
Abstract
In this paper, we propose the Pyramid-Technique, a new index-
ing method for high-dimensional data spaces. The Pyramid-
Technique is highly adapted to range query processing using the
maximum metric Lmax. In contrast to all other index structures,
the performance of the Pyramid-Technique does not deteriorate
when processing range queries on data of higher dimensionality.
The Pyramid-Technique is based on a special partitioning strat-
egy which is optimized for high-dimensional data. The basic idea
is to divide the data space first into 2d pyramids sharing the cen-
ter point of the space as a top. In a second step, the single pyra-
mids are cut into slices parallel to the basis of the pyramid. These
slices form the data pages. Furthermore, we show that this parti-
tion provides a mapping from the given d-dimensional space to
a 1-dimensional space. Therefore, we are able to use a B+-tree to
manage the transformed data. As an analytical evaluation of our
technique for hypercube range queries and uniform data distribu-
tion shows, the Pyramid-Technique clearly outperforms index
structures using other partitioning strategies. To demonstrate the
practical relevance of our technique, we experimentally com-
pared the Pyramid-Technique with the X-tree, the Hilbert R-tree,
and the Linear Scan. The results of our experiments using
both, synthetic and real data, demonstrate that the Pyramid-
Technique outperforms the X-tree and the Hilbert R-tree by a
factor of up to 14 (number of page accesses) and up to 2500 (total
elapsed time) for range queries.

1 Introduction
During recent years, a variety of new database applications has
been developed which substantially differ from conventional da-
tabase applications in many respects. For example, new database
applications such as data warehousing [11] produce very large
relations which require a multidimensional view on the data, and
in areas such as multimedia [16, 20] a content-based search is es-
sential which is often implemented using some kind of feature
vectors. All the new applications have in common that the under-
lying database system has to support query processing on large
amounts of high-dimensional data. Now, the reader may ask
what the difference is between processing low- and high-dimen-
sional data. A result of recent research activities [5, 6, 23] is that
basically none of the querying and indexing techniques which

provide good results on low-dimensional data also performs suf-
ficiently well on high-dimensional data for larger queries. The
only approach taken to solve this problem for larger queries was
parallelization [2]. In this paper, however, we will tackle the
problems leading to the so-called curse of dimensionality. A va-
riety of new index structures [18, 19], cost models [5, 14] and
query processing techniques [7, 4] have been proposed. Most of
the index structures are extensions of multidimensional index
structures adapted to the requirements of high-dimensional in-
dexing. Thus, all these index structures are restricted with re-
spect to the data space partitioning. Additionally, they suffer
from the well-known drawbacks of multidimensional index
structures such as high costs for insert and delete operations and
a poor support of concurrency control and recovery. 

Motivated by these disadvantages of state-of-the-art index
structures for high-dimensional data spaces, we developed the
Pyramid-Technique. The Pyramid-Technique is based on a spe-
cial partitioning strategy which is optimized for high-dimen-
sional data. The basic idea is to divide the data space such that
the resulting partitions are shaped like peels of an onion. Such
partitions cannot be efficiently stored by R-tree-like index struc-
tures. However, we achieve the partitioning by first dividing the
d-dimensional space into 2d pyramids having the center point of
the space as their top. In a second step, the single pyramids are
cut into slices parallel to the basis of the pyramid forming the
data pages. As we will show both analytically and experimen-
tally, this strategy outperforms other partitioning strategies when
processing range queries. Furthermore, we will analytically
show that range query processing using our method is not af-
fected by the so-called “curse of dimensionality” i.e., the perfor-
mance of the Pyramid-Technique does not deteriorate when go-
ing to higher dimensions. Instead, the performance improves for
increasing dimension. Note that this analytical result is obtained
for hypercube shaped queries and uniform data distribution.
Queries, which touch the boundary of the data space, or very
skewed queries are handled less efficiently. However, as we will
show in the experimental section of this paper, even slightly
skewed queries can be handled efficiently. 

Another advantage of the Pyramid-Technique is the fact that
we use a mapping from the given d-dimensional data space to a
1-dimensional space in order to achieve the mentioned onion-
like partitioning. Therefore, we can use a B+-tree [1, 10] to store
the data items and take advantage of all the nice properties of B+-
trees such as fast insert, update and delete operations, good con-
currency control and recovery, easy implementation and re-us-
age of existing B+-tree implementations. The Pyramid-Tech-
nique can easily be implemented on top of an existing DBMS.

The rest of this paper is organized as follows: In section 2, we
give an overview of the related work in high-dimensional indexing
and show how the Pyramid-Technique is related to this work. In
section 3, we analyze the behavior of the space partitioning strat-
egy traditionally used by multidimensional index structures. In
section 4 and section 5 we present our new method, especially fo-
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cusing on the query processing algorithm of the Pyramid-Tech-
nique. Then, we analyze in section 6 the benefits of the Pyramid-
Technique. To improve the performance of the Pyramid-Tech-
nique in case of real data, we propose some extensions of the Pyr-
amid-Technique in section 7. Finally, we present a variety of ex-
periments demonstrating the practical impact of our technique. A
discussion of the weaknesses and limitations of the Pyramid Tech-
nique will conclude the paper.

2 Related Work

Recently, a few high-dimensional index structures have been
proposed.

Lin, Jagadish and Faloutsos presented the TV-tree [19] which
is an R-tree-like index structure. The central concept of the TV-
tree is the telescope vector (TV). Telescope vectors divide at-
tributes into three classes: attributes which are common to all
data items in a subtree, attributes which are ignored and at-
tributes which are used for branching in the directory. The moti-
vation for ignoring attributes is that a sufficiently high selectivity
can often be achieved by considering only a subset of the at-
tributes. Therefore, the remaining attributes have no chance to
substantially contribute to query processing. Obviously, redun-
dant storage of common attributes does not contribute to query
processing either. The major drawback of the TV tree is that in-
formation about the behavior of single attributes, e.g. their selec-
tivity, is required.

Another R-tree-like high-dimensional index structure is the
SS-tree [23] which uses spheres instead of bounding boxes in the
directory. Although the SS-tree clearly outperforms the R*-tree,
spheres tend to overlap in high-dimensional spaces. Thus, re-
cently a improvement of the SS-tree has been proposed in [18],
where the concepts of the R-tree and SS-tree are integrated into
a new index structure, the SR-tree. The directory of the SR-tree
consists of spheres (SS-tree) and hyper-rectangles (R-tree) such
that the area corresponding to a directory entry is the intersection
between the sphere and the hyper-rectangle. Therefore, the SR-
tree outperforms both the R*-tree and the SS-tree. 

In [17], Jain and White introduced the VAM-Split R-tree and
the VAM-Split KD-tree. Both are static index structures i.e. all
data items must be available at the time of creating the index.
VAM-Split trees are rather similar to KD-trees [21], however in
contrast to KD-trees, splits are not performed using the 50%-
quantile of the data according to the split dimension, but on the
value where the maximum variance can be achieved. VAM Split
trees are built in main memory and then stored on secondary stor-
age. Therefore, the size of a VAM Split tree is limited by the
main memory available during the creation of the index.

In [6], the X-tree has been proposed which is an index struc-
ture adapting the algorithms of R*-trees to high-dimensional
data using two techniques: First, the X-tree introduces an over-
lap-free split algorithm which is based on the split history of the
tree. Second, if the overlap-free split algorithm would lead to an
unbalanced directory, the X-tree omits the split and the accord-
ing directory node becomes a so-called supernode. Supernodes
are directory nodes which are enlarged by a multiple of the block
size. The X-tree outperforms the R*-tree by a factor of up to 400
for point queries.

All these approaches have in common that they must use the
50%-quantile when splitting a data page in order to fulfill storage
utilization guarantees. As we will show in the next Section, this
is the worst case in high-dimensional indexing, because the re-
sulting pages have an access probability close to 100%. 

To overcome this drawback, Berchtold, Böhm and Kriegel re-
cently proposed another approach in [3] where they applied un-

balanced partitioning of space. The proposed technique is an ef-
ficient bulk-loading operation of an X-tree. However, the ap-
proach is applicable only if all the data is known a priori which
is not always the case. Additionally, due to restrictions of the X-
tree directory, a peel-like partitioning cannot be achieved which
is important for indexing high-dimensional data spaces, as we
will see. 

3 Analysis of Balanced Splits 

It is well-known that for low-dimensional indexes it is beneficial
to minimize the perimeter of the bounding boxes of the page re-
gions so that all sides of the bounding box have approximately
the same length [9]. Such space partitioning is usually achieved
by recursively splitting the data space into equally filled regions
i.e. at the 50%-quantile. Therefore, we call such a split strategy
“balanced split”. In the following cost model, we assume a data-
base of N objects in a d-dimensional data space. The points are
uniformly distributed in the unit hypercube [0, 1]d. As we will
show in the experimental part, our results are also valid for real
data which are correlated and clustered. Further, we assume hy-
percubes with side-length q as queries, which are taken randomly
from the data space.

In high-dimensional spaces, some unexpected effects lead to
performance degeneration when applying a balanced split. For a
more detailed description of these effects we refer the reader to
[5]. The first observation is that, at least when applying balanced
partitioning to a uniformly distributed data set, the data space
cannot be split in each dimension. For example, assuming a 20-
dimensional data space which has been split exactly once in each
dimension, would require  data pages or
30,000,000 data objects if the average page occupancy is 30 ob-
jects. Following the notation used in the literature we will call the
average page occupancy effective page capacity Ceff. The data
space is usually split only once in a number d’ of dimensions and
is not split in the remaining (d - d’) dimensions. Thus, the bound-
ing boxes of the page regions include almost the whole extension
of the data space in these dimensions. If we assume the data
space to be the d-dimensional unit hypercube [0, 1]d, the bound-
ing boxes have approximately side length 1/2 in d’ dimensions
and approximately side length 1 in (d - d’) dimensions. The num-
ber d’ of dimensions, splitting the data space exactly once can be
determined from the number N of objects stored in the database
and the effective page capacity, as follows:

. 

The second observation is that a similar property holds for typ-
ical range queries. If we assume that the range query is a hyper-
cube and should have a selectivity s, then the side length q equals
to the d-th root of s: . For a 20-dimensional range
query with selectivity 0.01% we obtain a side length q = 0.63
which is larger than half of the extension of the data space in this
dimension. 

It becomes intuitively clear that a query with side length larger
than 0.5 must intersect with every bounding box having at least
side length 0.5 in each dimension. However, we are able to
model this effect more accurate: The performance of a multi-di-
mensional range query is usually modeled by means of the so-
called Minkowski sum which transforms the range query into an
equivalent point query by enlarging the bounding boxes of the
pages accordingly [5]. In low-dimensional spaces, usually so-
called boundary effects are neglected i.e., the data space is as-
sumed to be infinite and everywhere filled with objects accord-
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ing to the same density and therefore, no objects intersect the
boundary of the data space. 

To determine the probability that the bounding box of a page
region intersects the query region, we consider the portion of the
data space in which the center point of the query must be located
such that query and bounding box intersect. Therefore, we move
the center point of the query, the query anchor, to each point of
the data space marking the positions where the query rectangle
intersects the bounding box (c.f. Figure 1). The resulting set of
marked positions is called the Minkowski sum which is the orig-
inal bounding box having all sides enlarged by the query side
length q. Taking into account that the volume of the data space
is 1, the Minkowski sum directly corresponds to the intersection
probability. In practice, often a corner of the query rather than the
center is used as query anchor. Let LLCi,j and URCi,j denote the
j-th coordinates of the “lower left” and “upper right” corner of
bounding box i ( , ). The expected value
Pno_bound_eff(q) for page accesses when processing a range query
with side length q then is 

In order to adapt this formula to boundary effects, especially
considering that the bounding boxes as well as the query hyper-
cubes are always positioned completely in the data space, we ob-
tain: 

The minimum and maximum are necessary to cut the parts of
the Minkowski sum exceeding the data space, whereas the de-
nominator (1 -q) is due to fact that the stochastic “event space”
of the query anchor is not [0, 1] but rather [0, 1-q]. The model for
balanced splits can be simplified if the number of data pages is a
power of two. Then, all pages have the extension 0.5 in d’ dimen-
sions, accommodated in the lower or the upper half of the data
space, and full extension in the remaining dimensions. By Ceff
we denote the effective (average) capacity of a data page. It is de-

pendent on d. As in our special case, all pages have the same ac-
cess probability and thus, the expected value of data page ac-
cesses is:

Note that we require the minimum to assure that the expected
value doesn’t exceed the total number of data pages and that we
are able to ignore the remaining (d - d’) dimensions because the
extension of the data pages in these dimensions is 1. 

Figure 2 depicts the cost of range query processing using bal-
anced splits, as estimated by our model. In this figure, the dimen-
sion is varied, whereas the database size and the selectivity of the
query is constant. The percentage of accessed pages quickly ap-
proaches the 100%-mark which is actually met at dimension 10.
Efficient query processing is only possible in dimensions less
than 8.

This performance degeneration is a problem of all index struc-
tures which strive for a split at or close to the 50%-quantile of a
data set. The only way around this dilemma is to split in an un-
balanced way. Figure 3 depicts the partitions resulting from a
balanced and a peel-like split of the Pyramid-Technique in a 2-
dimensional example. As depicted, a large range query will in-
tersect all of the partitions when splitting in a balanced way, but
only a few pages, when splitting in peels. Besides, in the 2-di-
mensional example the effect, that most pages are intersected by
the query can only be seen for a maximum of four pages. When
going to higher dimensions, e.g. to a 5-dimensional space, then
25 = 32 pages can be created by splitting in each dimension ex-
actly once. In this case, all 32 pages are accessed. In contrast, the
pyramid technique yields 10 pyramids in the 5-dimensional data
space. Each pyramid is partitioned into three or 4 pieces. Like in
the 2-dimensional example, some of the partitions are very likely
not to be intersected by the query (In our figure, half of the pyr-
amids are scanned completely. In the other half, only one out of
three partitions are read. Together, 10 page accesses are saved.
This effect becomes stronger with increasing dimension).

4 The Pyramid-Technique

The basic idea of the Pyramid-Technique is to transform the d-di-
mensional data points into 1-dimensional values and then store
and access the values using an efficient index structure such as the
B+-tree [1, 10]. Potentially, any order-preserving one-dimensional
access method can be used. Operations such as insert, update, de-
lete or search operations are performed using the B+-tree. Figure 4
depicts the general procedure of an insert operation and the pro-
cessing of a range query. In both cases, the d-dimensional input is
transformed into some 1-dimensional information which can be
processed by the B+-tree. Note that, although we index our data us-
ing a 1-dimensional key, we store d-dimensional points plus the
corresponding 1-dimensional key in the leaf nodes of the B+-tree.
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Therefore, we do not have to provide an inverse transformation.
The transformation itself is based on a specific partitioning of the
data space into a set of d-dimensional pyramids. Thus, in order to
define the transformation, we first explain the data space partition-
ing of the Pyramid-Technique.

4.1 Data Space Partitioning

The Pyramid-Technique partitions the data space in two steps: in
the first step, we split the data space into 2d pyramids having the
center point of the data space (0.5, 0.5, ..., 0.5) as their top and a
(d-1)-dimensional surface of the data space as their base. In a
second step, each of the 2d pyramids is divided into several par-
titions each corresponding to one data page of the B+-tree. In the
2-dimensional example depicted in Figure 5, the space has been
divided into 4 triangles (the 2-dimensional analogue of the d-di-
mensional pyramids) which all have the center point of the data
space as top and one edge of the data space as base (Figure 5
left). In a second step, these 4 partitions are split again into sev-
eral data pages parallel to the base line (Figure 5 right). Given a
d-dimensional space instead of the 2-dimensional space, the base
of the pyramid is not a 1-dimensional line such as in the example,
but a (d-1)-dimensional hyperplane. As a cube of dimension d
has 2d (d-1)-dimensional hyperplanes as a surface, we obviously
obtain 2d pyramids. 

Numbering the pyramids as in the 2-dimensional example in
Figure 6a, we can make the following observations which are the
basis of the partitioning strategy of the Pyramid-Technique: All
points located on the i-th (d-1)-dimensional surface of the cube
(the base of the pyramid) have the common property that either
their i-th coordinate is 0 or their -th coordinate is 1. We
observe that the base of the pyramid is a (d - 1)-dimensional hy-
perplane, because one coordinate is fixed and (d - 1) coordinates
are variable. On the other hand, all points v located in the i-th
pyramid pi have the common property that the distance in the i-
th coordinate from the center point is either smaller than the dis-

tance of all other coordinates if , or larger if . More
formally:

Figure 6b depicts this property in two dimensions: all points
located in the lower pyramid are obviously closer to the center
point in their d0-direction than in their d1-direction. This com-
mon property provides a very simple way to determine the pyra-
mid pi which includes a given point v: we only have to determine
the dimension i having the maximum deviation  from
the center. More formally:

Definition 1: (Pyramid of a point v) 
A d-dimensional point v is defined to be located in pyramid pi, 

 

Note that all further considerations are based on this definition
which therefore is crucial for our technique. 

Another important property is the location of a point v within
its pyramid. This location can be determined by a single value
which is the distance from the point to the center point according
to dimension jmax. As this geometrically corresponds to the
height of the point within the pyramid, we call this location
height of v (c.f. Figure 7)

Definition 2: (Height of a point v) 
Given a d-dimensional point v. Let pi be the pyramid in which v

is located according to Definition 1. Then, the height hv of the

point v is defined as 

Figure 4: Operations on Indexes
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Using Definition 1 and Definition 2, we are able to transform
a d-dimensional point v into a value (i+hv) where i is the index of
the according pyramid pi and hv is the height of v within pi. More
formally:

Definition 3: (Pyramid value of a point v) 

Given a d-dimensional point v. Let pi be the pyramid in which v
is located according to Definition 1 and hv be the height of v ac-
cording to Definition 2. Then, the pyramid value pvv of v is de-
fined as 

Note that i is an integer and hv is a real number in the range [0,
0.5]. Therefore, each pyramid pi covers an interval of [i, (i+0.5)]
pyramid values and the sets of pyramid values covered by any
two pyramids pi and pj are disjunct. Note further that this trans-
formation is not injective i.e., two points v and v’ may have the
same pyramid value. But, as mentioned above, we do not require
an inverse transformation and therefore we do not require a
bijective transformation. 

4.2 Index Creation
Given the transformation determining the pyramid value of a
point q, it is a simple task to build an Index based on the Pyra-
mid-Technique. In order to dynamically insert a point v, we first
determine the pyramid value pvv of the point and insert the point
into a B+-tree using pvv as a key. Finally, we store the d-dimen-
sional point v and pvv in the according data page of the B+-tree.
Update and delete operations can be done analogously. Note that
B+-trees can be bulk-loaded very efficiently e.g, when building
a B+-tree from a large set of data items. The bulk-loading tech-
niques for B+-trees can be applied to the Pyramid-Technique, as
well. 

In general, the resulting data pages of the B+-tree contain a set
of points which all belong to the same pyramid and have the
common property that their pyramid value lies in an interval
given by the minimal and maximal key value of the data pages.
Thus, the geometric correspondence of a single B+-tree data page
is a partition of a pyramid as shown in Figure 7 (right). 

5 Query Processing

In contrast to the insert, delete and update operation, query pro-
cessing using the Pyramid-Technique is a complex operation.
Let us focus on point queries first which are defined as “Given a
query point q, decide whether q is in the database”. Using the
Pyramid-Technique, we can solve the problem by first comput-
ing the pyramid value pvq of q and querying the B+-tree using
pvq. As a result, we obtain a set of d-dimensional points sharing
pvq as a pyramid value. Thus, we scan the set and determine
whether the set contains q and output the result. 

In case of range queries, the problem is defined as follows:
“Given a d-dimensional interval 

, ..., , 

determine the points in the database which are inside the range.”
Note that the geometric correspondence of a multidimensional
interval is a hyper-rectangle. Analogously to point queries, we
face the problem to transform the d-dimensional query into a 1-
dimensional query on the B+-tree. However, as the simple 2-di-
mensional example depicted in Figure 8 (left) demonstrates, a
query rectangle may intersect several pyramids and the compu-
tation of the area of intersection is not trivial. As we also take
from the example, we first have to examine which pyramids are

affected by the query, and second, we have to determine the
ranges inside the pyramids. The test whether a point is inside the
ranges is based on a single attribute criterion (hv between two
values). Therefore, determining all such objects is a one-dimen-
sional indexing problem. Objects outside the ranges are guaran-
teed not to be contained in the query rectangle. Points lying in-
side the ranges, are candidates for a further investigation. It can
be seen in Figure 8 that some of the candidates are hits, others are
false hits. Then, a simple point-in-rectangle-test is performed in
the refinement step. 

For simplification, we focus the description of the algorithm
only on pyramids pi where , however, our algorithm can be
extended to all pyramids in a straight-forward way. As a first step
of our algorithm, we transform the query rectangle q into an
equivalent rectangle  such that the interval is defined relative
to the center point. 

 and , 

Additionally, we interpret any point v mentioned in this sec-
tion to be defined relative to the center point of the data space.
Based on Definition 1, we are able to determine if a pyramid pi
is affected by a given query . As we will see, we have to deter-
mine the absolute minimum and maximum of an interval which
is defined as follows: Let  be defined as the minimum of
the absolute values of an interval r:

Note that may be larger than . Analogously, we de-
fine

Lemma 1: (Intersection of a Pyramid and a Rectangle)
A pyramid pi is intersected by a hyperrectangle

 if and only if

Proof: 
The query rectangle intersects pyramid pi, iff there exists a

point v inside the rectangle which falls into pyramid pi. Thus, the
coordinates  of v must all be smaller than . This, however,
is only possible if the minimum absolute value in the query rect-
angle in dimension j is closer to the center point than  is to

pvv i hv+( )=
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the center point. Lemma 1 follows from the fact that this must
hold for all dimensions j. q.e.d.

In the second step, we have to determine which pyramid val-
ues inside an affected pyramid pi are affected by the query. Thus,
we are looking for an interval [hlow, hhigh] in the range of [0, 0.5]
such that the pyramid values of all points inside the intersection
of the query rectangle and pyramid pi are in the interval [i+hlow,
i+hhigh]. Figure 8 depicts this interval for two and three dimen-
sions. 

In order to determine hlow and hhigh, we first restrict our query
rectangle to pyramid pi i.e., we remove all points above the cen-
ter point: 

, , 

, and , where .

Note that we restricted our considerations to the pyramids
p0 .. . Therefore, the relevant values of  and  are
negative. The effect of this restriction is depicted in a two-di-
mensional example in Figure 9 (upper). 

The determination of the interval [hlow, hhigh] is very simple if
the center point of the data space is included in the query rectan-
gle i.e., . In this case, we sim-
ply use the extension of the query rectangle as a result, thus:

 and .

If the center point is not included in the query rectangle, we
first make the observation that , too. This is
due to the fact that the query rectangle must contain at least one
point v such that  because otherwise there
would be no intersection between the query rectangle and pyra-
mid pi. 

In order to find the value hlow, we have to determine the min-
imum height of points inside the query rectangle and the pyramid
pi. As we consider points which are inside  and inside pi, we
can intersect all intervals   with

 without affecting the value hlow. Then, the mini-
mum of the min-values of all dimensions of the new rectangle 
equals to hlow. Figure 9 (lower) shows an example of this opera-

tions. Obviously, the checkered rectangles on the left and the
right side of each example are causing the same value hlow.

Lemma 2: (Interval of Intersection of Query and Pyramid)

Given a query interval  and an affected pyramid pi, the inter-
section interval [hlow, hhigh] is defined as follows:

Case 1: ( )

 

Case 2: (otherwise)

 (*)

Proof: 

We will show for any point v which is located inside the query
rectangle  and an affected pyramid pi that the resulting query
interval [hhigh, hlow] contains . Note that we assumed i to be
smaller than d and thus . Therefore, we have to show that

. 

1. :

This holds because we chose hhigh such that
. 

2. :

If  contains the center point, we have . 

Otherwise,  because v is inside the

pyramid i. On the other hand,  because

v is inside the query rectangle and  because all coordi-
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Figure 10: Processing Range Queries (Algorithm)

Point_Set PyrTree::range_query(range q)
{
Point_Set res;
for (i = 0; i < 2d; i++) {
if (intersect(p[i], q) {
// using Lemma 1
determine_range(p[i], q, hlow, hhigh); 
// using Lemma 2

cs = btree_query(i+hlow, i+hhigh);
for (c = cs.first; cs.end; cs.next){
if (inside(q, c))
res.add(c);

}
}

}
return res;

}

vi vj j 0 j d<≤( ),∀( ),≥
vj q̂jm in

j 0 j d<≤( ),∀,≥
vj q jm in

≥ )



nates of v are negative for . Thus,

. 

Additionally,  because of the same reasons.

Assembling the two results, we derive:

. From equation

(*), however, follows that . So we finally obtain that

 q.e.d.

Lemma 1 and Lemma 2 imply the simple query processing al-
gorithm depicted in Figure 10.

6 Analysis of the Pyramid-Technique

For this analysis, we assume a uniform distribution of the data
space and of the query hypercubes. We propose a cost model for
the Pyramid-Technique, comparable to the model in section 3, to
analytically show the superiority of the Pyramid-Technique.
Thus, we model the cost for processing hypercube shaped range
queries having a side length larger than 0.5 to achieve a reason-
able selectivity for high-dimensional queries. In this case, the
center of the data space is always contained in the query and
therefore, our window query is transformed into a set of exactly
2d one-dimensional range queries with, 

 and .

We do not need the concept of the Minkowski sum here be-
cause we analyze the performance of one-dimensional interval
queries. However, we have to take into account that, in contrast
to the points of the database, the pyramid values are not uni-
formly distributed. 

In the first step of our model, we determine an expected value
for the amount of data in each pyramid, which has to be accessed
during query processing (the size of the candidate set). We con-
sider the lower left corner of the query

 as the anchor point of the query. QA
is obviously taken from the multidimensional interval

 to guarantee that the whole query is located
inside the data space. Therefore, the height hhigh in pyramid pi is
uniformly distributed in the interval  (c.f.
Figure 11). We call the part of the hyper-pyramid, starting with
hlow = 0 and ending with hhigh (underlaid in grey in Figure 11)
the affected part of the pyramid. The volume of affected part can
be determined using the fact that it is the 2d-th part of a hyper-
cube with side length :

.

From this volume of the affected part for a given hhigh, we can
also determine the expected value by forming an average over all
possible positions of hhigh in the interval Hi. Thus, we have to in-
tegrate over hhigh and then divide the result by the size of the in-
terval Hi, which yields the following integral formula:

The integral can be evaluated and simplified to:

As  is the expected volume of the affected part for a
query of size q in a single pyramid, under the uniformity assump-
tion,  is the expected to-
tal number of objects in the affected parts of all pyramids. 

These objects are the candidates for an exact-geometry test of
d-dimensional range containment (c.f. Figure 11). Since it is un-
likely that the affected part is perfectly aligned with a break be-
tween two subsequent pages, the question is, how many data
pages are occupied by the candidates. Note that all candidates
belong to a single interval of pyramid values and therefore, the
candidates are stored contiguously on the data pages. Thus, as-
suming a pagination with the effective page capacity Ceff, we
have to descend the directory of the B+-tree for each pyramid to
find the object with the lowest pyramid value in each pyramid.
This object may be located anywhere inside a data page. Then,
we have to read a run with the length of  objects,
which occupies  data pages. The last object is,
again located somewhere on a data page with an equal probabil-
ity of every position on the page. On average, we have to read
half a page before and after the run, respectively. Therefore, the
required number of accesses to data pages for all 2d pyramids is:

The number of accesses to directory pages is 2d times the

height of the B+-tree  and can be neglected

because the directory fits into the cache. We made the same as-
sumption in the model for balanced splitting. Figure 12 depicts
the performance of the Pyramid-Technique as predicted by our
model and, in comparison, the estimated cost when using bal-
anced splitting. The Pyramid-Technique does not reveal any per-
formance degeneration in high dimensions. 
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Note that we achieved this result by assuming hypercube
shaped queries, which are uniformly distributed over the data
space and, therefore, the result only holds for this query type.

7 The Extended Pyramid-Technique

All our considerations presented so far were based on the as-
sumption that the data is uniformly distributed. However, data
produced by real-life applications does not behave this way.
Therefore, the question arises, how to adapt the Pyramid-Tech-
nique to real data. Let us consider the following scenario: What
happens to the Pyramid-Technique if most of the data is located
in one corner of the data space (Figure 13 left). Obviously, only
a few pyramids (in the extreme case only one) will contain most
of the data while the other pyramids are nearly empty. This, how-
ever, will result in the suboptimal space partitioning depicted in
the example in Figure 13 (middle). Obviously, partitioning is
suboptimal because we can assume real-life queries to be simi-
larly distributed as the data itself. Under this realistic assump-
tion, a much better partitioning for the same data set is shown in
Figure 13 (right). 

The basic idea of the extended Pyramid-Technique is to
achieve such a partitioning by transforming the data space such
that the data cluster is located in the center point (0.5, ..., 0.5) of
space. Thus, we have to map the given data space to the canoni-
cal data space [0, 1]d such that the d-dimensional median of the
data is mapped to the center point. Note that we only have to as-
sure that the median of the data roughly coincides with the center
point of the data space. The presence of clusters distributed over
the space does not cause a problem for our technique. However,
we only apply the transformation to determine the pyramid val-
ues of points and query rectangles, but not to the points itself.
Therefore, we do not have to apply the inverse transformation to
our answer set. 

As the computation of the d-dimensional median is a hard
problem, we use the following heuristic to determine an approx-
imation of the d-dimensional median: We maintain a histogram
for each dimension to keep track of the median in this dimension.
The d-dimensional median is then approximated by the combi-
nation of the d one-dimensional medians. Obviously, the approx-
imated d-dimensional median may be located outside the convex
hull of the data cluster. As our experiments showed, this effect
occurs very rarely and therefore the performance of our algo-
rithms is not affected. The computation of the median can either
be done dynamically in case of dynamic insertions, or once in
case of a bulk-load of the index. 

Given the d-dimensional median mp of the data set, we define
a set of d functions ti,  transforming the given data
space in dimension i such that the following conditions hold: 

1.  

2. 

3. 

4. 

The three conditions are necessary to assure that the trans-
formed data space still has an extension of [0..1]d (1. and 2.), and
that the median of the data becomes the center point of the data
space (3.). Condition 4. assures that each point in the original
data space is mapped to a point inside the canonical data space.
The resulting functions ti can be chosen as an exponential func-
tion such that:

Obviously, conditions 1., 2., and 4. are satisfied by xr,
. In order to determine the parameter r, we have

to satisfy condition 3: . Thus,
 and 

Now, in order to insert a point v into an index using the ex-
tended Pyramid-Technique, we simply transform v into a point

 and determine the pyramid value pvv’ . Then, we insert
v using pvv’  as a key value as described in section 4.2. In order to
process a query, we first transform the query rectangle q (or
query point) into a query rectangle q’ such that 
and . Note that q’ is a rectangle because we ap-
plied independent transformations to each dimension. Next, we
use the algorithm presented in section 5, to determine the inter-
vals of affected pyramid values and query the B+-tree. As a re-
sult, we obtain a set of non-transformed d-dimensional points v
which we test against the original query rectangle q. Note that we
used the transformations ti only to determine the pyramid value
but we have not transformed the points itself. 

If we dynamically build an index, the situation may occur that
the first 10% of inserted points have a median different from that
of the other 90% of the data. More general, we have to handle the
situation that the median changes during the insertion process.
To handle this case, we maintain the current median by maintain-
ing a histogram for each dimension and re-build the index, if the
distance of the current median to the center point exceeds a cer-
tain threshold. Note that re-building the index is not too expen-
sive because we make use of a bulk-load technique for B+-trees.
In order to determine a good threshold, we use the value

 because the maximum distance from any point to
the center point is  and therefore, the adapting process is
guaranteed to terminate after a logarithmic number of steps. Note

Figure 13: Effect of Clustered Data
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further that the probability that the median shifts and therefore
the index has to be reorganized decreases with an increasing per-
centage of inserted data items. Therefore, a reorganization oc-
curs very rarely in practice. Furthermore, our experiments
showed that a slightly shifted median has a negligible influence
on the performance of the Pyramid-Technique.

8 Experimental Evaluation

To demonstrate the practical impact of the Pyramid-Technique
and to verify our theoretical results, we performed an extensive
experimental evaluation of the Pyramid-Technique and com-
pared it to the following competitive techniques:

 • X-tree [6]

 • Hilbert-R-tree [13]

 • Sequential Scan.

The Hilbert-R-tree has been chosen for comparison, because
the Hilbert-curve and other space filling curves can be used in
conjunction with a B-tree in a so-called one-dimensional embed-
ding. Since the Pyramid-Technique also incorporates a very so-
phisticated one-dimensional embedding, the Hilbert R-tree ap-
peared to us as a natural competitive method. 

Recently, the criticism arose that index-based query process-
ing is generally inefficient in high-dimensional data spaces [8],
and that sequential scan processing yields better performance in
this case. Therefore, we included the sequential scan in our ex-
periments. We will confirm the observation that the sequential
scan outperforms the X-Tree and the Hilbert R-Tree for high di-
mensionalities, but we will also see that our new technique out-
performs the sequential scan over in all experiments performed.

For clarity, we state our assumption that all relevant informa-
tion is stored in the various indexes, as well as in the file used for
the sequential scan. Therefore, no additional accesses to fetch
objects for presentation or further processing are needed in any
of the techniques applied in our experiments.

Our experiments have been computed on HP-9000/780 work-
stations with several GigaBytes of secondary storage. 

Our evaluation comprises both, real and synthetic data sets. In
all experiments, we performed range queries with a defined se-
lectivity because range queries serve as a basic operation for
other queries such as nearest neighbor queries or partial range
queries. The query rectangles are selected randomly from the
data space such that the distribution of the queries equals the dis-
tribution of the data set itself and the query rectangles are fully

included in the data space. Thus, in case of uniform data we used
uniformly distributed hypercube shaped query rectangles.

8.1 Evaluation Using Synthetic Data

Our synthetic data set contains 2,000,000 uniformly distributed
points in a 100-dimensional data space. The raw data file occu-
pies 800 MBytes of disk space. The main advantage of uniformly
distributed point sets is, that it is possible to scale down the di-
mensionality of the point set by projecting out some of the di-
mensions without affecting the semantics of the query. We cre-
ated files with varying dimension and varying number of objects
by projection and selection and constructed various indexes us-
ing these raw data files. 

In our first experiment (c.f. Figure 15) we measured the per-
formance behavior with varying number of objects. We per-
formed range queries with 0.1% selectivity in a 16-dimensional
data space and varied the database size from 500,000 to
2,000,000 objects. Unfortunately, using our implementation the
Hilbert-R-tree could only be constructed for a maximum of
1,000,000 objects due to limited main memory. The file sizes of
all indexes in this experiment sum up to 1.1 GigaBytes. The page
size in this experiment was 4096 Bytes, leading to an effective
page capacity of 41.4 objects per page in all index structures.
Figure 15 shows the performance of query processing in terms of
number of page accesses, absorbed CPU-time and finally the to-
tal elapsed time, comprising CPU time and time spent in disk i/
o. The speed-up with respect to the number of page accesses
seems to be almost constant and ranges between 9.78 and 10.91.
The speed-up in CPU time is higher than the speed-up in page ac-
cesses, but is only slightly increasing with growing database
sizes. The reason is that B+-trees facilitate an efficient in-page
search for matching objects by applying bisection or interval
search algorithms. However, most important is the speed-up in
total elapsed time. It starts with factor 53, increases quickly and
reaches its highest value with the largest database: The Pyramid-
Technique with 2 million objects performs range queries 879
times faster than the corresponding X-tree! Range query process-
ing on B+-trees can be performed much more efficient than on X-
trees because large parts of the tree can be traversed efficiently
by following the side links in the data pages. Moreover, long-dis-
tance seek operations inducing expensive disk head movements
have a lower probability due to better disk clustering possibilities
in B+-trees. The bar diagram on the right side of Figure 15 sum-
marizes the highest speed-up factors in this experiment.

Figure 15: Performance Behavior over Database Size



In a second experiment, visualized in Figure 16, we deter-
mined the influence of the data space dimension on the perfor-
mance of query processing. For this purpose we created 5 data
files as projections of the original data files with the dimension-
alities 8, 12, 16, 20, and 24 (the database size in this experiment
is 1,000,000 objects) and created the corresponding indexes. The
total amount of disk space occupied by the index structures used
in this experiment sums up to 1.6 GigaBytes. The page size in
this experiment was again 4096 Bytes. The effective data page
capacity depends on the dimension and ranged from 28 to 83 ob-
jects per page. We investigated range queries with a constant se-
lectivity of 0.01%. For a constant selectivity, the query range
varies according to the data space dimension. 

We observed that the efficiency of query processing using the
X-tree rapidly decreases with increasing dimension up to the
point where large portions of the index are completely scanned
(16-dimensional data space). From this point on, the page ac-
cesses are growing linearly with the index size. Even worse is the
performance of the Hilbert R-tree. A comparable deterioration of
the performance with increasing dimension is not observable
when using the Pyramid-Technique. Here, the number of page
accesses, the CPU and total elapsed time grow slower than the
size of the data set. The percentage of accessed pages with re-
spect to all data pages is even reduced with growing dimensions
(decreasing from 7.7% in the 8-dimensional experiment to 5.1%
in the 24-dimensional experiment). The experiment yields a
speed-up factor over the X-tree of up to 14.1 for the number of
page accesses, and 103.5 for the CPU time. Furthermore, the
Pyramid-Technique is up to 2500.7 times faster in terms of total
elapsed time than the X-tree. 

To demonstrate this observation that the percentage of pages
accessed by the Pyramid-Technique decreases when going to
higher dimensions, we determined the percentage of data pages
accessed during query processing when indexing very high di-
mensions. Figure 17 depicts the result of this experiment: The
percentage drops from 8.8% in 20 dimensions to 8.0% in 100 di-
mensions. 

8.2 Evaluation Using Real Data Sets
In this series of experiments, we used data sets from two differ-
ent application domains, information retrieval and data ware-
housing to demonstrate the practical impact of our technique. 

The first data set contains text descriptors, describing sub-
strings from a large text database extracted from WWW-pages.
These text descriptors have been converted into 300,000 points
in a 16-dimensional data space and were normalized to the unit
hypercube. We varied the selectivity of the range queries from
10-5 to 31% and measured the query execution time (total
elapsed time). The result is presented in Figure 18 and confirms
our earlier results on synthetic data that the Pyramid-Technique
clearly outperforms the other index structures. The highest
speed-up factor observed was 51. Additionally, the experiment
shows that the Pyramid-Technique outperforms the competitive
structures for any selectivity i.e., for very small queries as well
as for very large queries. 

In a last series of experiments, we analyzed the performance
of the Pyramid-Technique on a data set taken from a real-life
data warehouse. The relation we used has 13 attributes: 2 cate-
gorical, 5 integer, and 5 floating point attributes. There are some
very strong correlations in some of the floating point attributes,
some of the attributes follow a very skewed distribution, whereas

Figure 17: Percentage of Accessed Pages Figure 18: Query Processing on Text Data

Figure 16: Performance Behavior over Data Space Dimension



some other attributes are rather uniformly distributed. The actual
data set we used comprises a subset of 803,944 tuples containing
data of a few months. In a first experiment, we measured the real
time consumed during query processing. Again, the Pyramid-
Technique outperformed the other index structures by orders of
magnitude. As expected, the speed-up increases when going to
higher dimensions because the effects described in section 3 ap-
ply more for larger query ranges. However, even for the smallest
query range in the experiment, the speed-up factor over the X-
tree was about 10.47, whereas the speed-up for the largest query
range was about 505.18 in total query execution time. 

In a second experiment, we measured the effect of the exten-
sion of the Pyramid-Technique proposed in section 7. We made
the experiment on this data set because the data is very skew and
the median is rather close to the origin of the data space in most
of the dimensions. Figure 21 shows the effect of the extension.
For all selectivities, there was a speed-up of about 10-40%. This
shows first that for very skewed data, it is worth it reorganizing
the index, and second that, if we refuse to do so, the loss of per-
formance is not too high compared to the high speed-up factors
over other index structures. 

A major point of criticism is the argument that the Pyramid-
Technique is designed for hypercube shaped range queries and
might perform bad for other queries. Therefore, we ran an addi-
tional experiment investigating the behavior of the Pyramid-
Technique for skewed queries. We generated partial range que-
ries shrinking the data space in k dimensions and having the full

extension of the data space in (d-k) dimensions. These queries
can be considered as (d-k)-dimensional hyper-slices in a d-di-
mensional space. As Figure 20 shows, the Pyramid-Technique
outperforms the linear scan for all of these queries except the 1-
dimensional queries. For 1-dimensional queries, the Pyramid-
Technique required 2.6 sec. compared to 2.48 sec. for the linear
scan. However, a large improvement was observed for 8-dimen-
sional to 13-dimensional queries. The X-Tree couldn’t compete
with the Pyramid-Technique for any of these queries. 

Summarizing the results of our experiments, we make the fol-
lowing observations:

1) For almost hypercube shaped queries, the Pyramid-Tech-

nique outperforms any competitive technique, including lin-
ear scan. This holds even for skewed, clustered and categor-

ical data. 

2) For queries having a bad selectivity, i.e. a high number of an-
swers, or extremely skewed queries, especially queries spec-

ifying only a small number of attributes, the Pyramid-Tech-

nique still outperforms competitive index structures, how-
ever, a linear scan of the database is faster.

9 Conclusions

In this paper, we proposed a new indexing method, the Pyramid-
Technique. It is based on a special partitioning strategy which
has been optimized for high-dimensional range queries. The data
space partitioning transforms d-dimensional points into 1-di-
mensional values which can be efficiently managed by a B+-tree.
We showed both, theoretically (assuming uniform distribution)
as well as experimentally (for synthetic and real data) that the
Pyramid-Technique outperforms other index structures such as
the X-tree by orders of magnitude. 

The concepts of the Pyramid-Technique come best into effect
for hypercube shaped range queries. For very skewed queries or
queries specifying only one attribute, the Pyramid-Technique
performs worse than the linear scan. However, as our experi-
ments show, none of the index structures proposed so far can
handle very skewed queries efficiently. We plan to address the
problem of handling strong skew in our future work.

Figure 19: Query Processing on Warehousing Data
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Figure 20: Varying the query mix (Warehouse Data)
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Figure 21: Performance of the Extended Pyramid-T.
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