequences. The size of these can be optimized for minimal
CPU processing time.

In contrast to approaches that use a directory structure such as the e-kdB-tree
[SSA 97] or the Multipage Index [BK 01] the EGO-join yields almost no space over-
head for this separate optimization. For CPU, the optimal size of processing units is
typically below 10 points. Therefore, the Multipage Index combines these points to an
accommodated bucket the MBR of which must be stored in the hosting page. The corre-
sponding storage overhead increases when the capacity of the accommodated bucketsis

Optimization Potential 159

algorithm join_sequences (Sequence s, Sequencet)
sa := s.activeDimension() ;
ta ;= t.activeDimension() ;

L for i:=0tomin{sata,d-1} do

if [s.firstPoint[i]/e+ [.firstPoint[i]/ell> 2 then
return;

2 if slength < minlen AND t.length < minlen then
simple_join (st) ; return;

if slength > minlen AND t.length = minlen then
join_sequences (s.firstHalf, t.firstHalf) ;
join_sequences (s.firstHalf, t.secondHalf) ;
join_sequences (s.secondHalf, t.firstHalf) ;
join_sequences (s.secondHalf, t.secondHalf) ;

return ; ... (* remaining cases analogously *)

Figure 70: Algorithm for Joining Sequences

decreased for optimization. Therefore, the optimization potential for this structureis a
priori limited. The e-kdB-tree also suffers from the problem of explicitly holding ahier-
archical search structurein main memory.

For Epsilon Grid Ordering, no directory is explicitly constructed. Instead, the point
sequences (stored as arrays) are recursively decomposed. Therefore, the only space
overhead of our technique is the recursion stack which is O (log n). Our technique can
optimize the final size of the sequences (parameter minlen in figure 70) without consid-
ering any limiting overhead.

160 Epsilon Grid Order: Joining Massive High Dimensional Data

function distance_below_eps (Point p, Point g): boolean
distance sq:=0.0;
for i:=0tod-1do
j :=dimension_order [i] ;
distance sq:=distance sg+ (p[j] — g [j])2 ;
if distance sq> €2 then return false;
return true;

Figure 71: Algorithm for Distance Calculations

8.2.2 Active Dimensions and Distance Calculations

In spite of the CPU optimization proposed in section 8.2.1 the CPU cost isdominated by
the final distance calculations between candidate pairs of points. A well-known tech-
nique to avoid a considerable number of these distance calculationsisto apply thetrian-
gleinequality [BEKS 00]. In our experiments, however, the triangle inequality did not
yield animprovement of the Epsilon Grid Order dueto the use of small, CPU optimized
sequences. A more successful way is to determine the distances between two points
(dimension by dimension) and testing in each step whether the distance already exceeds
€. The corresponding algorithm is depicted in figure 71.

For this step-by-step test, it isessential that the dimensions are processed in asuitable
order, depending on the inactive dimensions, because some dimensions have a rather
high probability of adding large values to the distance (a high distinguishing potential),
othersnot. Therefore, in the line marked with (1) the dimensions are taken from alookup
table which is sorted according to the distinguishing potential. The lookup tableisfilled
when starting the join between two minimal sequences. In the following we will show
how to estimate the distinguishing potential of the dimensions for a given pair of se-

Optimization Potential 161

Figure 72: Distinguishing Potential of the Dimensions

guences. For the analysisin this section, we assume that the points of a sequence follow
auniform (not necessarily independent) distribution in theinactive dimensions, i.e. if d;
isinactivein sequence sand the corresponding cell extensionind; is[x-€..(x+1) €], then
for thei-th coordinate p; of each point p I s every value between [x;-€..(x;+1)-€] hasthe
same probability. In the following, we determine the di stinguishing potential of theinac-
tive dimensions of a pair of sequences (i.e. the dimensions which are inactive in both
sequences).

How large the distinguishing potential of a dimension d; is, depends on the relative
position of thetwo sequencesin the dataspace (cf. figure 72). Sincewe consider only the
inactive dimensions (in the example both dimensions dy and d,), both sequences s; and
r; have an extension of € inall considered dimensions. Due to the grid, the sequences are
inaninactive dimension d; either perfectly aligned to each other or directly neighboring.
Infigure 72, s; and r4 are aligned in both dimensions; s, and r, are neighboring in both
dimensions; s, andr, arealigned indg, and s;and r; arealignedin dq, neighboring inthe
other dimension. Other relationships are not considered, because if the sequences are
neither aligned nor neighboring, they are excluded from processing, as described in
section 8.1.3.

A single, aligned dimension has no distinguishing power at all, because the difference
between two coordinatesis at most the cell length €. It is possible that the combination
of several aligned dimensions distinguishes points, but not very likely. In contrast, a
dimension where the two sequences are neighboring has a high distinguishing power.

162 Epsilon Grid Order: Joining Massive High Dimensional Data

Under the above mentioned assumptions the distinguishing power can be determined as
follows, according to the sequences s, and r, in figure 72 for which we determine the
distinguishing power of d;: A point on theleft boundary of s, cannot have any join mate
onr, (exclusion probability 1). For pointson theright boundary of s;, no pointsonr, can
be excluded by only considering d; (probability 0). Between these extremes, the exclu-
sion probability (with respect to d;) decreases linearly from 1 to O (e.g. 50% for a point
inthe middle of s,). Integrating thislinear function yields an overall exclusion probabil-
ity of 50% for each neighboring dimension.

The distinguishing power of unspecified and active dimensionsis relatively difficult
to assess. It depends on the ratio between € and the extension of the data space in the
corresponding dimension and on the data distribution. Our join method generally does
not require knowledge about the data space or the data distribution. Determining these
parameters just for the optimization of this section would not pay off. According to our
experience, the distinguishing power of unspecified dimensionsisin most cases below
50% (i.e. worse than that of neighboring inactive dimensions), but also clearly better
than O (aligned inactive dimensions).Our lookup tableisfilled in the following order:

First all neighboring inactive dimensions,

then the unspecified dimensions,

next the active dimension(s) of the two sequences,

and, finally, the aligned inactive dimensions.

This order reveals decreasing distinguishing powers of the dimensions and leads to an
exclusion of point pairs as early as possible in the algorithm of figure 71.

8.3 Experimental Evaluation

In order to show the benefits of our technique we implemented the EGO-algorithm and
performed an extensive experimental evaluation using database sizes of well beyond
1 GB. For comparison, we applied the original source code of the Multipage Index Join
[BK 01] and asimilarity join algorithm based on the R-tree spatial join (RSJ) algorithm
[BKS 93]. The latter join algorithm, RSJ with Z-ordering optimization, employs a page

Experimental Evaluation 163

1.E+08

1.E+07

1.E+06 ---X-- Nested Loop

“)K
.-X"
1E+05 | el Z-Order-RSJ
—&— MuX-Join
1.E+04 / —e—EGO

Total Time[Sec.]

1.E+03 -

1.E+02

10 100 1000
Database Size [M Byte]

Figure73: Experimental Resultson Uniformly Distributed, 8-Dimensional Data

scheduling strategy based on Z-ordering and will be denoted as Z-Order-RSU. It is very
similar to the Breadth-First-R-tree-Join (BFRJ) proposed in [HJR 97]. Thevaluesfor the
well known nested loop join with its quadratic complexity were merely calculated and
should give a reference for comparison. All algorithms were allowed to use the same
amount of buffer memory (10% of the database size).

For our new technique, EGO, we considered both CPU cost as well as 1/0 cost, in-
cluding the sorting phase which was implemented as a mergesort algorithm on second-
ary storage. Asin figure 68 shown, our algorithm switches between the gallop and the
crabstep mode on demand.

For theindex based techniques (Z-Order-RSJand M uX-Join) we assumed that index-
es are already preconstructed. To be on the conservative side, we did not take the index
construction cost of our competitorsinto account.

All our experiments were carried out under WindowsNT4.0 on Fujitsu-Siemens Cel-
sius 400 machines equipped with a Pentium 11 700 MHz processor and 256 MB main
memory (128 MB available for the cache). The installed disk device was a Seagate

164 Epsilon Grid Order: Joining Massive High Dimensional Data

1.E+05
= LE+04 &
<8/§ ---X-- Nested Loop
£ 1E+03 Z:Order-RSJ
[= —&— MuX-Join
g —e—EGO
© 1.E+02
|_

1E+01 ~ T T ‘

0.10 0.20 0.30 0.40

Epsilon

Figure 74: Experimental Results on Uniformly Distributed, 8-Dimensional Data

ST310212A with a sustained transfer rate of about 9 MB/s and an average read access
time of 8.9 mswith an average latency time of 5.6 ms,

We used synthetic aswell asrea data. Our 8-dimensional synthetic data sets consist-
ed of up to 40,000,000 uniformly distributed pointsin the unit hypercube (i.e. adatabase
sizeof 1.2 GB). Our rea-world data set isa CAD database with 16-dimensional feature
vectors extracted from geometrical parts and variants thereof.

The Euclidean distance was used for the similarity join. We determined the distance
parameters € for each data set such that they are suitable for clustering following the
selection criteriaproposed in [SEKX 98].

Figure 74 shows our experiments using uniformly distributed 8-dimensional point
data. In theleft diagram, the database sizeisvaried from 0.5 million to 40 million points
while on the right side results are compared for varying values of the € parameter. The
largest databasewas about 1.2 GB. For thissize (aswell asfor the 20 million points) only
the results for EGO could be obtained in reasonable time. The nested loop join has the
worst performance off all the compared technigues. The Z-Order-RSJ outperforms the
nested loop join by factorsranging from 30 to 140 whilethe MuX-Join still isat |east two

Experimental Evaluation 165

1.E+08
X
1.E+07 - X
8 1.E+06 - o ~ %~ Nested Loop
©) Ev0s | N Z-OrderTRSJ
= —&— MuX-Join
< 1E+04 - —e— EGO
o
" 1E+03
1.E+02 T
10 100 1000
Database Size [M Byte]

Figure 75: 16-Dimensional Real Data from a CAD-Application (Scalability)

1LE+04

--------- XK
——A&
g ----- Nested Loop
> 1B+ Z-Order-RSJ
£ —A— MuX-Join
|_
= LE+02 | ——EGO
°
|_
1.E+01 ‘ ‘

0025 0050 0075 0100
Epsilon

Figure 76: 16-Dimensional Real Datafrom a CAD-Application (Epsilon)

166 Epsilon Grid Order: Joining Massive High Dimensional Data

times faster than Z-Order RSJ. By far the best performance is obtained with our new
EGO technigue. EGO outperforms the best of the other techniques, the MuX-Join, by
factors between 6 and 9, and the Z-Order-RSJ by factors between 13 and 14. The right
diagram shows performance for varying distance parameter €. Depending on its actual
page boundary configuration, the Z-Order-RSJ sometimes is not as sensitive to small
changes in the distance parameter as the other techniques. Again, we observe that our
novel approach clearly outperformsall other techniquesfor all values of €. The speedup
factors were between 3.2 and 8.6 over MuX and between 4.7 and 19 over Z-Order-RSJ.

The experiments with real data are depicted in figure 76. The results for the 16-di-
mensional CAD data set confirm our experiments on uniform data. Again, the left dia-
gram shows performance for varying database size while the right diagram shows per-
formancefor varying € values. EGO was 9 timesfaster than the MuX-Join for the largest
database size and 16 times faster than the Z-Order-RSJ. In the right diagram we can
observe, that the performance of the MuX-Join and the Z-Order-RSJ converge for larger
€ valueswhile EGO still shows substantially better performance for al values of €. The
improvement factors of our technique varied between 4.0 and 10 over the Multipage
Index and between 4.5 and 17 over Z-Order-RSJ.

8.4 Conclusions

Many different applications are based on the similarity join of very large data sets, for
instance similarity search in multimedia databases, data analysis tools and data mining
techniques. Unfortunately, there is no technique available which efficiently scales to
very large data sets, i.e. data setsin the order of 1 GB. In this chapter, we focused on this
specific problem. We introduced and discussed anovel similarity join algorithm, denot-
ed asepsilon grid order, which is based on a particular sorting order of the data points.
This sorting order is derived by laying an equi-distant grid with cell length € over the
data space and comparing the grid cells lexicographically. We proposed to apply an
external sorting algorithm combined with a sophisticated scheduling strategy which al-
lows our technigue to operate with a limited cache buffer. Additionally, we developed
several optimization techniques which further enhance our method. In an experimental

Conclusions 167

evaluation using data setswith sizes up to 1.2 GB we showed that our novel approachis
very efficient and clearly outperforms competitive algorithms. For future work we plan
aparallel version of the EGO join algorithm and the extension of our cost model for the
use by the query optimizer.

168 Epsilon Grid Order: Joining Massive High Dimensional Data

Chapter 9

k-Nearest Neighbor Joins;
Turbo Charging the KDD Process

Our previous chapters have primarily concentrated on the distance range join where the
user hasto provideasimilarity distance € to definethejoin operation. Although there are
numerous applications to the distance range join such as various clustering algorithms,
agenera problem of this join operation is the difficulty to determine a suitable query
parameter €. This parameter isnot very intuitive to the user because the user hasin most
cases no concept about typical feature vectorsand similarity distances. Feature distances
are only meaningful to the user in comparisons with other feature distances.

Thisisof course not aproblem of the similarity join itself but rather of the concept to
use such agiven radiusin the corresponding data mining algorithms. The similarity join
inherits the corresponding problems from the data mining algorithm.

It is a consequence of the curse of dimensionality [BGRS 00] that the cardinality of
thejoin result ishighly sensitive to a suitable choice of theradiuse. If € istoo small, the
join result will be empty. If € istoo large, the join result will be equal to the cartesian
product R x S, With increasing dimension, the interval of a sensible radius € where the
joinresult isnon-trivial is becoming more and more narrow.

170 k-Nearest Neighbor Joins: Turbo Charging the KDD Process

The problems of afixed query range € can be overcome by replacing the range query
based join predicate by a nearest neighbor based join predicate where the user defines a
result cardinality parameter k. The cardinality parameter kis much moreintuitiveto the
user than the distance parameter € is.

Therefore, Hjaltason and Samet have proposed the k-distance join [HS 98] which
retrievesthose k pairs from the cross-product R x Swhich have least distance. Up to the
raretie situations, the result cardinality exactly correspondsto k which obviously solves
the cardinality control problem.

We believe, however, that the applications of the k-distance join and its incremental
version arerather limited. The authors mention applicationsin geographical information
systemsincluding querieslike “find the k cities nearest to any river”. Standard tasks of
data mining and knowledge discovery in databases are difficult to implement on top of
the k-distance join.

Many standard tasks of datamining, however, eval uate k-nearest neighbor queriesfor
a large number of query points. Examples are clustering algorithms such as k-means
[McQ 67], or k-medoid [KR 90], but also data cleansing and other pre- and postprocess-
ing techniques e.g. when sampling plays arolein datamining.

In this chapter, we propose a third kind of similarity join, the k-nearest neighbor
similarity join, short k-nn join. This operation is motivated by the observation that the
vast magjority of dataanalysis and datamining algorithmsis based on k-nearest neighbor
queries which are issued separately for alarge set of query pointsR = {ry,...,r,} against
another large set of data points S={s,...,Sy} . In contrast to the incremental distance
join and the k-distance join which choose the best pairs from the complete pool of pairs
R x S the k-nn join combines each of the points of Rwith itsk nearest neighborsin S.

Applications of thek-nnjoininclude but are not limited to thefollowing list: k-nearest
neighbor classification, k-means and k-medoid clustering, sample assessment and sam-
ple postprocessing, missing value imputation, k-distance diagrams, etc.

Our list of applications covers all stages of the KDD process. In the preprocessing
step, data cleansing algorithms are typically based on k-nearest neighbor queries for

171

each of the points with NULL values against the set of complete vectors. The missing
values can be computed e.g. as the weighted means of the values of the k nearest neigh-
bors. Then, the k-distance diagram is a technique for a suitable parameter selection for
data mining. In the core step, i.e. data mining, many algorithms such as clustering and
classification are based on k-nn queries. As such algorithms are often time consuming
and have at least alinear, often nlog n or even quadratic complexity they typically run
on asampl e set rather than the compl ete data set. The k-nn-queries are used to assess the
quality of the sample set (preprocessing). After the run of the data mining algorithm, it
IS necessary to relate the result to the complete set of database points [BKKS 01]. The
typical method for doing that is again ak-nn-query for each of the database points with
respect to the set of classified sample points.

In all these algorithms, it is possible to replace alarge number of k-nn queries which
are originally issued separately, by asingle run of ak-nn join. Therefore, the k-nn join
gives powerful support for all stages of the KDD process. In this chapter, we show how
some of these standard algorithms can be based on top of the k-nearest neighbor join.
These standard algorithms are

* k-means and k-medoid clustering

* k-nearest neighbor classification

e sample postprocessing

» and k-distance diagrams, amethod for determining a suitable radius € in density
based clustering methods.

We will evaluate them in the following sections.

172 k-Nearest Neighbor Joins: Turbo Charging the KDD Process

9.1 k-M eans and k-Medoid Clustering

The k-means method [HK 00] is the most important and most widespread approach to
clustering. For k-means clustering the number k of clusters to be searched must be pre-
viously known. The method determines k cluster centers such that each database point
can be assigned to one of the centers to minimize the overall distance of the database

points to their associated center points.

The basic algorithm for k-means clustering works as follows: In the initialization,
k database points are randomly selected astentative cluster centers. Then, each database
point isassociated to its closest center point and, thus, atentative cluster isformed. Next,
the cluster centers are redetermined as the means point of all points of the center, smply
by forming the vector sum of all points of a (tentative) cluster. The two steps (1) point
association and (2) cluster center redetermination are repeated until convergence (no
more considerable change). It has been shown that (under several restrictions) the algo-
rithm always converges. The cluster centerswhich are generated in step (2) are artificial
points rather than database points. Thisis often not desired, and therefore, the k-medoid

algorithm always selects a database point as a cluster center.

Thek-meansalgorithmisvisualized in figure 77 using k = 3. At theleft side (a) k=3
points (white symbols ¢ » 1) are randomly selected asinitial cluster centers. Thenin
figure 77(b) the remaining data points are assigned to the closest center which is depict-
ed by the corresponding symbols (e a m). Thecluster centersare redetermined (moving
arrows). The same two operations are repeated in figure 77(c). If the points are finally
assigned to their closest center, no assignment changes, and, therefore, the algorithm
terminates clearly having separated the three visible clusters. In contrast to density-
based approaches, k-means only separates compact clusters, and the number of actual

clusters must be previously known.

It has not yet been recognized in the data mining community that the point association

step which is performed in each iteration of the algorithm correspondsto a (k = 1) near-

k-Means and k-Medoid Clustering 173

(@) Initialization (b) First Iteration (c) Convergence
® CR] m B A m
@ m O
- g @ o o® %&I] m at AQ;A ’iﬂl u
@ L 4 L 4
@ * *
o< % «*
® o e *e

Figure 77: k-Means Clustering

est neighbor join between the set of center points (at the right side) and the set of data-
base points (at the left side of the join symbol) because each database point is associated

with its nearest neighbor among the center points:
database-point-set [>< center-point-set

During theiteration over the cursor of thejoin, it isalso possibleto keep track of changes
and to redetermine the cluster center for the next iteration. The corresponding

pseudocode is depicted in the following:

repeat

change :=false;

foreach (dp,cp) U database-point-set [>< center-point-set do
If dp.center # cp.id then change :=true;
dp.center :=cp.id ;
Cp.newsum ;= cp.newsum + dp.point ;
cp.count ;= cp.count + 1 ;

foreach cp [J center-point-set do
cp.point := cp.newsum / cp.count ;

until = change;

174 k-Nearest Neighbor Joins: Turbo Charging the KDD Process

[k=3
k!3! <<>>(<>>O<> Ll '-%<<>X%>
_O.. l<>\<><> f <> <.>g:§g
Sl B s “n % A ClassC
_ A \Q A <> O unclassif.
ws@ k:3AC) A @ A

Figure 78: k-Nearest Neighbor Classification

9.2 k-Nearest Neighbor Classification

Another very important data mining task is classification. Classification is somewhat
similar to clustering (which isoften called unsupervised classification). In classification,
a part of the database objects is assigned to class labels (for our running example of
astronomy databases we have different classes of stars, galaxies, planets etc.). For clas-
sification, also a set of objects without class|abel (newly detected objects) isgiven. The
task is to determine the class labels for each of the unclassified objects by taking the
properties of the classified objects into account. A widespread approach is to build up
tree like structures from the classified objects where the nodes correspond to ranges of
attribute values and the leaves indicate the class labels (called classification trees
[HK 00]). Another important approach is k-nearest neighbor classification [HT 93].
Here, for each unclassified object, a k-nearest neighbor query on the set of classified
objectsisevaluated (k isaparameter of the algorithm). The object ise.g. assigned to the
classlabel of the mgority of the resulting objects of the query. This principleis visual-
ized in figure 78. As for each unclassified object a k-nn-query on the set of classified
objectsis evaluated, this corresponds again to a k-nearest neighbor join:

unclassified-point-set [>< classified-point-set

Sampling Based Data Mining 175

9.3 Sampling Based Data Mining

Data mining methods which are based on sampling often require a k-nearest neighbor
join between the set of sample points and the complete set of original database points.
Such ajoin is necessary, for instance, to assess the quality of a sample. The k-nearest
neighbor join can give hints whether the sample rateistoo small. Another applicationis
the transfer of the data mining result onto the original data set after the actual run of the
datamining algorithm [BKKS 01]. For instance, if aclustering algorithm has detected a
set of clusters in the sample set, it is often necessary to associate each of the database
points to the cluster to which it belongs. This can be done by a k-nn join with k=1
between the point set and the set of sample points:

sample-set [>< point-set

The same is possible after sample based classification, trend detection etc.

9.4 k-Distance Diagrams

The most important limitation of the DBSCAN algorithm is the difficult determination
of the query radius €. In [SEKX 98] a method called k-distance diagram is proposed to
determine a suitable radius €. For this purpose, a number of objects (typically 5-20 per-
cent of the database) israndomly selected. For these objects, ak-nearest neighbor query
is evaluated where k corresponds to the parameter MIN_PTS which will be used during
the run of DBSCAN. The resulting distances between the query points and the k-th
nearest neighbor of each are then sorted and depicted in adiagram (cf. figure 79). Verti-
cal gapsin that plot indicate distances that clearly separate different clusters, because
there exist larger k-nearest neighbor distances (inter-cluster distances, noise points) and
smaller ones (intra-cluster distance). Asfor each sample point ak-nearest neighbor que-

176 k-Nearest Neighbor Joins: Turbo Charging the KDD Process

Figure 79: k-Distance Diagram

ry is evaluated on the origina point set, this corresponds to a k-nn-join between the
sample set and the original set:

sample-set [>< point-set
If the compl ete data set is taken instead of the sample, we have ak-nn self join:

point-set [>< point-set

9.5 Conclusions

In this chapter, we have proposed the k-nearest neighbor join, a new kind of similarity
join. In contrast to other types of similarity joins such as the distance range join, the k-
distancejoin (k-closest pair query) and the incremental distance join, our new k-nnjoin
combines each point of a point set Rwith its k nearest neighbors in another point set S.
We have shown that the k-nn join is a powerful database primitive which allows the
efficient implementation of numerous methods of knowledge discovery and datamining
such as classification, clustering, data cleansing, and postprocessing. Therefore, we be-
lieve that the k-nearest neighbor join will gain much attention as an important database
primitive to speed up the complete KDD process.

Chapter 10
Processing k-Nearest Neighbor
JoinsUsing MuX

In this chapter, we show how the operation of ak-nearest neighbor similarity join can be
efficiently implemented on top of a multidimensional index structure. In chapter 6 we
have shown for the distance range join that it is necessary to optimize index parameters
such as the page capacity separately for CPU and 1/0 performance. We have proposed a
new index architecture (Multipage Index, MuX) (cf. chapter 7) which allows such a
separate optimization. The index consists of large pages which are optimized for 1/0
efficiency. These pages accommodate a secondary R-tree like main memory search
structure with a page directory (storing pairs of MBR and a corresponding pointer) and
data buckets which are containersfor the actual data points. The capacity of the accom-
modated buckets is much smaller than the capacity of the hosting page. It is optimized
for CPU performance. We have shown that the distance range join on the Multipage
Index hasan 1/0 performance similar to an R-treewhichis purely 1/O optimized and has
a CPU performance like an R-tree which is purely CPU optimized. Although a formal
proof is up to future work, we believe that also the k-nn join clearly benefits from the
separate optimization, because the optimization trade-offs are very similar.

178 Processing k-Nearest Neighbor Joins Using MuX

In the following description, we assume for simplicity that the hosting pages of our
Multipage Index only consist of one directory level and one datalevel. If there are more
directory levels, theselevelsare processed in abreadth first approach according to some
simple strategy. A simple strategy for the higher index levelsis sufficient, because most
cost arise in the data level. Therefore, our strategies focus on the last level, the data

pages.

10.1 Basic Algorithm

For the k-nn join RI>< S we denote the data set R for each point of which the nearest
neighbors are searched as the outer point set. Consequently, Sisthe inner point set. As
in [BK 01] we process the hosting pages of R and Sin two nested |oops (obvioudly, this
is not a nested loop join). Each hosting page of the outer set Ris accessed exactly once.
The principle of the nearest neighbor joinisillustrated in figure 80. A hosting page PRy
of the outer set with 4 accommodated buckets is depicted in the middle. For each point
stored in this page, a data structure for the k nearest neighbors is allocated. Candidate
points are maintained in these data structures until they are either discarded and replaced
by new (better) candidate points or until they are confirmed to be the actual nearest
neighbors of the corresponding point. When a candidate is confirmed, it is guaranteed
that the database cannot contain any closer point, and the pair can be written to the
output. The distance of the last (i.e. k-th or worst) candidate point of each R-point isthe
pruning distance: Points, accommodated buckets and hosting pages beyond that pruning
distance need not to be considered. The pruning distance of a bucket is the maximum
pruning distance of all points stored in this bucket, i.e. all Sbuckets which have a dis-
tance from a given R-bucket that exceeds the pruning distance of the R-bucket, can be
safely neglected as join-partners of that R-bucket. Similarly, the pruning distance of a
page is the maximum pruning distance of all accommodated buckets.

In contrast to conventional join methods we reserve only one cache pagefor the outer
set Rwhichisread exactly once. The remaining cache pages are used for theinner set S,
For other join predicates (e.g. relational predicates or adistance range predicate), astrat-

179

[] ¢ PSZ {] °
® BS; o o o
o ° N
PS; ° o '\$=L °
hd @
ol .
e P e
. . ¥ e pR
PS, ° s

Figure 80: k-nn Join on the Multipage Index (here k=1)

egy which caches more pages of the outer set is beneficial for I/O processing (the inner
set is scanned fewer times) while the CPU performance is not affected by the caching
strategy. For the k-nn join predicate, the cache strategy affects both 1/0 and CPU perfor-
mance. It is important that for each considered point of R good candidates (i.e. near
neighbors, not necessarily the nearest neighbors) are found as early as possible. Thisis
more likely when reserving more cachefor theinner set S. The basic algorithm for the k-
nn joinisgiven below.

1 foreach PRof Rdo

2 cand: PQUEUE [|PR|, K] of point :={0,0,...,7} ;

3 foreach PSof Sdo PSdone:=fase;

4 while i such that cand [i] is not confirmed do

5 while Oempty cache frame [

6 OPSwith (-PSdone - IsPruned(PS)) do
7 apply loading strategy if more than 1 PSexist
8 load PSto cache;

9 PSdone := true;

10 apply processing strategy to select a bucket pair ;
11 process bucket pair ;

180 Processing k-Nearest Neighbor Joins Using MuX

A short explanation: (1) Iterates over all hosting pages PR of the outer point set Rwhich
are accessed in an arbitrary order. For each point in PR, an array for the k nearest neigh-
bors (and the corresponding candidates) is allocated and initialized with empty pointers
inline (2). Inthisarray, the agorithm stores candidates which may be replaced by other
candidates until the candidates are confirmed. A candidate is confirmed if no unproc-
essed hosting page or accommodated bucket existswhich is closer to the corresponding
R-point than the candidate. Consequently, the loop (4) iterates until al candidates are
confirmed. Inlines 5-9, empty cache pages arefilled with hosting pages from Swhenev-
er thisis possible. This happens at the beginning of processing and whenever pages are
discarded because they are either processed or pruned for all R-points. The decision
which hosting page to load next isimplemented in the so-called loading strategy which
isdescribed in section 10.2. Note that the actual page access can also be done asynchro-
nously in a multithreaded environment. After that, we have the accommodated buckets
of one hosting R-page and of several hosting S-pages in the main memory. In lines 10-
11, one pair of such buckets is chosen and processed. For choosing, our agorithm ap-
pliesaso-called processing strategy which is described in section 10.3. During process-
ing, the algorithm tests whether points of the current S-bucket are closer to any point of
the current R-bucket than the corresponding candidates are. If so, the candidate array is
updated (not depicted in our algorithm) and the pruning distances are also changed.
Therefore, the current R-bucket can safely prune some of the S-buckets that formerly
were considered join partners.

10.2 Loading Strategy

In conventional similarity search where the nearest neighbor is searched only for one
guery point, it can be proven that the optimal strategy is to access the pages in the order
of increasing distance from the query point [BBKK 97]. For our k-nn join, we are simul-
taneously processing nearest neighbor queriesfor all points stored in a hosting page. To
exclude as many hosting pages and accommodated buckets of Sfrom being join partners
of one of these simultaneous queries, it is necessary to decrease all pruning distances as

Loading Strategy 181

early as possible. The problem we are addressing now is, what page should be accessed
next in lines 5-9 to achieve this goal.

Obvioudly, if we consider the complete set of pointsin the current hosting page PRto
assess the quality of an unloaded hosting page PS, the effort for the optimization of the
loading strategy would be too high. Therefore, we do not use the compl ete set of points
but rather the accommodated buckets: the pruning distances of the accommodated buck-
ets haveto decrease asfast as possible.

In order for a page PSto be good, this page must have the power of considerably
improving the pruning distance of at least one of the buckets BR of the current page PR.
Basically there can be two obstacles that can prevent a pair of such a page PS and a
bucket BR from having a high improvement power: (1) the distance (mindist) between
this page-bucket pair is large, and (2) the bucket BR has already a small pruning dis-
tance. Condition (1) corresponds to the well-known strategy of accessing pages in the
order of increasing distance to the query point. Condition (2), however, intendsto avoid
that the same bucket BRis repeatedly processed before another bucket BR' has reached
a reasonable pruning distance (having such buckets BR' in the system causes much
avoidable effort).

Therefore, the quality Q(PS) of a hosting page PS of the inner set Sis not only mea-
sured in terms of the distance to the current buckets but the distances are also related to
the current pruning distance of the buckets:

_ 0 prunedist(BR) [
QP = e Cnindist(PS, BRI

Our loading strategy applied in line (7) isto access the hosting pages PSin the order of
decreasing quality Q(PS), i.e. we aways access the unprocessed page with highest qual-

ity.

182 Processing k-Nearest Neighbor Joins Using MuX

10.3 Processing Strategy

The processing strategy isappliedinline (10). It addresses the question in what order the
accommodated buckets of R and Sthat have been loaded into the cache should be pro-
cessed (joined by an in-memory join algorithm). The typical situation found at line (10)
is that we have the accommodated buckets of one hosting page of R and the accommo-
dated buckets of several hosting pages of Sin the cache. Our algorithm has to select a
pair of such buckets (BR,BS) which has ahigh quality, i.e. ahigh potential of improving
the pruning distance of BR. Similarly to the quality Q(PS) of a page developed in
section 10.2, the quality Q(BR,BS) of abucket pair rewards asmall distance and punish-

esasmall pruning distance:

prunedist(BR)

QBR.BY = inds(®s BR

We process the bucket pairsin the order of decreasing quality. Note that we do not have
to redetermine the quality of every bucket pair each time our algorithm runs into line
(20) which would be prohibitively costly. To avoid this problem, we organize our current
bucket pairs in atailor-cut data structure, a fractionated pgueue (half sorted tree). By
fractionated we mean a pqueue of pqueues, asdepicted in figure 81. Notethat thistailor-
cut structure allows efficiently (1) to determine the pair with maximum quality, (2) to
insert a new pair, and in particular (3) to update the prunedist of BR, which affects the

quality of alarge number of pairs.

Processing bucket pairs with a high quality is highly important at an early stage of
processing until all R-buckets have asufficient pruning distance. L ater, theimprovement
power of the pairs does not differ very much and a new aspect comesinto operation: The
pairs should be processed such that one of the hosting S pages in the cache can be re-
placed as soon as possible by a new page. Therefore, our processing strategy switches
into anew modeif thelast ¢ (given parameter) processing steps did not lead to aconsid-
erable improvement of any pruning distance. The new mode is to select one hosting S

page PSin the cache and to process all pairswhere one of the buckets BSaccommodated

Experimental Evaluation 183

ming pgueue to organize pairs
pqueue to organize (BRy, BSH<j<n)
prunedist (BR) r— by increasing mindist
min,

0 <i £ mdecreasing
maxi

b

pgueue to organize pairs

(BR,BS<j<n)

by increasing mindist

mi n/ pqueue to organize pairs
(BRm ’ BSO <j< n)

by increasing mindist

Figure 81: Structure of afractionated pqueue

by PS appears. We select that hosting page PS with the fewest active pairs (i.e. the
hosting page that causes |east effort).

10.4 Experimental Evaluation

We implemented the k-nearest neighbor join algorithm, as described in the previous
section, based on the original source code of the Multipage Index Join [BK 01] and
performed an experimental evaluation using artificial and real data sets of varying size
and dimension. We compared the performance of our technique with the nested block
loop join (which basically isasequential scan optimized for the k-nn case) and the k-nn
algorithm by Hjaltason and Samet [HS95] as a conventional, non-join technique.

All our experimentswere carried out under Windows NT4.0 SP6 on Fujitsu-Siemens
Celsius 400 machines equipped with a Pentium 111 700 MHz processor and at least 128
MB main memory. Theinstalled disk device was a Seagate ST310212A with asustained

184 Processing k-Nearest Neighbor Joins Using MuX

7,000

6,000 -
g (5100 0 e — /!/:/.
£ 4000] o ol
c_'_s —e— k-nn join
8 3,000 -
= >

2,000 ///

1,000 ‘ ‘ ‘

2 4 6 8 10

k-Nearest Neighbor
Figure 82: Varying k for 8-dimensiona uniform data

transfer rate of about 9 MB/s and an average read access time of 8.9 mswith an average
latency time of 5.6 ms,

We used synthetic as well as real data. The synthetic data sets consisted of 4, 6 and 8
dimensions and contained from 10,000 to 160,000 uniformly distributed points in the
unit hypercube. Our real-world data sets are a CAD database with 16-dimensional fea-
ture vectors extracted from CAD parts and a 9-dimensional set of weather data. We
allowed about 20% of the database size as cache resp. buffer for either technique and
included the index creation time for our k-nn join and the hs-algorithm, while the nested
block loop join (nblj) does not need any preconstructed index.

The Euclidean distance was used to determine the k-nearest neighbor distance. In
order to show the effects of varying the neighboring parameter k we included figure 82
with varying k (from 4-nn to 10-nn) while all other charts show resultsfor the case of the
4-nearest neighbors. In figure 82 we can see, that except for the nested block loop join
all techniques perform better for a smaller number of nearest neighbors and the hs-
algorithm starts to perform worse than the nblj if more than 4 nearest neighbors are
requested. Thisisawell known fact for high dimensional data as the pruning power of
the directory pages deteriotates quickly with increasing dimension and parameter k. This

Experimental Evaluation 185

is also true, but far less dramatic for the k-nn join because of the use of much smaller
bucketswhich till perserve pruning power for higher dimensionsand parametersk. The
size of the database used for these experiments was 80,000 points.

Thethree chartsin figure 83 show the results (from left to right) for the hs-algorithm,
our k-nn join and the nblj for the 8-dimensional uniform data set for varying size of the
database. The total elapsed time consists of the CPU-time and the I/O-time. We can
observethat the hs-algorithm (despite using large block sizesfor optimization) isclearly
I/0O bound while the nested block loop join is clearly CPU bound. Our k-nn join has a
somewhat higher CPU cost than the hs-algorithm, but significantly less than the nbilj
whileit produces amost aslittle 1/0 asnblj and asaresult clearly outperforms both, the
hs-algorithm and the nblj. This balance between CPU and 1/0 cost follows the idea of
MuX to optimize CPU and I/O cost independently. For our artificial data the speed-up
factor of thek-nnjoin over the hs-algorithmis 37.5 for the small point set (10,000 points)
and 9.8 for the large point set (160,000 points), while compared to the nblj the speed-up
factor increases from 7.1 to 19.4. We can also see, that the simple, but optimized nested
block loop join outperforms the hs-algorithm for smaller database sizes because of its
high 1/0O cost.

Oneinteresting effect is, that our MUX-agorithm for k-nn joinsisableto prune more
and more bucket pairs with increasing size of the database i.e. the percentage of bucket
pairsthat can be excluded during processing increases with increasing database size.We
can seethiseffect in figure 84. Obviously, the k-nn join scales much better with increas-
ing size of the database than the other two techniques.

Figure 85 showstheresultsfor the 9-dimensiona weather data. The maximum speed-
up of the k-nn join compared to the hs-algorithm is 28 and the maximum speed-up com-
pared to the nested block loop joinis 17. For small database sizes, the nested block loop
join outperforms the hs-algorithm which might be due to the cache/buffer and I/O con-
figuration used. Again, as with the artificial data, the k-nn join clearly outperforms the
other techniques and scales well with the size of the database.

Figure 86 shows the results for the 16-dimensional CAD data. Even for this high
dimension of the data space and the poor clustering property of the CAD data set, the k-

Total Time [Sec.]

k-nn join

12,000

10,000 -

8,000 -

6,000 -

4,000 H

2,000

0 ‘-4

10,000 20,000 40,000 80,000 160,000

Number of Points

hs-algorithm

12,000

10,000 -

8,000 -

6,000 -

4,000 H

2,000 A

0 ‘ ‘ ‘
10,000 20,000 40,000 80,000 160,000

Number of Points

nested block loop join

12,000

W CPU-Time
O 10-Time

10,000 +

8,000

6,000

4,000 -

2,000 +

0 -
10,000

20,000 40,000 80,000 160,000

Number of Points

Figure 83: Total Time, CPU-Time and I/O-Time for hs, k-nn join and nblj for varying size of the database

98T

XN A Buisn sutor JoguybeN 159/eaN-Y BuISS800.d

Experimental Evaluation 187

70

4

60 -
50 A

40 - —4— 8 dim
30 | —=—6dm
——4dim
20

O T T ﬁ\

10,000 20,000 40,000 80,000

BucketPairs Processed [%)]

Number of Points

Figure 84: Pruning of bucket pairsfor the k-nnjoin

6,000

5,000 A

e

o

(@)

o
\

—a— nblj
3,000

—=m—hs

—e—k-nnjoin
2,000 -

Total Time[Sec.]

1,000 -

g

0
10,000 20,000 40,000 80,000

Number of Points

Figure 85: Results for 9-dimensional weather data

188 Processing k-Nearest Neighbor Joins Using MuX

20,000
18,000
16,000 -
"5 14,000

B
:

10,000 -
8,000 -
6,000 -
4,000
2,000 A

Total Time[Sec

10,000 20,000 40,000 80,000

Number of Points

Figure 86: Resultsfor 16-dimensional CAD data

nn join still reaches a speed-up factor of 1.3 for the 80,000 point set (with increasing
tendency for growing database sizes) compared to the nested block loop join (which
basically is a sequential scan optimized for the k-nn case). The speed-up factor of the k-
nn join over the hs-algorithm is greater than 5.

10.5 Conclusions

This chapter was dedicated to the efficient implementation of the k-nearest neighbor
join. We have argued that our Multipage Index (MuX) which has already been intro-
duced in chapter 6 for the distance range join is aso an adequate index structure for
processing k-nearest neighbor joins. Our analysisin chapter 5 of the distancerangejoin
isalso valid for the k-nn join since the optimization tradeoffs are quite similar.

For the k-nearest neighbor join on top of acomplex index structure, anew algorithm
was needed along with some good strategies for accessing pages and processing page
pairsin the main memory.

Conclusions 189

We have proposed strategies for three different tasks:

* Loading Strategy:
This strategy determines the order in which hosting pages of the Multipage
Index (MuX) are fetched into the main memory

* Processing Strategy:
This strategy determines the order in which pairs accommodated buckets are
formed for joining them in the main memory

We have implemented a k-nearest neighbor join algorithm which applies these strate-
gies. We have conducted an extensive experimental evaluation in which the clear supe-

riority over competitive approaches was shown.

190 Processing k-Nearest Neighbor Joins Using MuX

Chapter 11
Optimizing the Similarity Join

Due to its high importance, many different algorithms for the similarity join have been
proposed, operating on multidimensional index structures [BKS 93, LR 94, HJR 97],
multidimensional hashing [LR 96, PD 96], or various sort orders [SSA 97, KS 97,
BBKK 01]. In contrast to algorithms for simple similarity queries upon asingle data set
(such asrange queries or nearest neighbor queries), all of these algorithms are clearly
CPU bound. In spite of the filtering capabilities of the above algorithms the evaluation
cost are dominated by the final distance calculations between the points. This is even
true for index structures which are optimized for minimum CPU cost [BK 01].

Therefore, in the current chapter, we propose atechnique for avoiding and accelerat-
ing a high number of the distance calculations between feature vectors. Our methods
shows some resemblance to the principle of plane-sweep algorithms [PS 85] which is
extended by the determination of an optimal order of dimensions. A design objective of
our technique was generality, i.e. our method can be implemented on top of ahigh num-
ber of basic algorithmsfor the similarity join such asR-treebased joins[BKS 93, LR 94,
HJR 97], hashing based methods [LR 96, PD 96], and sort orders [SSA 97, KS 97,
BBKK 01]. A precondition for our optimal dimension order is to have some notion of
partitionsto bejoined having aposition and extension in the data space. Thisisgivenfor

192 Optimizing the Similarity Join

index or hashjoin partitions candidates join-results
i i P p. /p
\ basic-join- / \ dimension / \ distance
/ algorithm \ / order \q/ calculation \q
//\\\ Q

Figure 87: Integration of the dimension-order-algorithm

all techniques mentioned above. Our technique is hot meaningful on top of the ssmple
nested loop join [Ull 89].

11.1 Optimal Dimension Order

In this section we will develop a criterion for ordering the dimensions to optimize the
distance computations. We assume that our join algorithm with optimal dimension order
ispreceded by afilter step based on some spatial index structure or spatial hash method
which divides the point sets that are to be joined into rectangular partitions and only
considers such partitions that have a distance to each other of at most €. Suitable tech-
niques are depth-first- and breadth-first-R-tree-Join [BKS 93, HJR 97], Spatial Hash
Join [PD 96, LR 96], Seeded Trees [LR 94], the e-kdb-tree [SSA 97], the Multidimen-
sional Join (MDJ) [KS 98], or the e-grid-order [BBKK 01].

11.2 Algorithm

Theintegration of the dimension order is shown in figure 87. Our dimension order algo-
rithm receives partition pairs (P, Q) from the basic technique for the similarity join and
generates point-pairs as candidates for the final distance calculations. The general idea
of the dimension order is as follows: If the points of one partition, say Q are sorted by

193

v’

A
v A

lk“

A
Y

Figure 88: Idea of the Dimension Order

one of the dimensions, then the points of Q which can bejoin mates of apoint p of P form
acontiguous sequencein Q (cf. figure 88). A large number of points which are excluded
by the sort dimension can beignored. In most cases, the points which can beignored, are
located at the lower or upper end of the sorted sequence, but it is also possible, that the
sequence of pointsthat must be processed are in the middle of the sequence. In the latter
case, the start and end of the sequence of relevant points must be searched e.g. by binary
search, as depicted in the algorithm in figure 89. In the other cases, it is actually not
necessary to determinethefirst (last) point before entering the innermost loop. Here, we
can replace the search by asuitable break operation in the innermost loop.

11.3 Deter mining the Optimal Sort Dimension

If two partitions are joined together by the basic technique, we can use the following
information in order to choose the optimal dimension:

» Thedistance of the two partitions with respect to each other or the overlap (which
we will interpret as negative distance from now on) in each case projected on the
one single dimension of the data space. We observe that the overall distance of the
two partitions as well as the distance projected on each of the dimensions cannot
exceed € as otherwise the whol e partition pair would have been eliminated by the

preprocessing step in the basic technique (see figure 90).

194 Optimizing the Similarity Join

algorithm optimal_dimension_order_join (index M4, M»)
the similarity-join basic method
generates partition pairs from M, and M, ;
for all parition pairs (PQ) with dist(PQ) < ¢
determine best sort dimension s according to Eq. (12) ;
sort (indirectly) pointsin Q according to dimension s;
for all pointsp O P
determine the first pointa 0 Q: |[ag—pgd < €;
determine the last point b 0 Q: |bs—pd < €;
for all pointsq O Q with ag< g, < bg
if dist(p,g) <¢€
output (p,q) ;
end ;

Figure 89: Algorithmic Scheme

» Theextent of the two partitions with respect to each of the single dimensions

In order to demonstrate that both distance as well as extent, really do matter, see figure
91: In both cases the distance of the two partitions is the same. For smplification we
show one exemplary point with its e-neighborhood in partitions Q and Q" athough in
our further discussion we assume uniform distribution of pointswithin the two partitions
i.e. wewill not consider one specific point.

Ontheleft side of figure 91 both of the partitions are roughly square. Let usfirst ook
at the projection on the dy-axis: We observe that about 70% of the projected areaof Plies
within the projected e-neighborhood of our sample point in Q. If we were to choose d
as sort-dimension only about 30% of the points can be excluded as join-mates for our
sample point in the first step. For the remaining 70% we still have to test dimension d;
i.e. we have to compute the overall point distance. If we now look at the projection on
dimension d;: here only 25% of the area of P lies within the e-neighborhood of our

Probability Model 195

A
y

NS E:

IIA
O

Figure 90: € for partitions and projections

sample point in Q. If we choose d; as start-dimension as much as 75% of the points are
already eliminated in the first step of our dimension ordering agorithm. In the case of
quadratic partitionsit is thus advisable to choose the dimension within which the parti-
tions have the largest distance with respect to each other asthis minimizesthe area of the
proj ected e-neighborhood.

The right side of figure 91 shows the two partitions P and Q' which have a much
larger extent in dimension dg than in dimension d,. For this reason the projection on the
dg-axis, with a portion of 33% of the area, is much better than the projection on the d;-
axis (75%). In this case the dimension dg should be chosen as sort-dimension.

We can note the following as afirst rule of thumb for the selection of the dimension:
for approximately square partitions choose the dimension with the greatest distance,
otherwise the dimension with the greatest extent.

11.4 Probability M odel

In the following we will propose a model which grasps this rule of thumb much more
precisely. Our model is based on the assumption that the points within each partition
follow auniform distribution. In our previous work it has already been shown that this
assumption is sufficiently fulfilled (e.g. [BBJ 00]). The results of our experimentsin
section 4 will provide even morejustification for this assumption.

196 Optimizing the Similarity Join

Our model determinesfor each dimension the probability W[€] (termed mating prob-
ability in the following) that two points in partitions P and Q with given rectangular
boundaries P.Ib;, P.ub;, Q.Ib;, Q.ub; (0<i<d; Ib and ub for lower bound and upper
bound, respectively) have at most the distance € with respect to dimension d.

Definition 14
Given two partitions P and Q, let Wi[€] denote the probability for each dimension d;
that an arbitrary pair of points (p,q) with p O P and q [0 Q has amaximal distance of
€ with respect to d;:
We] = W(lpi-gl <€), (p.0) O (PQ) (1)

If P# denotesthe number of pointswithin partition P, then the expectation of the number
of point pairs which are excluded by the optimal dimension order join equalsto

Ele] = P# - Q# - (1 - We]). @

This means that exactly the dimension d; should be chosen as sort dimension that mini-
mi zes the mating probability W[e].

We will now develop a universal formula to determine the mating probability. We
assume uniform distribution within each of the partitions P and Q. Thusthe i-th compo-
nent p; of the point p O P isan arbitrary point from the uniform interval given by [P.b; ..
P.ub;]. Thepair (p;,q;) is chosen from an independent and uniform distribution within the
two-dimensional interval [P.lb;..P.ub;] % [Q.Ib;..Q.ub;] because of the independence of
the distributionswithin P and Q, which we can assumefor P # Q. Hence the event space
isgiven by

F. = (P.ub; - Plb)) - (Q.ub — Q.Ib) 3)

W[€] istherefore given by theratio of the portion of the area of F; where p; and g; have a
distance of at most € to the whole area F;. This can be expressed by the following inte-
gral:

P.ub; Q.ub,

_1 U1 for x—yl<e
Wle] = 3 Uf [O dydx (4

0 0 otherwise
Plb, Q.b;

Probability Model 197

70%
P
33%

25% N 75%| : RN
= v .
“\ \ Q7 “

dq N 4

> do

Figure 91: Distance and extension of partitions

In the following, we will show how thisformula can be simplified using one exemplary
case out of the several possible configurations. A complete list of al formulas for all
possible cases will be given (without proof) thereafter.

First we need a consistent notion for the distance and the overlap of two partitions
with respect to dimension d;. Wethus define aparameter d; whose sign indicates whether
the partitionsaredigoint in d; (&; > 0) or show someoverlap (§; < 0). The absolute value
of §; represents either the distance or the overlap.

Definition 15
o := max {PIb;, Q.lb} — min{P.ub, , Q.ub} (5)

We can now simplify theintegral of formula (4) by case analysis|ooking at the geomet-
ric propertiesof our configuration, i.e. we can transform our problem into d distinct two-
dimensional geometric problems. To illustrate this, we look at the join of the two parti-
tions P and Q in two-dimensional space as shown on the left hand side of figure 92. In
this case, it isnot directly obvious which dimension yields better results. The projection
on dg which isthe transformation that is used to determine W[€] is shown on the right
hand side of figure 92. The range with respect to dq of points which can be stored in P is
shown on the x-axis while the range with respect to d, of points which can be stored in

198 Optimizing the Similarity Join

d
. projection on dy:
N [P
8__ E A QOA
1 / 1 event space
7 \ 7 v
Q.uby
61 67 A
ol Qibg>| L
41 Q 4+
37 31
21 2
1 I distance<e
f f f f f f — f } } —
1 2 3 45 67 d 1 2 3 4P

Figure 92: Determining the mating probability W[€]

Q is shown on the y-axis. The projection (pg,0g) of an arbitrary pair of points
(p,9) O (P,Q) can only be drawn inside the area denoted as event space (cf. equation 3),
as all points of P with respect to dimension dg are by definition within P.lbg and P.ubg.

The same holdsfor Q.

The area within which our join condition is true for dimension d, i.e. the areawithin
which the corresponding points have adistance of lessthan € with respect to dyismarked
ingray in figure 92. All these projections of pairs of points which fall into the gray area
are located within a stripe of width 2¢ (the e-stripe) which is centered around the 45°
main diagonal. All projections outside this stripe can be excluded from our search asthe
corresponding points already have a distance with respect to d, that exceeds our join
condition. Theintersection of this stripe with the event space representsthose point pairs
that cannot be excluded from our search using dg alone. The mating probability is given

by the ratio of the intersection to the whole event space which equals 18% in our exam-

ple.

Efficient Computation 199

We will now show one single simple lemmaand then give acompl ete enumeration of
relevant cases and discusstheir efficient computation in the next section.

Lemma6.

If the two distinct partitions P and Q, P£Q, are either disjoint or show overlap of no
morethanei.e. —0; < € then

_5)2
wel = £

(6)

Proof. In this case -9, < €. This means the intersection of the event space and the &-
stripe forms an isosceles-rectangular triangle with alateral sidelength of € —6,. O

11.5 Efficient Computation

In the previous section, we have seen that the exclusion probability of a dimension d,
corresponds to the proportion of the event space which is covered by the e-stripe. In this
section, we show how this proportion can be efficiently determined. Efficiency is an
important aspect here because the exclusion probability must be determined for each
pair of mating pages (partitions) and for each dimension d.

Throughout this section we will use the shortcut PL for P.lb; and similarly PU, QL,
and QU. Considering figure 93-95 we can observe that there exists a high number of
different shapes that the intersection of the event space and the e-stripe can have. For
each shape, an individual formulafor the intersection area applies. We will show

e that exactly 20 different shapes are possible,
* how these 20 cases can be efficiently distinguished, and

» that for each case asimple, efficient formula exists.

Obvioudly, the shape of the intersection is determined by the relative position of the 4
corners of the event space with respect to the e-stripe. E.qg. if 3 corners of the event space
are above (or left from) the e-stripe, and 1 corner is inside the e-stripe, the intersection

200 Optimizing the Similarity Join

Code Figure Formula
1 1n / 0.0
/
(PU—QL +¢)?
2 1112 /%/ 2(PU—-PL)(QU-QL)
A4
» i y (PU+PL)/2+e-QL
| QU-QL
/
N PU-(QU+QL)/2+¢
4 1212 A PU —PL
/
5 1222 . 10-(%)
/
(PU-QL+g)2
6 1113 é]é 2(PU-PL)(QU -QL))
(PU+PL)/2+e-QL _
7 1123 QU -QL *)
where (%) = (QU —PL —¢)2 and (*) = (PU—QL —¢)”

2(PU-PL)(QU -QL) 2(PU-PL)(QU-QL)

Figure 93: Relative Positions of Event Space and €-Stripe and Probability Formulas

Efficient Computation

201

Code Figure
8 1213 ﬁ
9 1223
10 1133 ﬁ
11 1313 Aﬁ
12 1333 g}/
13 1233
14 1323

where (%) = (QU —PL —¢)2

2(PU-PL)(QU -QL)

Formula

PU-(QU+QL)/2+¢
PU —-PL

1.0-(%) - (*)

2¢€
QU -QL

2¢
PU - PL

(QU —PL +¢)2
2(PU—PL)(QU -QL)

QU—-(PU+PL)/2+¢
QU -QL

(QU+QL)/2+e—-PL
(PU-PL)

and (1) = —(PU=QL

- ()

- (%)

- (%)

- (%)

—8)2

2(PU-PL)(QU -QL)

Figure 94: Relative Positions of Event Space and €-Stripe and Probability Formulas

202 Optimizing the Similarity Join

Code Figure Formula
/
15 2222 1.0
v
/
16 2223 - 1.0-(*)
g=es
QU—-(PU+PL)/2+¢
17 2233
A QU -QL
g Ly (QU+QL)/2+e—-PL
8 —_
4
18 2323 H (PU—PL)
g U—PL +¢)2
19 2333 (QU-PL +¢)

2(PU-PL)(QU -QL)

/
20 3333 / 0.0

(QU —PL —¢)2
2(PU-PL)(QU-QL)

(PU — QL —¢)?
2(PU—PL)(QU-0QL)

where (%) = and (*) =

Figure 95: Relative Positions of Event Space and €-Stripe and Probability Formulas

Efficient Computation 203

q
o Cy Coa C; =(PL,QU)
Caa= (PU,QU)
Cop = (PL,QL)
QLLC
AT ¢ Uy
PL PU p

Figure 96: ldentifiersfor the Corners of the Event Space

shapeisawaysatriangle (as discussed previously). For the relative position of acorner
and the e-stripe, we define the following cornercode cc of apoint:

Definition 16 Cornercode (cc) of apoint in the event space
A point (p,q) in the event space has the corner code cc(p,q) with

El ifg>p+e

cc(p, @) = 02 otherwise (7)
0 .
03 ifg<p-g¢

Intuitively, the cornercode is 1 if the point is left (or above) from the e-stripe, 3 if itis
right (or underneath) from the e-stripe, and 2 if it isinside the e-stripe (cf. figure 97). For
an event space given by its upper and lower bounds (PL,PU,QL,QU), the corners are
denoted as C4, C,,, Cyp, and C3 asdepicted in figure 96. Weinduce the cornercodeto the
compl ete event space given by itslower and upper bounds:

Definition 17 Cornercode cc(ES) of the event space
The cornercode of the event space ESgiven by the lower and upper limits
ES=(PL,PU,QL,QU) (8)

isthe 4-tuple:
cc(ES) = (cc(Cy), c6(Caa), 06(Cap), €c(Cy)) 9)

Formally, there exist 3*=81 different 4-tuplesover theal phabet { 1,2,3} . However, not all
these 4-tuples are geometrically meaningful. For instance it is not possible that simulta-

204 Optimizing the Similarity Join

c7

Figure97: Thee-stripe

neously C; isbelow and C; above the e-stripe. As C, isleft from C,, and Co, is above
C3 we have the constraint:

cc(Cy) scc(Cyy) <cc(Cy) (10)

And as C; isabove Cy, and Cyy, isleft from C3 we have the constraint:

cc (Cq) <cc (Cyp) <cc (Cy) (12)

The corner code of C,, may be greater than, less than, or equal to the corner code of Cyy,.
The following lemma states that there are 20 4-tuples that fulfill the two constraints
above.

Lemma 7. Completeness of Case Distinction

There are 20 different intersection shapes for the event space and the e-stripe.

Proof. By complete enumeration of all four-tuples: There are 3 tuples where cc(C,) =
cc(Cy): 1111, 2222, and 3333. If the difference between cc(C;) and cc(Cy) isequal to 1
(i.e. tuples like 17?2 or 2?73), we obtain 2 possibilities for each of the corner codes
cc(Cyg) and cc(Cyyp), i€ 2.22 = 8 different tuples. For adifference of two between cc(Cy)
and cc(Cs), which correspondsto tupleslike 1723, we have achoice out of threefor each
of the corners C,, and Cyp, i.e. 22 =9 tuples. Summarized, we obtain 20 different tu-

ples O

Determining the Optimal Sort Dimension 205

Note that the cornercodes 1111 and 3333 which are associated with a probability of
0.0 actually are never generated because the corresponding partitions have a distance of
more than € and, thus, are excluded by the preceding filter step.

Each corner code of the event space is associated with ageometric shape of the inter-
section between event space and e-stripe. The shape varies from a triangle (e.g.
cc = 1112) to asix-angle (cc = 1223). The fact that only 45° and 90° angles occur facil-
itates a simple and fast computation. Figure 93 shows the complete listing of al 20
shapes along with the corresponding corner codes and the formulasto compute theinter-
section area. Note that Lemma 6 coversthe cases 2 (cc = 1112) and 19 (cc = 2333).

The concept of the cornercodesis not only aformal meansto prove the compl eteness
of our case distinction but also provides an efficient means to implement the area deter-
mination. Our algorithm computes the corner code for each of the 4 corners of the event
space, concatenates them using arithmetic operations and performs a case analysis be-
tween the 20 cases.

11.6 Deter mining the Optimal Sort Dimension

Our algorithm determines the sort dimension such that the mating probability Wi[€] is
minimized. Ties are broken by random selection, i.e.

dsort = some{d; | 0<i <d, Wi[e] < W[e] [Jj, 0<j < d}. (12)

Thus, we have an easy way to evaluate the formula for the sort dimension. As W]
merely is evaluated for each dimension d;, thus keeping the current minimum and the
corresponding dimension in local variables, the algorithm islinear in the dimension d of
the data space and independent of all remaining parameters such asthe number of points
stored in the partitions, the selectivity of the query, etc. Moreover, the formulamust be
evaluated only once per pair of partitions. This constant (with respect to the capacity of
the partition) effort is contrasted by potential savingswhich are quadratic in the capacity
(number of points stored in a partition). The actual savings will be shown in the subse-
guent section.

206 Optimizing the Similarity Join

11.7 Experimental Evaluation

In order to show the benefits of our technique we implemented our optimal dimension-
ordering algorithm on top of several basic similarity join methods and performed an
extensive experimental evaluation using artificial and real data sets of varying size and
dimension. For comparison we tested our algorithm not only against plain basic tech-
niques, but also against a smple version of the dimension-ordering algorithm which
doesnot cal culate the best dimensionsfor each partition pair, but chooses one dimension
which then is used globally for all partition pairs. In the following we will not only
observe that our algorithm can improve CPU-efficiency by an important factor, but we
will also seethat it is optimal in the sense that it performs much better than the smple
dimension-ordering algorithm — even if this algorithm chooses the best global dimen-

sion.

We integrated the ODO-algorithm into two index-based techniques, namely the Mul-
tipage Index Join (MuX) [BK 01] and the Z-order-RSJ which is based on the R-tree
Spatial Join (RSJ) [BKS 93] and employs a page scheduling strategy using Z-ordering.
Thelatter isvery similar to the Breadth-First-R-tree-Join (BFRJ) proposed in [HIR 97].
We al so implemented the ODO-algorithminto the recently proposed Epsilon Grid Order
(EGO) [BBKK 01] which is atechnique operating without preconstructed index.

The Multipage Index (MuX) isan index structure in which each page accommodates
asecondary main-memory search structure which effectively improves the CPU perfor-
mance of the similarity join. We implemented ODO on top of this secondary search
structure, i.e. we measured the improvement that ODO brings on top of this secondary
search structure. For comparison, we used the origina MuX code which also exploited

the secondary search structure.

All our experiments were carried out under WindowsNT4.0 on Fujitsu-Siemens Cel-
sius 400 machines equipped with a Pentium 111 700 MHz processor and 256 MB main
memory (128 MB available). The installed disk device was a Seagate ST310212A with

Experimental Evaluation 207

Uniformly Distributed 8-Dimensional Data

¥ \@@ o“\/' 0(\(1{ o(\(b‘ o“b“ o“(o' o(\(o- o(\/\- o“cb
JEEIE e
PP IFIPPCAPE
o Q9 T SIROIROIROIROIROIROI
¥ O P PP PP LL P
1 M MMM M M M)

16-Dimensional Real Data from a CAD-Application

Q& S
5656560, ST T TS
QNN H 005009
DD DRRNPPPNPY

Figure 98: Experimental Results for MuX: Plain Basic Technique, ODO and SDO

208 Optimizing the Similarity Join

1E+11
n
c
2 1E+10
‘_35 —e— Plain MuX
O
8 1E+09 | —=— Best SDO
8 OoDO
g 1E+08
B
a

1.E+07 !

25 50 100 200 400 800
Number of Points [x 1000]

100,000
. 10,000 1
52 —e— Plain MuX
£ 1,000 —=— Best SDO
|_
!) ODO
P 100§

10 + ‘

25 50 100 200 400 800
Number of Points [x 1000]

Figure 99: Experimental Resultsfor MuX: Uniformly Distributed 8-D Data

Experimental Evaluation 209

(7]
c
O
L& .
§ —e— Plain Z-RSJ
3
8 —=— Best SDO
8 ODO
&
B
A
1LE+07 | ‘ ‘ ‘
25 50 100 200 400 800
Number of Points [x 1000]
100,000
5 10,000 |
g —e—Plan Z-RSJ
£ 1,000 | —m— Best DO
£
oDbo
3
g 100
|_
10 : ‘ ‘ ‘

25 50 100 200 400 800
Number of Points[x 1000]

Figure 100: Experimental Results for Z-RSJ: Uniformly Distributed 8-D Data

210 Optimizing the Similarity Join

asustained transfer rate of about 9 MB/s and an average read access time of 8.9mswith
an average latency time of 5.6ms.

Our 8-dimensional synthetic data sets consisted of up to 800,000 uniformly distribut-
ed points in the unit hypercube. Our real-world data set is a CAD database with 16-
dimensional feature vectors extracted from geometrical parts.

The Euclidean distance was used for the similarity join. We determined the distance
parameter € for each data set such that it issuitable for clustering following the selection
criteriaproposed in [SEK X 98] obtaining areasonable selectivity.

Figure 98 shows our experiments comparing the overall runtimei.e. 1/0- and CPU-
timefor the plain basic techniqgue MuX either to MuX withintegrated ODO or integrated
simple dimension-order (SDO) for all possible start dimensions. Theleft diagram shows
theresultsfor uniformly distributed 8-dimensional artificial datawhiletheright diagram
shows results for 16-dimensional real data from a CAD-application. The database con-
tained 100,000 pointsin each case. The SDO-algorithm depends heavily on the shape of
the page regions i.e on the split algorithm used by the index employed by the basic
technique.

For uniformly distributed artificial datathe loading procedure used by MuX treatsall
dimensions equally and therefore the results for the simple dimension-sweep algorithm
are roughly the same for al start dimensions. ODO performs 6-times faster than plain
MuX and 4 timesfaster than the best SDO while SDO itself isabout 1.5 timesfaster than
plain MuX. Note again that our algorithm chooses the most suitable dimension for each
pair of partitions. Therefore, it is possible that ODO clearly outperforms the simple
dimension sweeping technique (SDO) even for its best dimension.

For our real data set SDO shows varying performance with varying start dimension.
We can even observe that for some start dimensionsthe overhead of SDO outweighsthe
savings and overall performance degrades slightly compared to the plain basic tech-
nique. This shows that it can be unfeasible to apply dimension-ordering for one fixed
start dimension. MuX with integrated ODO is about 5.5 times faster for the real data set

Experimental Evaluation

211

1.E+12

1.E+11

1.E+10

1.E+09 |

1.E+08 |

Distance Calculations

1.E+07

25

100,000

50

100 200 400 800

Number of Points [x 1000]

10,000 -

1,000 -

4

Total Time[Sec.]

100

10

25

50

100 200 400 800

Number of Points [x 1000]

—e— Plain Z-RSJ
—=— Best SDO
ODO

—e— Plain Z-RSJ
—a— Best SDO
ODO

igure 101: Experimental Resultsfor Z-RSJ: 16-D Real Datafrom a CAD-Application

212 Optimizing the Similarity Join

100,000
g 10,000 -
2] —e— Plain EGO
£ 1,000 - —m— Best DO
= ODO
ks 100
(@]
|_

10 T—— ‘ ‘

25 50 100 200 400 800
Number of Points[x 1000]

Figure 102: Experimental Results for EGO (16d CAD data)

than plain MuX while it is still 3 times faster than the SDO with the best performance,
however it is more than 6 times faster than SDO with the worst performance.

Figure 99 shows all resultsfor the uniformly distributed artificial data set for varying
database size, including the diagram with distance cal culations. We can seethat the plain
MuX performs up to 50 times more distance cal cul ations than with ODO. The diagrams
for the real data set are left out due to space ristrictions.

In order to show that the optimal dimension-ordering algorithm can be implemented
on top of other basic techniques as well, we show the results for the Z-order-RSJ with
uniformly distributed data in figure 100. Z-order-RSJ without ODO is up to 7 times
slower than with integrated ODO and performs up to 58 times more distance calcula-
tions. The results for Z-order-RSJ with real data are shown in figure 101. We can see a
speedup factor of 1.5 for SDO vs. plain Z-order-RSJ with respect to total timeand of 1.8
with respect to distance calcualtions. ODO performs 3.5 times faster and performs 17
times fewer distance calculations than SDO while it performs 5.5 times faster and up to
25 times less distance cal cul ations than SDO.

EGO was used to demonstrate integration of ODO with a basic technique that does
not use a preconstructed index. The results are given in figure 102 where EGO with
SDO, aswell asplain EGO clearly perform worsethan ODO i.e. SDO isabout 1.5 times

Conclusions 213

faster than plain EGO, but ODO istwice asfast as SDO and outperforms plain EGO by
afactor of 3.5.

11.8 Conclusions

Many different algorithms for the efficient computation of the similarity join have been
proposed in the past. While most known techniques concentrate on disk 1/0 operations,
relatively few approaches are dedicated to the reduction of the computational cost, al-
though the similarity join is clearly CPU bound. In this chapter, we have proposed the
Optimal Dimension Order, a generic technique which can be applied on top of many
different basic algorithms for the similarity join to reduce the computational cost. The
general ideaisto avoid and accelerate the distance cal cul ations between points by sort-
ing the points according to a specific dimension. The most suitable dimension for each
pair of pagesis carefully chosen by a probability model. Our experimental evaluation
shows substantial performance improvements for several basic join algorithms such as
the multipage index, the e-grid-order and the breadth-first-R-tree join.

214 Optimizing the Similarity Join

Chapter 12
Conclusions

Both data mining and query processing on feature data sets are emerging domains of
research. The objective of our thesis was to bridge the gap between these two domains.
With the similarity join we have proposed a powerful database primitive to support data
analysis and data mining on large databases. The material presented in this thesis has
contributed to this goal both theoretically as well as practically. Our work had two fo-
cusses: At the one hand, we demonstrated the implementation of important basic algo-
rithmsfor datamining on top of the similarity join. At the other hand, we proposed new
algorithms as well as a cost model and optimization techniques for the similarity join.
Our intention was to promote the similarity join in the research community and to
achieve awareness of the similarity join as a powerful database primitive to support
various prospective applications.

12.1 Contributions

Intheliterature, there are several different definitionsfor join operationsinvolving sim-
ilarity. Therefore, at the beginning of our thesis, we propose agenera definition for the
similarity join and give ataxonomy of the different similarity join operations. We distin-
guish between approaches where the join predicate is a range search and approaches

216 Conclusions

where the join condition bases on the k-nearest neighbor principle. Thistaxonomy gives
our thesisthe main structure. In this summarization, we group together applications and
algorithms.

12.1.1 Applications of the Similarity Join

There are many applications for which it is quite straightforward to use the similarity
join as a database primitive. In chapter 4, however, we have shown how to transform
density based clustering algorithms such that they can use the similarity join as a data-
base primitive. In particular, we demonstrate such atransformation for the density based
clustering method DBSCAN and for adensity based analysis method for the hierarchical
cluster structure of adata set called OPTICS.

For these two methods, the transformation is particularly challenging becausein con-
trast to some other methods presented in this thesis, DBSCAN and OPTICS in their
original definitions enforce a certain order in which similarity queries are evaluated.
Thereforeit is not straightforward to replace the similarity queriesby the smilarity join.
We proposed two methods of transformation: The first, called semantic rewriting first
transforms the clustering algorithm semantically to ensure that it is independent of the
order inwhich join pairsare generated. Thisisdone by assigning cluster IDstentatively,
and with a complex action table which handles inconsistent tentative results. The other
technique is called join result materialization. The join result is predetermined prior to
the run of the clustering algorithm and similarity queries are efficiently answered by
lookups to the materialized join result.

We can show for both techniques that the result of the clustering algorithmsisidenti-
cal to that of the original algorithms. Our experimental evaluation yields performance
advances of up to afactor of 50 by our techniques.

To demonstrate that using the similarity join is not always complex we also givein
chapter 5 acouple of application algorithmsfor which thistransformation is straightfor-
ward. The applications presented here are robust similarity search in sequence data
wherethejoin leadsin particular to robustness with respect to noise and scaling. We also
present a few generalizations of this technique to similarity of multidimensional se-

217

guences (i.e. raster or voxel data) and to partial similarity. Also presented are applica-
tions like catalogue matching and duplicate detection. All these algorithms are based on
the database primitive of the distancerangejoin.

Chapter 9 is dedicated to the applications of the k-Nearest Neighbor Join (k-nnj)
which combines each point of apoint set R with its k nearest neighborsin another point
set S. Many standard tasks of datamining evaluate k-nearest neighbor queriesfor alarge
number of query points. Examples are clustering algorithms such as k-means, k-medoid
and the nearest neighbor method, but also data cleansing and other pre- and postprocess-
ing techniques e.g. when sampling plays arole in data mining. Our list of applications
covers all stages of the KDD process. In the preprocessing step, data cleansing algo-
rithms are typically based on k-nearest neighbor queries for each of the points with
NULL values against the set of complete vectors. The missing values can be computed
e.g. astheweighted means of the values of the k nearest neighbors. Then, the k-distance
diagram is a technique for a suitable parameter selection for data mining. In the core
step, i.e. datamining, many algorithms such as clustering and classification are based on
k-nn queries. In all these algorithms, it is possible to replace a large number of k-nn
querieswhich are originally issued separately, by asingle run of ak-nnjoin. Therefore,
the k-nn join gives powerful support for all stages of the KDD process. In chapter 9, we
show how some of these standard a gorithms can be based on top of the k-nearest neigh-
bor join.

12.1.2 Algorithmsfor the Similarity Join

We have proposed algorithmsfor both kinds of similarity joins, those based on therange
search as well as those based on nearest neighbor search. Additionally we can distin-
guish our solution to the applied paradigms, i.e. whether or not they operate on multidi-
mensional index structures.

Our most important contribution to the first group, index based join algorithmsis a
cost model for the distance range join which estimates the index selectivity, i.e. the
number of page pairswhich must be considered to computethejoin result (cf. chapter 6).
The index selectivity isthe key factor which is responsible for 1/0 and CPU cost of the

218 Conclusions

join algorithms. We also show how the logical page capacity of these index structures
can be optimized in order to minimize CPU and I/O time.

The concept used in this cost model isthe Minkowski sum which is here modified to
estimate the number of page pairs from the corresponding index structures which have
to be considered. In contrast to usual similarity search, the concept of the Minkowski
sum must be applied twicefor the similarity joinin order to estimate the number of page
pairs which must be joined.

During this analysis, we discover a serious optimization conflict between /0O and
CPU optimization. While large pages optimize the 1/0, the CPU performance benefits
from small pages. Thisresultsin the observation that in traditional index structures only
one of these performance factors can be optimized.

To solve the conflict, we propose in chapter 7 anovel index architecture called Mul-
tipage Index (MuX). This index structure consists of large data and directory pages
which are subject to I/O operations. Rather than directly storing points and directory
records an these large pages, these pages accommodate a secondary search structure
which is used to speed up the CPU operations. To facilitate an effective and efficient
optimization, this secondary search structure has again an R-tree like structure with a
directory and data pages. Thus, the page capacity of the secondary search structure can
be optimized by the cost functions developed in chapter 6, however, for the CPU trade-
off.

We show that the CPU performance of MuX issimilar (equal up to some small dila-
tational management overhead) to the CPU performance of atraditional index whichis
purely CPU optimized. Likewise, we show that the I/O performance resemblesthat of an
|/O optimized traditional index. Our experimental evaluation confirms this and demon-
strates the clear superiority over the traditional approaches.

The Multipage Index is also applied in chapter 10 to implement the k-nearest neigh-
bor join. Join algorithms on the nearest neighbor principle are more difficult to imple-
ment asit isnot immediately decidable which page pairs must be formed to compute the
join result. Therefore, much more strategic decisions must be made to determine a suit-

Contributions 219

able order for the page accesses and for the join between page pairs. We develop two
strategies, apage access strategy and a processing strategy for these purposes.

For join processing without support of any precomputed index structure, we propose
in chapter 8 the € grid order, a sort order which is founded on avirtual grid partition of
the data space. This method is based on the observation that for the distance range join
with agiven distance parameter €, agrid partition with agrid distance of € isan effective
means to reduce the search space for join partners of a point p. Due to the curse of
dimensionality, however, the number of grid cellsin which potentially joining pointsare
contained explodes with the data space dimension (O(3d) cells). To avoid considering
the grid cellsone by one, weintroducethe grid partition only in avirtual way asthe basis
of a particular sort order, the € grid order, which orders points according to grid cell
containment. The € grid order is used as ordering criterion in an external memory sort
operator. Later, the € grid order supports effective and efficient algorithms for CPU and
I/O processing, particularly for large data sets which cannot be joined in main memory.

Our last contribution to algorithmsfor similarity joinsisageneric technique to accel -
erate and partially avoid the finalizing distance computations when computing the sim-
ilarity join. It can be applied on top of all join agorithms proposed in thisthesisand also
on most algorithms described in the related work chapter. In spite of all optimization
efforts, most of these algorithms are clearly CPU bound, and the most important cost
factor arethefinalizing distance cal cul ations between the feature vectors. Our optimiza-
tion technique accelerates these distance calculations by selecting the dimension with
the highest selectivity and sorting the points along this optimal dimension. Therefore,
we call this technique the optimal dimension order. To select an optimal dimension our
technigue considers the regions which are assigned to the considered partitions. It isnot
restricted to index based processing techniques but can al so be applied on top of hashing
based methods or grid based approaches such as the size separation spatial join, the &-
kdB-tree or our € Grid Order.

To summarize and overview the contributions madein thisthesiscf. figure 103 which
gives again a small taxonomy of the similarity join and classifies our contributions ac-
cording to the two categories applications and algorithmswhich are, in turn categorized

220 Conclusions

Similarity Join

3
k-NN based Joins
o
C
O
é | Distance Range Join I k-Distance Join | k-Nearest Neighbor Join I
| Incrementd Distance Join I

7)) DBSCAN I k-Means Clustering I
C
o OPTICS I k-Medoid Clustering |
'lc—u' Queries such as
(&) Catal ogue Matching I “find the k cities k-NN Classification I
e closest to any river”
o Duplicate Detection etc. I Sample Processing etc. I
o
< Chapter 4+5 Chapter 9

€ Grid Order [HS9g], [CMTV MuX Algorithm for k-NN
g

Chapter 8 Chapter 10
E o O
o
r— Cost Model %
S
@) > Optimal Dimension Order
(@) Multipage Index %
< Chapter 6+7

Figure 103: Taxonomy and Overview of the Thesis

Future Work 221

into index based and non index based techniques. Our contributions from thisthesis are
marked with ovals and with links to the corresponding chapters.

12.2 Future Work

Besides complementing and even strengthening our effort in the successful areas of
database primitives for similarity search and data mining, we have identified severa
research directionsinto which we plan to extend our future work. Thisincludes opening
new, innovative application domains with new challenging research potential, ageneral
framework for the development of similarity search systems, and database technology
centered research.

12.2.1 New Data Mining Tasks

Dueto acomplex analysis of the complete data set datamining algorithms are often of a
much higher computational complexity than traditional database applications. This has
mainly prevented data mining tasks from being strongly integrated into the database
environment. Our method of identifying very powerful database primitives such asthe
similarity join (or as another example, the convex hull operation, cf. [BK 01b]), data
mining algorithms may become standard database applications like others. The conse-
guence is a much tighter integration of data mining in the information infrastructure of

an enterprise which yields many advantages.

Dueto the dramatic increase of performance by our approaches, it will be possible to
implement quite new kinds of data mining algorithms which detect new kinds of pat-
terns. An interesting, new challenge is subspace clustering [AGGR 98]. Typically, not
all attributes of feature vectors carry information which is useful in data mining. Other
attributes may be noisy and should beignored as they deteriorate the datamining result.
|dentifying the relevant attributes, however, isadifficult task. Subspace clustering com-
bines the two tasks of selecting attributes and finding clusters. Subspaces, i.e. groups of
attributes, are determined such that maximal, distinguishable clusters can be found. First

222 Conclusions

algorithms, however, suffer from the high computational cost. Basing them on top of
powerful database primitivescould open the potential to makethiscomputation feasible.

Another approach could be to make current data mining much more interactive. The
current process is to select parameters, to run a data mining algorithm and, finally, to
visualize the result of the algorithm. Our dramatic performance gains could open the
potential to makethisprocess so fast that auser may change parametersand immediately
see the resulting changes in the visualization. Here, it could be beneficial to apply new
concepts in database systems which eval uate queries approximately [CP 00] or produce
first resultsin an early stage of processing.

12.2.2 New Application Domains

We have identified three areas of new applications which have only superficialy been
considered as database applications, in spite of vast data amounts and clear relations to
similarity search and data mining.

Electronic Commerce

Many stages in electronic commerce require concepts from similarity search and data
mining. Inthe early stage, marketing, it is essential to perform a customer segmentation,
atypical data mining application, to make directed offers to which the customers are
maximum responsive.

In the core area of e-commerce, booking and sales systems, users specify their needs
in an inexact way. For instance, they have initial ideas about features their product
should have and the corresponding price. Then, in an interactive process the system has
to find out which of theinitial features are how relevant to the specific customer and will
find in thisway a product which fits best the users notions.

After commitment of the trade the final stage is marketing for additional products. A
good (human) salesman devel ops a sense what additional high-revenue products could
be of interest for the customer, based on his experience with previous customers pur-
chasing similar products. Thisbehavior could also beimitated using concepts of similar-
ity search and data mining.

Future Work 223

Figure 104: Characteristic of Fuzzy Biometry Data

For applications mentioned above, it is necessary to extend known concepts and to
develop new concepts. Classical similarity search takes the basic assumption that the
similarity measureisaparameter given by the user. Therefore, weightsfor theindividual
features are assumed to be known. Here, we are rather facing the situation that the mea-
suresareinitially completely unknown and devel op during the selection process. Instead
of assuming auniform importance of the features, and ranking the products according to
the Euclidean distance, the user should be provided with a selection of products that
reveals different weighting of the features. A selection with varying weights of features
essentially correspondsto the convex hull of asubset of the data[BK 01b]. The products
which arefurther investigated by the customers can be used for arelevance feedback, to
determine a suitable similarity measure. A first approach to use relevance feedback for
this purpose is the MindReader [ISF 98] which determines a quadratic form distance
measure [BK S 01]. For electronic commerce, we identify two additional requirements.
First, the relevance feedback should be extended to a multi modal model to take into
account that usersin general do not only like onesingle“ideal” product but often have a
few alternatives in their minds which are not clearly separated in their notion. The sec-
ond requirement is a seamless integration of the concepts of similarity search, convex
hull, and relevance feedback.

Biometry Databases

Biometry applications store human data such as features from face images, fingerprints,
the hand geometry, the retina, or even voice and handwriting for identification and au-

224 Conclusions

Ascend. Triangle Trend Channel Double Bottom
Figure 105: Chart Anaysis

thentication purposes. For many applications, a high number of feature vectors are
stored and due to the inexactness of the measuring devices, similarity search is needed
for identification.

In contrast to traditional similarity search, the uncertainty of theindividual featuresis
not uniform among all features and even for a single feature, the uncertainty is not uni-
form among all stored vectors. Instead, each feature of each feature vector is associated
with an individual uncertainty which is stored in the database. With this concept, it is
possible to capture problems introduced by different environments and technical devic-
es. The uncertainty of facial features such as the eye distance, for instance, depends on
the angle between camera and person, and also on the illumination. The error can be
assumed to be taken from a Gaussian distribution, so the uncertainty is measured in
terms of a standard deviation.

The challenge here is to develop specialized index structures to store feature vectors
with individual uncertainty vectors and query processing algorithmsthat facilitate afast
and efficient evaluation of queries such as

* determine al persons that match the query person with a probability of at least
10%
» determine the person that matches the query person with maximum probability.

Technical Analysis of Share Price

One of the classical applications of similarity search and datamining is clearly the anal-
ysis of time sequences [ALSS 95] such as share price analysis. Various similarity mea-

Future Work 225

sures have been proposed. For practical analysis, however, quite different concepts are
used, such asindicators, i.e. mathematical formulas derived from the time sequence that
generate trading signals (buy, sell). Another concept for the analysis of atime sequence
isthe chart analysis (cf. figure 105) which detects typical formationsin the share price
which are known to indicate a certain direction of the future price. Examples are trian-
gles, trend channels, lines of support and resistance, W-formations (double bottom),
head-and-shoul der-formations etc.

For effectively supporting users in their share price analysis, the requirement is to
integrate both indicators as well as formation analysis into search systems and into se-
guence mining algorithms. Suitable index structures and query processing techniques
must be developed to facilitate afast and efficient analysis.

12.2.3 A Framework for the Development of Similarity Search Systems

The problem of similarity search should also be considered in amore general way. Cur-
rently, similarity search methods are tailored to specific application domains, and only
very basic techniques such as the nearest neighbor search solve general problems that
ariseinvirtually all similarity search systems.

The main difficulty in the development of similarity measuresis the communication
between domain experts and similarity experts, as the similarity search involves a deep
knowledge of the scientific concepts of the domain. Vice versa, domain experts can
hardly imagine what asimilarity search system may achieve and what concepts must be
applied for this purpose.

Our ideaisto aleviate this problem by a common framework that bundles concepts
which are often applied in similarity search in a toolbox. This toolbox could contain
various methods of feature extraction such as histograms, fourier transformation, and
moment invariants, and various search methods such as similarity search, query decom-
position for making the search robust, search for partial similarity, etc.

Thistoolbox could be complemented with visualization systems, evaluation methods
and the above mentioned data mining techniques such as subspace clustering, convex

226 Conclusions

hull and mind reader which may be used to determine whether the resulting feature
transformation is adequate.

227

References

[ABKS 99]

[AFS 93]

[AGGR 98]

Ankerst M., Breunig M. M., Kriegel H.-P, Sander J.: "OPTICS Ordering
Points To Identify the Clustering Sructure”, Proc. ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD’99), Philadelphia, PA, 1999,
pp. 49-60.

Agrawa R., Faloutsos C., Swami A.: ‘Efficient similarity search in
sequence databases, Proc. 4th Int. Conf. on Foundations of Data
Organization and Algorithms, 1993, in: Lecture Notes in Computer
Science, Springer, Vol. 730, pp. 69-84.

Agrawal R., Gehrke J., Gunopulos D., Raghavan P * Automatic Subspace
Clustering of High-Dimensional Data for Data Mining Applications’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, WA,
1998, pp. 94-105.

[AGMM 90] Altschul S. F.,, Gish W., Miller W., Myers E. W,, Lipman D. J.: ‘A Basic

[ALSS 95]

[AMN 95]

[APR+ 98]

Local Alignment Search Tool’, Journal of Molecular Biology, Vol. 215,
No. 3, 1990, pp. 403-410.

Agrawal R., Lin K., Shawney H., Shim K.: ‘Fast Smilarity Search in the
Presence of Noise, Scaling, and Trandlation in Time-Series Databases',
Proc. 21st Conf. on Very Large Data Bases, 1995, pp. 490-501.

Arya S., Mount D. M., Narayan O.: ‘Accounting for Boundary Effectsin
Nearest Neighbor Searching’, Proc. 11th Symp. on Computational
Geometry, Vancouver, Canada, 1995, pp. 336-344.

Arge L., Procopiuc O., Ramaswamy S., Suel T., Vitter J. S.: ‘Scalable
Sweeping-Based Spatial Join’, Proc. 24th Int. Conf. on Very Large Data
Bases, New York, NY, 1998, pp. 570-581.

228

[Ary 95]

[AS83]

[AS91]

[AS94]

[AY 00]

[BA 96]

[BBB+ 97]

[BBBK 00]

[BBBK 01]

[BBJ+ 00]

[BBK 98]

[BBK 98b]

Arya S.: ‘Nearest Neighbor Searching and Applications’, Ph.D. thesis,
University of Maryland, College Park, MD, 1995.

Abel D. J, Smith J. L.: ‘A Data Sructure and Algorithm Based on a
Linear Key for a Rectangle Retrieval Problem’, Computer Vision 24,
1983, pp. 1-13.

Aref W. G, Samet H.: ‘Optimization Srategies for Spatial Query
Processing’, Proc. 17th Int. Conf. on Very Large Data Bases (VLDB’91),
Barcelona, Catalonia, 1991, pp. 81-90.

Agrawa R., Srikant R.: ‘Fast Algorithms for Mining Association Rulesin
Large Databases’, Proc. 20th Int. Conf. on Very Large Data Bases
(VLDB’94), Santiago de Chile, Chile, 1994, pp. 487-499.

Aggarwa C. C.,, Yu P. S.: ‘Finding Generalized Projected Clusters In
High Dimensional Spaces, Proc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD 2000), Dallas, TX, 2000, pp. 70-81.

Brachmann R. and Anand T.: ‘The Process of Knowledge Discovery in
Databases. A Human Centered Approach”, in: Advances in Knowledge
Discovery and Data Mining, AAAI Press, Menlo Park, 1996, pp.37-58.

Berchtold S., Béhm C., Braunmdiller B., Keim D. A., Kriegel H.-P: ‘Fast
Parallel Smilarity Search in Multimedia Databases, Proc. ACM
SIGMOD Int. Conf. on Management of Data, 1997, Tucson, AZ, pp. 1-12,
SIGMOD BEST PAPER AWARD.

Bohm C., Braunmiller B., Breunig M. M., Kriegel H.-P: ‘High
Performance Clustering Based on the Smilarity Join’, 9th Int. Conf. on
Information and K nowledge Management (CIKM 2000), Washington DC,
2000, pp. 298-313.

Bohm C., Braunmdiller B., Breunig M. M., Kriegel H.-P:: ‘The Smilarity
Join: A Database Primitive for High-Performance Data Mining,
submitted for publication.

Berchtold S, Bohm C., Jagadish H.V., Kriegd H.-P, Sander J.
‘Independent Quantization: An Index Compression Technique for High-
Dimensional Data Spaces, Proc. Int. Conf. on Data Engineering
(ICDE 2000), San Diego, CA, 2000, pp. 577-588.

Berchtold S., Bohm C., Kriegel H.-P.: ‘Improving the Query Performance
of High-Dimensional Index Sructures Using Bulk-Load Operations’, 6th.
Int. Conf. on Extending Database Technology, Valencia, Spain, 1998,
pp. 216-230.

Berchtold S., Bohm C., Kriegel H.-P.: ‘ The Pyramid-Technique: Towards
indexing beyond the Curse of Dimensionality’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Seattle, WA, 1998, pp. 142-153.

229

[BBK+ 00]

[BBK 00]

[BBK 01]

[BBKK 97]

Berchtold S., Bohm C., Keim D. A., Kriegel H.-P, Xu X.: ‘Optimal
Multidimensional Query Processing Using Tree Sriping’, Proc. Int. Conf.
on Data Warehousing and Knowledge Discovery (DawaK 2000),
Greenwich, U.K., 2000, pp. 244-257.

Bohm C., Braunmdiller B., Kriegel H.-P.:: ‘ The Pruning Power: A Theory
of Scheduling Srategies for Multiple k-Nearest Neighbor Queries’, Proc.
Int. Conf. on Data Warehousing and Knowledge Discovery
(DawaK 2000), Greenwich, U.K., 2000, pp. 372-381.

Bohm C., Berchtold S., Keim D. A.: ‘Searching in High-dimensional
Soaces: Index Sructures for Improving the Performance of Multimedia
Databases , to appear in ACM Computing Surveys, 2001.

Berchtold S., Béhm C., Keim D. A., Kriegel H.-P: ‘A Cost Model For
Nearest Neighbor Search in High-Dimensional Data Space’, ACM PODS
Symp. on Principles of Database Systems, Tucson, AZ, 1997, pp. 78-86.

[BBKK 01] Bohm C., Braunmiiller B., Krebs F., Kriegel H.-P.: ‘Epsilon Grid Order:

[BBKM 00]

[BBKS 00]

[BEK+ 98]

[BEKS 00]

[Ben 75]

[Ben 79]

[Ber 97]

An Algorithm for the Smilarity Join on Massive High-Dimensional Data’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Santa Barbara,
CA, 2001.

Bohm C., Berchtold S., Kriegel H.-P., Michel U.: * Multidimensional Index
Sructuresin Relational Databases', in: Journal of Intelligent Information
Systems (JI1S), Vol. 15, No. 1, 2000, pp. 51-70.

Bohm C., Braunmiller B., Kriegel H.-P, Schubert M.: ‘Efficient
Smilarity Searchin Digital Libraries’, Proc. IEEE Int. Conf. on Advances
in Digital Libraries (ADL 2000), Washington DC, 2000, pp. 193-206.

Berchtold S., Ertl B., Kem D. A., Kriegel H.-P, Seidl T.: ‘Fast Nearest
Neighbor Search in High-Dimensional Spaces’, Proc. 14th Int. Conf. on
Data Engineering, Orlando, FL, 1998, pp. 209-218.

Braunmuller B., Ester M., Kriegel H.-P,, Sander J.: * Efficiently Supporting
Multiple Smilarity Queries for Mining in Metric Databases', Proc. 16th
Int. Conf. on Data Engineering (ICDE 2000), San Diego, CA, 2000,
pp. 256-267.

Bentley J. L.: ‘Multidimensional Search Trees Used for Associative
Searching’, in: Communications of the ACM, Vol. 18, No. 9, 1975,
pp. 509-517.

Bentley J. L.. ‘Multidimensional Binary Search in Database
Applications’, IEEE Trans. Software Engineering, Vol. 4, No. 5, 1979,
pp. 397-400.

Berchtold S.: ‘Geometry based search of similar parts’, (in German),
Ph.D. thesis, University of Munich, 1997.

230

[BF 95]

[BFR 98]

[BGRS 99]

[BHF 93]

[Big 89]

[BJK 98]

[BK 97]

[BK 99]

[BK 00]

[BK 01d]

[BK 01b]

[BK 01c]

[BKK 96]

Beluss A., Faloutsos C.: ‘Estimating the Selectivity of Spatial Queries
Using the ‘' Correlation’ Fractal Dimension’, Proc. 21th Int. Conf. on Very
Large Data Bases (VLDB’95), Zurich, Switzerland, 1995, pp. 299-310.

Bradley P. S., Fayyad U., Reina C.: ‘Scaling Clustering Algorithms to
Large Databases', Proc. 4th Int. Conf. on Knowledge Discovery and Data
Mining (KDD’98), New York, NY, AAAI Press, 1998, pp. 9-15.

Beyer K., Goldstein J., Ramakrishnan R., Shaft U..: ‘When Is “ Nearest
Neighbor” Meaningful?’, Proc. Int. Conf. on Database Theory (ICDT’99),
Jerusalem, Isragl, 1999, pp. 217-235.

Becker L., Hinrichs K., Finke U.: * A New Algorithm for Computing Joins
with Grid Files', Proc. Int. Conf. on Data Engineering, Vienna, Austria,
1993, pp. 190-197.

Biggs N. L.. ‘Discrete Mathematics', Oxford Science Publications,
Clarendon Press-Oxford, 1989, pp. 172-176.

Berchtold S., Jagadish H. V., Ross K.: ‘Independence Diagrams. A
Technique for Visual Data Mining’, Proc. 4th Int. Conf. on Knowledge
Discovery and Data Mining (KDD’98), New York, NY, 1998,
pp. 139-143.

Berchtold S., Kriegel H.-P: *S3: Smilarity Search in CAD Database
Systems’, Proc. ACM SIGMOD Int. Conf. on Management of Data,
Tucson, AZ, 1997, pp. 564-567.

Bohm C., Kriegel H.-P: ‘Efficient Bulk Loading of Large High-
Dimensional Indexes’, Proc. Int. Conf. on Data Warehousing and
Knowledge Discovery (DawaK’ 99), Forence, Italy, 1999, pp. 251-260.
Bohm C., Kriegel H.-P: ‘Dynamically Optimizing High-Dimensional
Index Sructures’, Proc. Int. Conf. on Extending Database Technology
(EDBT 2000), Konstanz, Germany, 2000, pp. 36-50.

Bohm C., Kriegel H.-P: ‘A Cost Model and Index Architecture for the
Smilarity Join’, Proc. 17th Int. Conf. on Data Engineering (ICDE 2001),
Heidelberg, Germany, 2001, pp. 411-420.

Bohm C., Kriegel H.-P: ‘Determining the Convex Hull in Large
Multidimensional Databases', Proc. Int. Conf. on Data Warehousing and
Knowledge Discovery (DawaK 2001), Munich, Germany, 2001.

Bohm C., Kriegel H.-P: *Optimale Dimensionswahl bei der Bearbeitung
des Smilarity Join’, (in German), conditionally accepted in: Informatik:
Forschung und Entwicklung, 2001.

Berchtold S., Keim D. A., Kriegel H.-P.: ‘' The X-Tree: An Index Sructure
for High-Dimensional Data’, Proc. 22nd Conf. on Very Large Data Bases,
Bombay, India, 1996, pp. 28-39.

231

[BKK 97]

[BKK 01d]
[BKK 01b]

[BKKSO01]

[BKNS 99]

[BKNS 00]

[BKS 93]

[BKS 96]

[BKS00]

[BKSS 90]

[BM 77]

[BO 97]

[Bh 98]

Berchtold S., Keim D. A., Kriegel H.-P.: *Using Extended Feature Objects
for Partial Smilarity Retrieval’, VLDB Journal, Vol. 6, No. 4, 1997,
pp. 333-348.

Bohm C., Krebs F., Kriegel H.-P.: ‘The k-Nearest Neighbor Join: Turbo
Charging the KDD Process’, submitted for publication.

Bohm C., Krebs F., Kriegel H.-P: ‘Optimal Dimension Sweeping: A
Generic Technique for the Smilarity Join’, submitted for publication.
Breunig M. M., Kriegel H.-P, Kroger P, Sander J.. ‘Data Bubbles:
Quality Preserving Performance Boosting for Hierarchical Clustering’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, 2001.

Breunig M. M., Kriegdd H.-P, Ng R.T., Sander J.. ‘OPTICSOF:
Identifying Local Outliers’, Proc. 3rd European Conf. on Principles of
Data Mining and Knowledge Discovery (PKDD’99), Prague, Czech
Republic, 1999, in: Lecture Notes in Computer Science, Springer,
Vol. 1704, 1999, pp. 262-270.

Breunig M. M., Kriegel H.-P,, Ng R. T., Sander J.: ‘LOF: Identifying
Density-Based Local Outliers, Proc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD 2000), Dallas, TX, 2000, pp. 93-104.

Brinkhoff T., Kriegel H.-P, Seeger B.: ‘Efficient Processing of Spatial
Joins Using R-trees’, Proc. ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD’ 93), Washington DC, 1993, pp. 237-246.

Brinkhoff T., Kriegel H.-P.,, Seeger B.: ‘Parallel Processing of Spatial
Joins Using R-trees’, Proc. 12th Int. Conf. on Data Engineering
(ICDE’96), New Orleans, LA, 1996, pp. 258-265.

Breunig M. M., Kriegel H.-P, Sander J.: ‘Fast Hierarchical Clustering
Based on Compressed Data and OPTICS, Proc. 4th European Conf. on
Principles and Practice of Knowledge Discovery in Databases
(PKDD 2000), Lyon, France, 2000, pp 232-242.

Beckmann N., Kriegel H.-P, Schneider R., Seeger B.: ‘The R*-tree: An
Efficient and Robust Access Method for Points and Rectangles’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, Atlantic City, NJ,
1990, pp. 322-331.

Bayer R., McCreight E. M.: ‘Organization and Maintenance of Large
Ordered Indices', Acta Informatica, Vol. 1, No. 3, 1977, pp. 173-189.

Bozkaya T. Ozsoyoglu M.: ‘Distance-Based Indexing for High-
Dimensional Metric Spaces’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, Tucson, AZ, 1997, pp. 357-368.

Bohm C.: ‘Efficiently Indexing High Dimensional Data Spaces, PhD.
Thesis, University of Munich, 1998.

232

[Boh 014]

[Boh O1b]

[Bra0Q]

[Bre 01]

[Bri 95]

[BSK 01]

[BSS 00]

[BSW 97]

[CD 97]

[Chi 94]

[CH 98]

[CHY 96]

[Cle 79]

Bohm C.: ‘The Smilarity Join: A Powerful Database Primitive for High
Performance Data Mining’, Tutorial, 17th Int. Conf. on Data Engineering
(ICDE 2001), Heidelberg, Germany, 2001.

Bohm C.. ‘Database Systems Supporting Next Decade’'s Applications’,
submitted proposal.

Braunmdller B.: ‘High Performance Database Mining’, PhD. Thesis,
University of Munich, 2001.

Breunig M.: "Quality Driven Database Mining’, PhD. Thesis, University
of Munich, 2001.

Brin S.: ‘Near Neighbor Search in Large Metric Spaces’, Proc. 21st Int.
Conf. on Very Large Data Bases (VLDB’95), Zurich, Switzerland, 1995,
pp. 574-584.

Bohm C., Seidl T., Kriegel H.-P: ‘Adaptable Smilarity Queries Using
Vector Quantization’, Proc. Int. Conf. on Data Warehousing and
Knowledge Discovery (DawaK 2001), Munich, Germany, 2001.

van den Bercken J., Schneider M., Seeger B.: ‘Plug&Join: An Easy-to-
Use Generic Algorithm for Efficiently Processing Equi and Non-equi
Joins', Proc. Int. Conf. on Extending Database Technology (EDBT’00),
Konstanz, Germany, 2000, pp. 495-509.

van den Bercken J., Seeger B., Widmayer P:, ‘ A Generic Approach to Bulk
Loading Multidimensional Index Sructures’, 23rd Conf. on Very Large
Data Bases, Athens, Greece, 1997, pp. 406-415.

Chaudhuri S., Dayal U.: ‘Data Warehousing and OLAP for Decision
Support’, Tutorial, Proc. ACM SIGMOD Int. Conf. on Management of
Data, Tucson, AZ, 1997.

Chiueh T., * Content-Based Image Indexing’, Proc. 20th Int. Conf. on Very
Large Data Bases (VLDB’94), Santiago de Chile, Chile, 1994,
pp. 582-593.

Carter C. L., Hamilton H. J.: ‘Efficient Attribute-Oriented Generalization
for Knowledge Discovery from Large Databases’, TKDE, Vol. 10, No. 2,
1998, pp. 193-208.

ChenM.-S., Han J,, YuP S.: ‘Data Mining: An Overview froma Database
Perspective’, in: IEEE Trans. on Knowledge and Data Engineering, Vol. 8,
No. 6, 1996, |IEEE Computer Society Press, Los Alamitos, CA,
pp. 866-883.

Cleary J. G.: ‘Analysis of an Algorithm for Finding Nearest Neighbors in
Euclidean Space’, ACM Trans. on Mathematical Software, Vol. 5, No. 2,
1979, pp. 183-192.

233

[CMTV 00]

[CMTV 01]

[Coh 00]

[Com 79]

[CPZ 97]

[DH 73]

[DHKP 91]

[DS 82]

[DS01]

[Eas 81]

[EFKS 98]

[EKSX 96]

[EKSX 98]

Corral A., Manolopoulos Y., Theodoridis Y., Vassilakopoulos M.: * Closest
Pair Queriesin Spatial Databases’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, Dallas, TX, 2000, pp. 189-200.

Corral A., Manolopoulos Y., Theodoridis Y., Vassilakopoulos M.:
*Algorithms for Processing Closest Pair Queries in Spatial Databases,
submitted for publication 2001.

Cohen W. W.: ‘ Data Integration Using Smilarity Joins and a Word-Based
Information Representation Language’, in: ACM Trans. on Information
Systems, Vol. 18, No. 3, 2000, pp. 288-321.

Comer D.: ‘The Ubiquitous B-tree’, ACM Computing Surveys, Vol. 11,
No. 2, 1979, pp. 121-138.

Ciaccia P, PatellaM., Zezula P: *M-tree: An Efficient Access Method for
Smilarity Search in Metric Spaces', Proc. 23rd Int. Conf. on Very Large
Data Bases (VLDB’97), Athens, Greece, 1997, pp. 426-435.

DudaR. O., Hart P. E.: ‘ Pattern Classification and Scene Analysis’, Wiley,
New York, 1973.

Dietzfelbinger M., Hagerup T., Katgjainen J., Penttonen M.: ‘A Reliable
Randomized Algorithm for the Closest-Pair Problent, in: Journal of
Algorithms, Vol. 25, 1997, pp. 19-51.

DuH. C., Sobolewski J. S.: * Disk allocation for cartesian product files on
multiple Disk systems’, in: ACM TODS Journa of Trans. on Database
Systems, 1982, pp. 82-101.

Dittrich J.-P, Seeger B.: ‘GESS a Scalable Smilarity-Join Algorithm for
Mining Large Data Sets in High Dimensional Spaces, Proc. Int. Conf. on
Knowledge Discovery in Databases (KDD’01), San Francisco, CA, 2001.

Eastman C. M.: ‘Optimal Bucket Sze for Nearest Neighbor Searching in
k-d Trees', Information Processing Letters Vol. 12, No. 4, 1981.

Ester M., Frommelt A., Kriegel H.-P, Sander J.. *Algorithms for
Characterization and Trend Detection in Spatial Databases', Proc. 4th Int.
Conf. on Knowledge Discovery and Data Mining (KDD’98), New York,
NY, 1998, pp. 44-50.

Ester M., Kriegel H.-P,, Sander J., Xu X.: ‘A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise’, Proc. 2nd
Int. Conf. on Knowledge Discovery and DataMining (KDD’96), Portland,
OR, AAAI Press, 1996, pp. 226-231.

Ester M., Kriegel H.-P, Sander J, Wimmer M., Xu X.: ‘Incremental
Clustering for Mining in a Data Warehousing Environment’, Proc. 24th
Int. Conf. on Very Large Data Bases (VLDB’98), New York, NY, 1998,
pp. 323-333.

234

[Eva 94]

[Fal 85]

[Fal 88]
[FB 74]
[FB 93]

[FBF 77]

[FBF+ 94]

[FG 96]

[FK 94]

[FL 95]

[FR 89]

[Fre 87]

[FPM 91]

Evangelidis G: ‘The hB™Tree: A Concurrent and Recoverable Multi-
Attribute Index Sructure’, Ph. D. thesis, Northeastern University, Boston,
MA, 1994.

Faloutsos C.: ‘Multiattribute Hashing Using Gray Codes', Proc. ACM
SIGMOD Int. Conf. on Management of Data, Austin, TX, 1985,
pp. 227-238.

Faloutsos C.: ‘Gray Codes for Partial Match and Range Queries, in:
|EEE Trans. on Software Engineering, Vol. 14, 1988, pp. 1381-1393.

Finkel R, Bentley J. L. ‘Quad Trees. A Data Sructure for Retrieval of
Composite Keys', in: Acta Informatica Vol. 4, No. 1, 1974, pp. 1-9.

Faloutsos C., Bhagwat P.: ‘ Declustering Using Fractals', in: PDIS Journal
of Parallel and Distributed Information Systems, 1993, pp. 18-25.

Friedman J. H., Bentley J. L., Finkel R. A.: *An Algorithmfor Finding Best
Matches in Logarithmic Expected Time', ACM Trans. on Mathematical
Software, Vol. 3, No. 3, September 1977, pp. 209-226.

Faloutsos C., Barber R., Flickner M., Hafner J., Niblack W., Petkovic D.,
Equitz W.: ‘Efficient and Effective Querying by Image Content’, in:
Journal of Intelligent Information Systems, Vol. 3, 1994, pp. 231-262.

Faloutsos C., Gaede V.: ‘Analysis of n-Dimensional Quadtrees using the
Hausdorff Fractal Dimension’, Proc. 22th Int. Conf. on Very Large Data
Bases (VLDB’96), Mumbai (Bombay), India, 1996, pp. 40-50.

Faloutsos C., Kamel 1.: ‘Beyond Uniformity and Independence: Analysis
of R-trees Using the Concept of Fractal Dimension’, Proc. 13th ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems,
Minneapolis, MN, 1994, pp. 4-13.

Faloutsos C., Lin K.-1.: *FastMap: A Fast Algorithm for Indexing, Data-
Mining and Visualization of Traditional and Multimedia Data’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, San Jose, CA, 1995,
pp. 163-174.

Faloutsos C., Roseman S.: ‘Fractals for Secondary Key Retrieval’, Proc.
8th ACM SIGACT/SIGMOD Symp. on Principles of Database Systems,
1989, pp. 247-252.

Freeston M.: ‘The BANG file: A new kind of grid file’, Proc. ACM
SIGMOD Int. Conf. on Management of Data, San Francisco, CA, 1987,
pp. 260-269.

Frawley W. J., Piatetsky-Shapiro G, Matheus C. J. ‘Knowledge
Discovery in Databases. An Overview', in: Knowledge Discovery in
Databases, AAAI Press, 1991, pp. 1-27.

235

[FP 97]

[FPS 96]

[FPS 964]

[FRM 94]

[FSR 87]

[FSTT 00]

[Fuk 90]

[Gae 95]

[Gar 82]

[GG 98]

[GL 89]

[GM 93]

[Gre 89]

Fawcett T., Provost F.: * Adaptive Fraud Detection’, in: Data Mining and
Knowledge Discovery Journal, Kluwer Academic Publishers, Vol. 1,
No. 3, 1997, pp. 291-316.

Fayyad U., Piatetsky-Shapiro G, Smyth P.: ‘Knowledge Discovery and
Data Mining: Towards a Unifying Framework’, Proc. 2nd Int. Conf. on
Knowledge Discovery and Data Mining (KDD’ 96), Portland, OR, AAAI
Press, Menlo Park, CA, 1996, pp. 82-88.

Fayyad U., Piatetsky-Shapiro G, Smyth P: ‘From Data Mining to
Knowledge Discovery: An Overview', in: Advances in Knowledge
Discovery and Data Mining, AAAI Press, Menlo Park, 1996, pp. 1-34.

Faloutsos C., Ranganathan M., Manolopoulos Y.: ‘Fast Subsequence
Matching in Time-Series Databases', Proc. ACM SIGMOD Int. Conf. on
Management of Data, Minneapolis, MN, 1994, pp. 419-429.

Faloutsos C., Sellis T., Roussopoulos N.: ‘Analysis of Object-Oriented
Soatial Access Methods', Proc. ACM SIGMOD Int. Conf. on
Management of Data, San Francisco, CA, 1987, pp. 426-439.

Faloutsos C., Seeger B., Traina A., Traina Jr. C.: * Spatial Join Selectivity
Using Power Laws', Proc. ACM SIGMOD Int. Conf. on Management of
Data, Dallas, TX, 2000, pp. 177-188.

Fukunaga K.: ‘Introduction to Satistical Pattern Recognition’, 2nd
edition, Academic Press, 1990.

Gaede V.: ‘Optimal Redundancy in Spatial Database Systems', Proc. 4th
International Symp. on Advances in Spatial Databases (SSD’95),
Portland, ME, 1995, in: Lecture Notes in Computer Science, Vol. 951,
pp. 96-116.

Gargantini 1.: * An Effective Way to Represent Quadtrees’, in: Comm. of the
ACM, Vol. 25, No. 12, 1982, pp. 905-910.

Gaede V., GlUnther O.: ‘Multidimensional Access Methods', in: ACM
Computing Surveys, Vol. 30, No. 2, 1998, pp. 170-231.

Golub G. H., van Loan C. F.: ‘Matric Computations', 2nd edition, John
Hopkins Univerity Press, Baltimore, 1989.

Gary J. E., Mehrotra R.: ‘Smilar Shape Retrieval using a Sructural
Feature Index’, Information Systems, Vol. 18, No. 7, 1993, pp. 525-537.

Greene D.: ‘ An Implementation and Performance Analysis of Spatial Data
Access Methods', Proc. 5th IEEE Int. Conf. on Data Engineering
(ICDE’89), Los Angeles, CA, 1989, pp. 606-615.

236

[GRG+ 99] Ganti V., Ramakrishnan R., Gehrke J., Powell A., French J.: ‘Clustering

[GRS 98]

[Gue 89]

[Gut 84]

[Hen 94]

[Hen 98]

[Hin 85]

[HJR 97]

[HK 98]

[HK 99]

[Hoa 62]
[HS 95]

[HS 98]

Large Datasetsin Arbitrary Metric Spaces’, Proc. 15th Int. Conf. on Data
Engineering (ICDE’99), Sidney, Australia, 1999, pp. 502-511.

GuhaS,, Rastogi R., Shim K.: ‘CURE: An Efficient Clustering Algorithms
for Large Databases', Proc. ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD’ 98), Seattle, WA, 1998, pp. 73-84.

Gunther O.: ‘The Design of the Cell Tree: An Object-Oriented Index
Sructure for Geometric Databases, Proc. 5th Int. Conf. on Data
Engineering, Los Angeles, CA, 1989, pp. 598-605.

Guttman A.: ‘R-trees. A Dynamic Index Sructure for Spatial Searching’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Boston, MA,
1984, pp. 47-57.

Henrich A.: 'A distance-scan algorithm for spatial access structures’,
Proc. 2nd ACM Workshop on Advances in Geographic Information
Systems, ACM Press, Gaithersburg, MD, 1994, pp. 136-143.

Henrich A.: ‘The LSDM-tree: An Access Sructure for Feature Vectors,
Proc. 14th Int. Conf. on Data Engineering, Orlando, FL, 1998,
pp. 362-369.

Hinrichs K.: ‘Implementation of the Grid File: Design Concepts and
Experiance’, BIT 25, pp. 569-592.

Huang Y.-W., Jing N., Rundensteiner E. A.: ‘ Spatial Joins Using R-trees:
Breadth-First Traversal with Global Optimizations', Proc. Int. Conf. on
Very Large Data Bases (VLDB’ 97), Athens, Greece, 1997, pp. 396-405.

Hinneburg A., Keim D. A.: ‘ An Efficient Approach to Clustering in Large
Multimedia Databases with Noise', Proc. 4th Int. Conf. on Knowledge
Discovery and DataMining (KDD’98), New York, NY, 1998, pp. 58-65.

Hinneburg A., Kem D. A.: *Optimal Grid-Clustering: Towards Breaking
the Curse of Dimensionality in High-Dimensional Clustering’, Proc. 25th
Int. Conf. on Very Large Data Bases (VLDB’99), Edinburgh, Scotland,
1999, pp. 506-517.

C.A.R. Hoare, ‘Quicksort’, in: Computer Journal, Vol. 5, No. 1, 1962.

Hjatason G R., Samet H.: ‘Ranking in Spatial Databases', Proc. 4th Int.
Symp. on Large Spatial Databases (SSD’95), Portland, ME, 1995,
pp. 83-95.

Hjaltason G. R., Samet H.: ‘Incremental Distance Join Algorithms for
Soatial Databases’, Proc. ACM SIGMOD Int. Conf. on Management of
Data, Seattle, WA, 1998, pp. 237-248.

237

[HSW 884]

[HSW 880

[HSW 89]

[HT 93]

[Jag 90]

[Jag 90b]

[Jag 91]

[JD 88]

[JW 96]

[Kal 86]

[Kei 97]

[KF 93]
[KF 94]

[KH 95]

Hutflesz A., Six H.-W., Widmayer P: ‘Globally Order Preserving
Multidimensional Linear Hashing’, Proc. 4th IEEE Int. Conf. on Data
Engineering, Los Angeles, CA, 1988, pp. 572-579.

Hutflesz A., Six H.-W., Widmayer P.: * Twin Grid Files. Space Optimizing
Acces Schemes’, Proc. Int. Conf. on Extending Database Technology,
Venice, Italy, 1988, pp. 352-363.

Henrich A., Six H.-W., Widmayer P: ‘The LSD-Tree: Spatial Access to
Multidimensional Point and Non-Point Objects’, Proc. 15th Conf. on Very
Large Data Bases, Amsterdam, The Netherlands, 1989, pp. 45-53, 1989.

Hattori K., Torii Y.: ‘ Effective algorithms for the nearest neighbor method
in the clustering problem’, Pattern Recognition, 1993, Vol. 26, No. 5,
pp. 741-746.

Jagadish H. V.: ‘Linear Clustering of Objects with Multiple Attributes’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Atlantic City,
NJ, 1990, pp. 332-342.

Jagadish H. V.: ‘Spatial Search with Polyhedra’, Proc. 6th Int. Conf. on
Data Engineering, Los Angeles, CA, 1990, pp. 311-319.

Jagadish H. V.: ‘A Retrieval Technique for Smilar Shapes, Proc. ACM
SIGMOD Int. Conf. on Management of Data, Denver, CO, 1991,
pp. 208-217.

Jain A. K., Dubes R. C.: ‘Algorithms for Clustering Data’, Prentice-Hall
Inc., 1988.

Jain R, White D. A.: *Smilarity Indexing: Algorithms and Performance’,
Proc. SPIE Storage and Retrieval for Image and Video Databases 1V,
Vol. 2670, San Jose, CA, 1996, pp. 62-75.

Kalos M. H., Whitlock P. A.: *‘Monte Carlo Methods', Wiley, New York,
1986.

Keim D. A.: ‘Efficient Smilarity Search in Spatial Database Systems',
habilitation thesis, Institute for Computer Science, University of Munich,
1997.

Kamel I., Faloutsos C.: *On Packing R-trees’, CIKM, 1993, pp. 490-499.

Kamel 1., Faoutsos C.: ‘Hilbert R-tree: An Improved R-tree using
Fractals'. Proc. 20th Int. Conf. on Very Large Data Bases, Santiago de
Chile, Chile, 1994, pp. 500-509.

Koperski K., Han J.. ‘Discovery of Spatial Association Rules in
Geographic Information Databases, Proc. 4th Int. Symp. on Large
Spatial Databases (SSD’95), Portland, ME, 1995, pp. 47-66.

238

[KKS 98]

[KM 00]

[KN 96]

[KN 97]

[KN 98]

[KN 99]

[KNT 00]

[Knu 75]

[KR 90]

[KS97]

[KS 98]

[KS 97b]

[KS 980]

Kastenmiller G, Kriegel H.-P, Seidl T.: ‘Smilarity Search in 3D Protein
Databases, Proc. German Conference on Bioinformatics (GCB98), KéIn
(Cologne), 1998.

Korn F, Muthukrishnan S.: ‘Influence Sets Based on Reverse Nearest
Neighbor Queries, Proc. ACM SIGMOD Int. Conf. on Management of
Data, Dallas, TX, 2000, pp. 201-212.

Knorr E. M., Ng R. T.: ‘Finding Aggregate Proximity Relationships and
Commonalities in Spatial Data Mining’, in: IEEE Trans. on Knowledge
and Data Engineering, Vol. 8, No. 6, December 1996, pp. 884-897.

Knorr E. M., Ng R. T.: ‘A Unified Notion of Outliers. Properties and
Computation’, Proc. 4th Int. Conf. on Knowledge Discovery and Data
Mining (KDD’97), Newport Beach, CA, 1997, pp. 219-222.

Knorr E. M., NgR. T.: ‘Algorithms for Mining Distance-Based Outliersin
Large Datasets’, Proc. 24th Int. Conf. on Very Large Data Bases
(VLDB’98), New York, NY, 1998, pp. 392-403.

Knorr E. M., NgR. T.: ‘Finding Intensional Knowledge of Distance-Based
Outliers’, Proc. 25th Int. Conf. on Very Large Data Bases (VLDB’99),
Edinburgh, Scotland, 1999, pp. 211-222.

Knorr E. M., Ng R. T., Tucakov V.: ‘Distance-based outliers: algorithms
and applications, in: The VLDB Journal, Vol. 8, 2000, pp. 237-253.

Knuth D.: “The Art of Computer Programming, Vol. 3', Addison-Wesley,
1975.

Kaufman L., Rousseeuw P. J.: ‘Finding Groups in Data: An Introduction
to Cluster Analysis', John Wiley & Sons, 1990.

Koudas N., Sevcik C.: ‘Sze Separation Spatial Join’, Proc. ACM
SIGMOD Int. Conf. on Management of Data, Tucson, AZ, 1997, pp. 324-
335.

Koudas N., Sevcik C.: ‘High Dimensional Smilarity Joins. Algorithms
and Performance Evaluation’, Proc. 14th Int. Conf on Data Engineering
(ICDE’98), Best Paper Award, Orlando, FL, 1998, pp. 466-475.

Katayama N., Satoh S.: ‘The SR-tree: An Index Sructure for High-
Dimensional Nearest Neighbor Queries’, Proc. ACM SIGMOD Int. Conf.
on Management of Data, Tucson, AZ, 1997, pp. 369-380.

Kriegel H.-P, Seidl T.: ‘ Approximation-Based Smilarity Search for 3-D
Surface Segments’, in: Geolnformatica Journal, Kluwer Academic
Publishers, Vol. 2, No. 2, 1998, pp. 113-147.

239

[KSF+ 96]

[KSS 97]

[Kuk 92]
[KW 85]
[LJF 95]

[LR 94]

[LR 96]

[LS89]

[LS90]

[Man 77]

[MCP 93]

[McQ 67]

[MG 93]

[MG 95]

Korn F., Sidiropoulos N., Faloutsos C., Siegel E., Protopapas Z.: ‘Fast
Nearest Neighbor Search in Medical Image Databases', Proc. 22nd Int.
Conf. on Very Large Data Bases (VLDB’96), Mumbai (Bombay), India,
1996, pp. 215-226.

Kriegel H.-P, Schmidt T., Seidl T.: ‘3D Smilarity Search by Shape
Approximation’, Proc. 5th Int. Symp. on Large Spatial Data Bases
(SSD’97), Berlin, Germany, in: Lecture Notes in Computer Science,
Vol. 1262, 1997, pp.11-28.

Kukich K.: ‘Techniques for Automatically Correcting Words in Text’,
ACM Computing Surveys, Vol. 24, No. 4, 1992, pp. 377-440.

Krishnamurthy R., Whang K.-Y.: ‘Multilevel Grid Files', IBM Research
Center Report, Yorktown Heights, N.Y., 1985.

LinK., Jagadish H. V., Faloutsos C.: ‘ The TV-Tree: An Index Sructure for
High-Dimensional Data’, in: VLDB Journal, Vol. 3, pp. 517-542, 1995.

Lo M.-L., Ravishankar C. V.: ‘Spatial Joins Using Seeded Trees', Proc.
ACM SIGMOD Int. Conf. on Management of Data, Minneapolis, MN,
1994, pp. 209-220.

Lo M.-L., Ravishankar C. V.: * Spatial Hash Joins’, Proc. ACM SIGMOD
Int. Conf. on Management of Data, Montreal, Canada, 1996, pp. 247-258.

Lomet D., Sazberg B.: ‘The hB-tree: A Robust Multiattribute Search
Sructure’, Proc. 5th IEEE Int. Conf. on Data Engineering (ICDE’ 89), Los
Angeles, CA, 1989, pp. 296-304.

Lomet D., Salzberg B.: ‘The hB-tree: A Multiattribute Indexing Method
with Good Guaranteed Performance’, in. ACM Trans. on Data Base
Systems, Vol. 15, No. 4, 1990, pp. 625-658.

Mandelbrot B.: ‘Fractal Geometry of Nature’, W. H. Freeman and
Company, New York, 1977.

Matheus C. J., Chan P. K., Piatetsky-Shapiro G.: “ Systems for Knowledge
Discovery in Databases’, IEEE Trans, on Knowledge and Data
Engineering, Vol. 5, No. 6, 1993, pp. 903-913.

McQueen J.. ‘Some Methods for Classification and Analysis of
Multivariate Observation’, Proc. 5th Berkeley Symp. on Math. Statist. and
Prob., Vol. 1, 1965, pp. 281-297.

MehrotraR., Gary J.: ‘ Feature-Based Retrieval of Smilar Shapes', Proc.
9th Int. Conf. on Data Engineering, Vienna, Austria, 1993, pp. 108-115.

MehrotraR., Gary J.: ‘ Feature-Index-Based Slilar Shaperetrieval’, Proc.
of the 3rd Working Conf. on Visual Database Systems (VDB’'95),
Lausanne, Switzerland, 1995, pp. 46-65.

240

[Mit 97]
[Mor 66]

[Mul 71]

[Mur 83]

[NBE 93]

[NH 94]

[INHS 84]

[OM 84]

[Ore 82]

[Ore 89]

[Ore 90]

[Ore 91]

[Oto 84]

Mitchel T.: "Machine Learning", McGraw-Hill, 1997.

Morton G.: ‘A Computer Oriented Geodetic Data BAse and a New
Technique in File Sequencing’, IBM Ltd., 1966.

Mullin, J. K.: ‘Retrieval-Update Speed Tradeoffs Using Combined
Indices, in: Communications of the ACM, Vol. 14, No. 12,
December 1971, pp. 775-776.

Murtagh F.: ‘A Survey of Recent Advances in Hierarchical Clustering
Algorithms', in: The Computer Journal, Vol. 26, No. 4, 1983, pp. 354-359.

Niblack W., Barber R., Equitz W., Flickner M., Glasmann E., Petkovic D.,
Yanker P, Faloutsos C., Taubin G.: ‘' The QBIC Project: Querying Images
by Content Using Color, Texture, and Shape’, Proc. SPIE 1993 Int. Symp.
on Electronic Imaging: Science and Technology Conference 1908, Storage
and Retrieval for Image and Video Databases, San Jose, CA, 1993.

Ng R. T., Han J.: ‘Efficient and Effective Clustering Methods for Spatial
Data Mining’, Proc. 20th Int. Conf. on Very Large Data Bases
(VLDB’94), Santiago de Chile, Chile, San Francisco, CA, 1994,
pp. 144-155.

Nievergelt J., Hinterberger H., Sevcik K. C.: ‘The Grid File: An
Adaptable, Symmetric Multikey File Sructure’, in: ACM Trans. on
Database Systems, Vol. 9, No. 1, 1984, pp. 38-71.

Orenstein J.,, Merret T. H.: ‘A Class of Data Sructures for Associative
Searching’, Proc. 3rd ACM SIGACT-SIGMOD Symp. on Principles of
Database Systems, 1984, pp. 181-190.

Orenstein J. A.: ‘Multidimensional tries used for associative searching’,
Inf. Proc. Letters, Vol. 14, No. 4, 1982, pp. 150-157.

Orenstein J. A.. ‘Redundancy in Spatial Databases, Proc. ACM
SIGMOD Int. Conf. on Management of Data, Portland, OR, 1989,
pp. 294-305.

Orenstein J. A., : * A comparison of spatial query processing technigues for
native and parameter spaces, Proc. ACM SIGMOD Int. Conf. on
Management of Data, Atlantic City, NJ, 1990, pp. 326-336.

Orenstein J. A.: ‘An Algorithm for Computing the Overlay of
k-Dimensional Spaces, Proc. Symp. on Large Spatial Databases
(SSD’91), Zurich, Switzerland, 1991, pp. 381-400.

Otoo, E. J.: * A Mapping Function for the Directory of a Multidimensional
Extendible Hashing’, Proc. 10th. Int. Conf. on Very Large Data Bases,
Singapore, 1984, pp. 493-506.

241

[Ouk 85]

[PD 96]

[PFTV 88

[PH 90]

[PM 97]

[PS 85]

[PSTW 93]

[Qui 86]

[RKV 95]

[Rob 81]

[RP 92]

[SA 97]

[Sag 94]

Ouksel M.: ‘The Interpolation Based Grid File’, Proc 4th ACM SIGACT/
SIGMOD Symp. on Principles of Database Systems, 1985, pp. 20-27.

Patel J. M., DeWitt D. J., ‘Partition Based Spatial-Merge Join’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, Montreal, Canada,
1996, pp. 259-270.

Press W., Flannery B. P, Teukolsky S. A., Vetterling W. T.: ‘Numerical
Recipesin C', Cambridge University Press, 1988.

Patterson D. A., Hennessy J. L.: *Computer Architecture: A Quantitative
Approach’, Morgan Kaufman, 1990.

Papadopoulos A., Manolopoulos Y.: ‘Performance of Nearest Neighbor
Queries in R-Trees', Proc. 6th Int. Conf. on Database Theory, Delphi,
Greece, in: Lecture Notesin Computer Science, Vol. 1186, Springer, 1997,
pp. 394-408.

Preparata F. P, Shamos M. |.: ‘Computational Geometry’, Chapter 5
(‘ Proximity: Fundamental Algorithms’), Springer Verlag New York, 1985,
pp. 185-225.

Pagel B.-U., Six H.-W., Toben H., Widmayer P.: ‘ Towards an Analysis of
Range Query Performance in Spatial Data Sructures’, Proc. 12th ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems,
(PODS 93), Washington DC, 1993, pp. 214-221.

Quinlan J. R.: ‘Induction of Decision Trees, in: Machine Learning
Journal, Vol. 1, 1986, pp. 81-106.

RoussopoulosN., Kelley S., Vincent F.: * Nearest Neighbor Queries’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, San Jose, CA, 1995,
pp. 71-79.

Robinson J. T.. ‘The K-D-B-tree: A Search Sructure for Large
Multidimensional Dynamic Indexes', Proc. ACM SIGMOD Int. Conf. on
Management of Data, Ann Arbor, MI, 1981, pp. 10-18.

Ramasubramanian V., Paiwa K. K.. ‘Fast k-Dimensional Tree
Algorithms for Nearest Neighbor Search with Application to \ector
Quantization Encoding’, IEEE Trans. on Signal Processing, Vol. 40,
No. 3, March 1992, pp. 518-531.

Shafer J. C., Agrawal R.: ‘Parallel Algorithms for High-dimensional
Proximity Joins, Proc. 23rd Int. Conf. on Very Large Data Bases, Athens,
Greece, 1997, pp. 176-185.

Sagan H.: ‘Space Filling Curves, Springer-Verlag Berlin/Heidelberg/
New York, 1994.

242

[Sch 91]

[Sch 95]

[SCZ 98]

[Sed 78]
[See 91]

[Sei 97]

[Sei 01]
[SEKX 98]

[SH 94]

[Sib 72]

[Sie 90]

[SK 90]

[SK 97]

[SML 00]

Schroder M.: ‘Fractals, Chaos, Power Laws: Minutes from an Infinite
Paradise’, W. H. Freeman and Company, New York, 1991.

Schiele O. H.: ‘Forschung und Entwicklung im Maschinenbau auf dem
Weg in die Informationsgesellschaft’ (in German, trandlation by the
author), Bundesministerium fur Bildung, Wissenschaft, Forschung und
Technologie, Frankfurt am Main, Germany, 1995, http://www.iid.de/
informationen/vdma/infoway3.html.

Sheikholesami G, Chatterjee S., Zhang A.: ‘WaveCluster: A Multi-
Resolution Clustering Approach for Very Large Spatial Databases’, Proc.
24th Int. Conf. on Very Large Data Bases (VLDB’98), New York, NY,
1998, pp. 428-439.

Sedgewick R.: ‘Quicksort’, Garland, New York, 1978.

Seeger B.: ‘Multidimensional Access Methods and their Applications,
Tutorial, 1991.

Seidl T.: *Adaptable Smilarity Search in 3-D Spatial Database Systems’,
Ph.D. Thesis, Faculty for Mathematics and Computer Science, University
of Munich, 1997.

Seidl T. ”’ Habilitation Thesis, University of Munich, 2001.

Sander J., Ester M., Kriegel H.-P, Xu X.: ‘Density-Based Clustering in
Satial Databases. The Algorithm GDBSCAN and its Applications’, in:
Data Mining and Knowledge Discovery, An International Journal, Vol. 2,
No. 2, Kluwer Academic Publishers, Norwell, MA, 1998, pp. 169-194.

Shawney H., Hafner J.: ‘Efficient Color Histogram Indexing’, Proc. Int.
Conf. on Image Processing, 1994, pp. 66-70.

Sibson R.: ‘SLINK: an optimally efficient algorithm for the single-link
cluster method’, in: The Comp. Journal, Vol. 16, No. 1, 1972, pp. 30-34.

Sierra H. M.: ‘An Introduction do Direct Access Sorage Devices,
Academic Press, 1990.

Seeger B., Kriegel H.-P: ‘ The Buddy Tree: An Efficient and Robust Access
Method for Spatial Data Base Systems’, Proc. 16th Int. Conf. on Very
Large Data Bases (VLDB’90), Brisbane, Australia, 1990, pp. 590-601.

Seidl T., Kriegel H.-P: ‘Efficient User-Adaptable Smilarity Search in
Large Multimedia Databases, Proc. 23rd Int. Conf. on Very Large
Databases (VLDB’ 97), Athens, Greece, 1997, pp. 506-515.

Shin H., Moon B., Lee S.: ‘Adaptive Multi-Sage Distance Join
Processing’, Proc. ACM SIGMOD Int. Conf. on Management of Data,
Dallas, TX, 2000, pp. 343-354.

243

[SML 01]

[SPG 91]

[Spr 91]

[SRF 87]

[SSA 97]

[SSH 86]

[Str 80]

[TC 91]

[TS 96]

[Uhl 91]

[UIl 89]

[VCVS 95]

[Wel 71]

[WJ 96]

Shin H., Moon B., Lee S.: ‘Adaptive and Incremental Processing for
Distance Join Queries’, submitted for publication 2001.

Silberschatz A., Peterson J., Galvin P: ‘Operating Systems Concepts’,
third edition, Addison-Wesley, 1991.

Sproull R. F.: ‘Refinements to Nearest Neighbor Searching in
k-Dimensional Trees', Algorithmica, 1991, pp. 579-589.

Sellis T., Roussopoulos N., Faloutsos C.: The R+-Tree: A Dynamic Index
for Multi-Dimensional Objects’, Proc. 13th Int. Conf. on Very Large Data
Bases (VLDB’87), Brighton, England, 1987, pp. 507-518.

Shim K., Srikant R., Agrawal R.: ‘High-dimensional Smilarity Joins’,
Proc. Int. Conf. on Data Engineering (ICDE’97), Birmingham, U.K.,
1997, pp. 301-311.

Stonebreaker M., Sellis T., Hanson E.: ‘An Analysis of Rule Indexing
Implementations in Data Base Systems’, Proc. 1st Int. Conf. on Expert
Data Base Systems, 1986.

Strang G.: ‘Linear Algebra and its Applications', 2nd edition, Academic
Press, 1980.

Taubin G, Cooper D. B.: ‘Recognition and Positioning of Rigid Objects
Using Algebraic Moment Invariants', in Geometric Methods in Computer
Vision, Vol. 1570, SPIE, 1991, pp. 175-186.

Theodoridis Y., Sdlis T. K.: ‘A Model for the Prediction of R-tree
Performance’, Proc. 15th ACM SIGACT-SIGMOD-SIGART Symp. on
Principles of Database Systems, Montreal, Canada, 1996, pp. 161-171,
ACM Press, ISBN 0-89791-781-2.

Uhlmann J. K., ‘Satisfying General Proximity/Smilarity Queries with
Metric Trees', Information Processing Letters, Vol. 40, 1991, pp. 175-179.

Ullman J. D.: ‘ Database and Knowledge-Base Systent, Vol. |1, Computer
Science Press, Rockville, MD, 19809.

Valdes F. G, Campusano L. E., Velasquez J. D., Stetson P. B.: ‘FOCAS
Automatic Catalogue Matching’, Publications of the Astronomical
Society of the Peacific, Vol. 107, 1995, p. 1119.

Welch T.: ‘Bounds on the Information Retrieval Efficiency of Satic File
Sructures', Technical Report 88, MIT, 1971.

WhiteD. A., Jain R.: *Smilarity indexing with the SS-tree’, Proc. 12th Int.
Conf on Data Engineering (ICDE96), New Orleans, LA, 1996,
pp. 516-523.

244

[WSB 98]

[WW 80]

[Yia 93]

[YY 85]

[WYM 97]

[ZRL 96]

Weber R., Schek H.-J, Blott S.:. ‘A Quantitative Analysis and
Performance Sudy for Smilarity-Search Methods in High-Dimensional
Foaces', Proc. 24th Int. Conf. on Very Large Data Bases (VLDB’ 98), New
York, NY, 1998, pp.194-205 Morgan Kaufmann Publishers, San
Francisco, CA.

Wallace T., Wintz P: ‘An Efficient Three-Dimensional Aircraft
Recognition Algorithm Using Normalized Fourier Descriptors,
Computer Graphics and Image Processing, Vol. 13, 1980, pp. 99-126.

Yiannilos P. N., ‘Data Sructures an Algorithms for Nearest Neighbor
Search in General Metric Spaces’, Proc. ACM-SIAM Symp. on Discrete
Algorithms, 1993, pp. 311-321.

Yao A. C., Yao F. F.: ‘A General Approach to D-Dimensional Geometric
Queries, Proc. ACM Symp. on Theory of Computing, 1985.

Wang W., Yang J., Muntz R.: ‘STING: A Satistical Information Grid
Approach to Spatial Data Mining’, Proc. 23th Int. Conf. on Very Large
Data Bases (VLDB’97), Athens, Greece, 1997, pp. 186-195, Morgan
Kaufmann Publishers, San Francisco, CA.

Zhang T., Ramakrishnan R., Linvy M.: ‘BIRCH: An Efficient Data
Clustering Method for Very Large Databases’, Proc. ACM SIGMOD Int.
Conf. on Management of Data , 1996, pp. 103-114, ACM Press, New
York.

245

Curriculum Vitae

Christian Bohm was born on September 28, 1968 in Rosenheim, Germany. He attended
primary and secondary school from 1975 to 1988.

He entered the Technische Universitét Minchen (TUM) in November 1988 for his
study in Computer Science. During this time, he worked as a self-employed software
engineer and consultant for various companies. In April 1994, he passed the final exam-
ination with distinction and received the diploma degree. His diploma thesis wasttitled
‘Management of Biological Sequence Data in an Object-Oriented Database System’ (in
German) which was supervised by Professor R. Bayer, Ph.D. and Professor Dr. J. Chris-
toph Freytag of Digital Equipment (DEC).

In July 1994, he entered the research group for knowledge bases of the FORWISS
institute (Bayerisches Forschungszentrum fir wissensbasierte Systeme) where he was

responsible for anation-wide digital library project.

In January 1996, he transferred to the Ludwig-Maximilians-Universitat Minchen
(LMU) where heisworking as aresearch and teaching assi stant with Professor Dr. Hans-
Peter Kriegel, the chair of the teaching and research unit for database systems at the
Institute for Computer Science of the LMU. Béhm received his doctoral degree in De-
cember, 1998. He gained the SIGM OD Best-Paper-Award in 1997 for ajoint publication
with Dr. Stefan Berchtold, Bernhard Braunmdiller, Professor Dr. Daniel Keim and Pro-

fessor Dr. Hans-Peter Kriegel.

246 Curriculum Vitae

