
- 1 -

Epsilon Grid Order: An Algorithm
for the Similarity Join on Massive High-Dimensional Data

Christian Böhm, Bernhard Braunmüller, Florian Krebs, and Hans-Peter Kriegel
Institute for Computer Science, University of Munich

Oettingenstr. 67, D-80538 München, Germany
Phone: +49-89-2178-2191, Fax: +49-89-2178-2192

{boehm,braunmue,krebs,kriegel}@dbs.informatik.uni-muenchen.de

ABSTRACT

The similarity join is an important database primitive which has
been successfully applied to speed up applications such as sim-
ilarity search, data analysis and data mining. The similarity join
combines two point sets of a multidimensional vector space
such that the result contains all point pairs where the distance
does not exceed a parameter ε. In this paper, we propose the Ep-
silon Grid Order, a new algorithm for determining the similarity
join of very large data sets. Our solution is based on a particular
sort order of the data points, which is obtained by laying an
equi-distant grid with cell length ε over the data space and com-
paring the grid cells lexicographically. A typical problem of
grid-based approaches such as MSJ or the ε-kdB-tree is that
large portions of the data sets must be held simultaneously in
main memory. Therefore, these approaches do not scale to large
data sets. Our technique avoids this problem by an external sort-
ing algorithm and a particular scheduling strategy during the
join phase. In the experimental evaluation, a substantial im-
provement over competitive techniques is shown.

Keywords
Similarity join, high-dimensional space, data mining,
knowledge discovery, similarity search, feature transformation.

1. INTRODUCTION
Very large sets of multidimensional vector data have become
widespread to support modern applications such as CAD
[Jag 91], multimedia [FBFH 94], molecular biology [KS 98b],
medical imaging [KSF+ 96], and time series analysis [AFS 93].
In such applications, complex objects are stored in databases. To

facilitate the search by similarity, multidimensional feature vec-
tors are extracted from the original objects and organized in mul-
tidimensional access methods. The particular property of this
feature transformation is that the Euclidean distance between
two feature vectors corresponds to the (dis-) similarity of the
original objects from the underlying application. Therefore, a
similarity search can be translated into a neighborhood query in
the feature space [FBFH 94].

If a user is not only interested in the properties of single data
objects but also in the properties of the data set as a whole he or
she is supposed to run data mining algorithms on the set of fea-
ture vectors. Data mining is the process of extracting implicit
knowledge from the data set which is previously unknown and
potentially useful. Standard tasks of data mining are clustering
[GRS 98], i.e. finding groups of objects such that the intra-group
similarity is maximized and the inter-group similarity is mini-
mized, outlier detection [KN 98], or the determination of associ-
ation rules [KH 95]. Considering these standard tasks, we can
observe that many of the state-of-the-art algorithms require to
process all pairs of points which have a distance not exceeding a
user-given parameter ε. This operation of generating all pairs is
in essence a similarity join: Two d-dimensional data sets

 and are combined such
that the result set contains all point pairs where the distance
does not exceed an user-given parameter ε, i.e.

. As a consequence, many data
mining algorithms can be directly performed on top of a similar-
ity join as proposed in [BBBK 00].

A typical example of such an algorithm is the clustering algo-
rithm DBSCAN [SEKX 98]. This algorithm defines a point p of
the database to be a core point with respect to the user-given pa-
rameters ε and min_pts if at least a number min_pts of the points
in the database have a distance of no more than ε from p. To com-
pute the overall cluster structure, the algorithm transitively col-
lects all core points which have a distance not exceeding ε from
each other. The original definition of the algorithm performs a
range query with the radius ε for each point stored in the data-
base. Recently, it was shown that each of the two subtasks, core
point determination and cluster collection, can be performed
equivalently (i.e. yielding exactly the same result) by a single run
of a similarity join [BBBK 00]. This transformation allows great

S1 p1 … pn, ,{ }= S2 q1 … qm, ,{ }=
rs

rs pi qj,() | pi qj– ε≤{ }=

Proc. ACM SIGMOD Int. Conf. on Management of Data, Santa Barbara, CA, 2001.

- 2 -

performance improvements (up to 54 times faster) using stan-
dard join algorithms. There are numerous other algorithms for
knowledge discovery in databases which can be performed on
top of the similarity join, for instance the outlier detection algo-
rithm RT [KN 98], nearest neighbor clustering [HT 93], sin-
gle-link clustering [Sib 73], the hierarchical cluster analysis
method OPTICS [ABKS 99], proximity analysis [KN 96], spa-
tial association rules [KH 95].

Due to the high impact of the similarity join operation, a con-
siderable number of different algorithms to evaluate the similar-
ity join have been proposed. However, there is no technique
which efficiently scales to very large data sets, i.e. data sets in
the order of 1 GB. This is the main focus of our paper. We pro-
pose a similarity join algorithm, denoted as epsilon grid order,
which is based on a particular sorting order of the data points.
Our algorithm applies an external sorting algorithm combined
with a sophisticated scheduling strategy which allows our tech-
nique to operate with a limited cache buffer. Consequently, our
algorithm exhibits a high scalability.

The remainder of our paper is organized as follows: In section
2, we review the most relevant similarity join algorithms. Then,
we introduce and discuss our new approach, the epsilon grid or-
der, in section 3. In section 4, we propose several optimization
techniques which further enhance our basic similarity join algo-
rithm. The experimental evaluation of our approach is presented
in section 5 and section 6 concludes the paper.

2. RELATED WORK
In the relational data model a join means to combine the tuples
of two relations R and S into pairs if a join predicate is fulfilled.
In multidimensional databases, R and S contain points (feature
vectors) rather than ordinary tuples. In a similarity join, the join
predicate is similarity, i.e. the Euclidean distance between two
feature vectors stored in R and S must not exceed a threshold val-
ue ε in order to appear in the result set of the join. If R and S are
actually the same point set, the join is called a self-join.

2.1 Join Algorithms Using R-trees
Most related work on join processing using multidimensional in-
dex structures is based on the spatial join. The spatial join oper-
ation is defined for 2-dimensional polygon databases where the
join predicate typically is the intersection between two objects.
This kind of join predicate is prevalent in map overlay applica-
tions. We adapt the relevant algorithms to allow distance based
predicates for multidimensional point databases instead of the
intersection of polygons.

The most common technique is the R-tree Spatial Join (RSJ)
[BKS 93] which processes R-tree like index structures built on
R and S. RSJ is based on the lower bounding property which
means that the distance between two points is never smaller than
the distance between the regions of the two pages in which the
points are stored. The RSJ algorithm traverses the indexes of R
and S synchronously. When a pair of directory pages (PR,PS) is

under consideration, the algorithm forms all pairs of the child
pages of PR and PS having distances of at most ε. For these pairs
of child pages, the algorithm is called recursively, i.e. the corre-
sponding indexes are traversed in a depth-first order.

Various optimizations of RSJ have been proposed. Huan, Jing
and Rundensteiner propose the BFRJ-algorithm [HJR 97] which
traverses the indexes according to a breadth-first strategy. At
each level, BFRJ creates an intermediate join index and deploys
global optimization strategies (e.g. ordering the pages by a
space-filling curve such as the Z-order) to improve the join com-
putation at the subsequent level. Improved cache management
leads to 50% speed-up factors. Brinkhoff, Kriegel and Seeger
adapted RSJ for join processing on parallel computers using
shared virtual memory [BKS 96]. Their technique improves both
CPU time and I/O time.

Recently, index based similarity join methods have been an-
alyzed from a theoretical point of view. [BK 01] proposes a cost
model based on the concept of the Minkowski sum [BBKK 97]
which can be used for optimizations such as page size optimiza-
tion. The analysis reveals a serious optimization conflict be-
tween CPU and I/O. While the CPU requires fine-grained parti-
tioning with page capacities of only a few points per page, large
block sizes of up to 1 MB are necessary for efficient I/O opera-
tions. Optimizing for CPU deteriorates the I/O performance and
vice versa, and even compromises are hard to achieve, because
both optima are too different. The consequence is that an index
architecture is necessary which allows a separate optimization of
CPU and I/O operations. Therefore, the authors propose the Mul-
tipage Index (MuX), a complex index structure with large pages
(optimized for I/O) which accommodate a secondary search
structure (which is optimized for maximum CPU efficiency). It
is shown that the resulting index yields an I/O performance
which is similar (equal, up to a small additional overhead by the
more complex structure) to the I/O optimized R-tree similarity
join and a CPU performance which is close to the CPU optimized
R-tree similarity join.

2.2 Join Algorithms without Index
If no multidimensional index is available, it is possible to con-
struct the index on the fly before starting the join algorithm. Usu-
ally, the dynamic index construction by repeated insert opera-
tions performs poorly and cannot be amortized by performance
gains during join processing. However, several techniques for
bulk-loading multidimensional index structures have been pro-
posed [KF 94, BSW 97, BBK98].

The seeded tree method [LR 94] joins two point sets provided
that only one is supported by an R-tree. The partitioning of this
R-tree is used for a fast construction of the second index on the
fly. The spatial hash-join [LR 96, PD 96] decomposes the set R
into a number of partitions which is determined according to sys-
tem parameters. Sampling is applied to determine initial buckets.
Each object of R is inserted into a bucket such that bucket en-
largement and bucket overlap are minimized. Then, each object

- 3 -

of S is inserted into every bucket having a distance not greater
than epsilon from the object (object replication). If each bucket
fits in main memory, a single scan of the buckets is sufficient to
determine all join pairs.

A join algorithm particularly suited for similarity self joins is
the ε-kdB-tree [SSA 97]. The basic idea is to partition the data
set perpendicularly to one selected dimension into stripes of the
width ε to restrict the join to pairs of subsequent stripes. The join
algorithm is based on the assumption that the database cache is
large enough to hold the data points of two subsequent stripes. In
this case it is possible to join the set in a single pass. To speed up
the CPU operations, for each stripe a main memory data struc-
ture, the ε-kdB-tree is constructed which also partitions the data
set according to the other dimensions until a defined node capac-
ity is reached. For each dimension, the data set is partitioned at
most once into stripes of width ε. Finally, a tree matching algo-
rithm is applied which is restricted to neighboring stripes.

It was pointed out in [BK 01] that the ε-kdB-tree has very re-
stricting limitations when scaling to large data sets which are not
main memory resident. Depending on several parameters such
as the data distribution the algorithm needed large portions of the
database simultaneously in main memory in order to be opera-
tional at all. For instance, an 8-dimensional artificial data set
needed a constant ratio of 60% of the database in the cache, in-
dependent of the size of the database for the basic technique pro-
posed in [SSA 97]. Having this limitation in mind, the authors of
the ε-kdB-tree have also proposed an extension of their tech-
nique which does not perform a single database scan but reads
parts of the database multiple times according to a complex
scheduling pattern. Applying this extension, however, reduced
the required cache size merely from 60% to 36% of the database
size. Even for the real data experiments in [BK 01] some of the
ε-stripes contained too many data points (e.g. 35% for meteorol-
ogy data) and, therefore, the algorithm failed in the required con-
figuration.

Koudas and Sevcik have proposed the Size Separation Spatial
Join [KS 97] and the Multidimensional Spatial Join [KS 98a]
which make use of space filling curves to order the points in a
multidimensional space. Each point is considered as a cube with
side-length ε in the multidimensional space. Each cube is as-
signed a value l (level) which is essentially the size of the largest
cell (according to the Hilbert decomposition of the data space)
that contains the point. The points are distributed over several
level-files each of which contains the points of a level in the order
of their Hilbert values. For join processing, each subpartition of
a level-file must be matched against the corresponding subparti-
tions at the same level and each higher level file of the other data
set. Basically, S3J and MSJ have similar scalability limitations as
the ε-kdB-tree. With increasing dimension, it becomes more and
more likely that the cubes intersect with decomposition planes at
a very high level. [BK 01] reported that an average of 46% of the
DB size (e.g. for 8-dimensional artificial data) were needed si-
multaneously in main memory during the scan of the database.

3. THE EPSILON GRID ORDER
In this section, we propose our algorithm for the similarity join
on massive high-dimensional data sets. Our algorithm is based
on a particular order of the data set, the epsilon grid order, which
is defined in the first part of this section. We will show that the
epsilon grid order is a strict order (i.e. an order which is irreflex-
ive, asymmetric and transitive). Then, we will prove a property
of the epsilon grid order which is very important for join process-
ing: We show that all join mates of some point p lie within an in-
terval of the file. The lower and upper limit of the interval is de-
termined by subtracting and adding the vector [ε,ε,...,ε]T to p,
respectively. Therefore, we call the interval the ε-interval.

Our join algorithm exploits this knowledge of the ε-interval.
Assuming a limited cache size, we have to distinguish two cases:
The ε-interval of a point fits into the main memory or not. If the
ε-interval of each database point fits into main memory, then a
single scan of the database is sufficient for join processing. We
call this kind of database traversal the gallop mode. If the ε-in-
tervals of some points do not fit into the main memory, we have
to scan the corresponding part of the database more than once.
The database is traversed in the so-called crabstep mode. These
two modes will be explained in section 3.2. Finally, we will show
in section 3.3 how sequences of epsilon-grid ordered points can
be joined efficiently with respect to CPU operations. Epsilon
grid ordering yields the particular advantage that no directory
structure needs to be constructed for this purpose. In contrast to
index structures that manage main memory data structures such
as MuX or ε-kdB-trees the full buffer size can be used to store
point information; nearly no buffer capacity is wasted for man-
agement overhead.

3.1 Basic Properties of the Epsilon Grid Order
First we give a formal definition of the Epsilon Grid Order
(· <ego ·). For this order, a regular grid1 is laid over the data space,
anchored in the origin, and with a grid distance of ε. We define a
lexicographical order on the grid cells, i.e. the first dimension d0
has the highest weight; for two grid cells having the same coor-
dinates in d0, the next dimension d1 is considered, and so on. This
grid cell order is induced to the points stored in the database: For
a pair of two points p and q located in different grid cells, we let
p <ego q be true if the grid cell surrounding p is lexicographically
lower than the grid cell surrounding q. Since we want to avoid
explicit numbering of grid cells (which would be slightly clumsy
unless we assume a previously limited data space), the following
definition determines the order for the points directly, without
explicitly introducing the grid cells:

1. Note that our grid is never materialized. It is neither neces-
sary to determine nor to store grid cells of the data space. We
use the grid cells merely as a concept to order the points, not
as a physical storage container.

- 4 -

Definition 1 Epsilon Grid Order (· <ego ·)
For two vectors p, q the predicate p <ego q is true if (and only
if) there exists a dimension di such that the following condi-
tions hold:

(1)

(2)

Our first lemma proves that the epsilon grid order is, indeed, an
order. We have not defined the epsilon grid order as a reflexive
order due to points which are located in the same grid cell. Such
points are not able to fulfill the antisymmetry property which is
usually required for an order. Therefore, we have defined the ep-
silon grid order as an irreflexive or strict order which is required
to be irreflexive, asymmetric, and transitive. There are almost no
consequences from a practical point of view. For instance, the
usual sorting algorithms can cope with an irreflexive order with-
out modification. In the following lemma, we prove the three re-
quired properties, one of which (transitivity) is also exploited in
lemma 2 and 3.

Lemma 1. The Epsilon Grid Order is an irreflexive order.

Proof:
Irreflexifity (¬ =p <ego p):

p <ego p cannot hold, because there is no dimension di for
which ;
Asymmetry (=p <ego q ¬ =q <ego p):

Since p <ego q holds there exists a dimension di with
 and for all j < i. There-

fore, we know that holds but neither
 nor can be true, and,

therefore, q <ego p is false.
Transitivity (=p <ego q ∧ q <ego r p <ego r):

Since p <ego q holds there exists a dimension di with
 and for all j < i. Since

q <ego r holds there exists a dimension di’ with
and for all j < i’. Without loss of generality
we assume i < i’ (the other cases are similar). We know that

 for all j < i and that
, and, therefore, p <ego r.

In the next two lemmata, we show that our join algorithm
needs not to consider any point as a join mate of some point p
which is less (according to the epsilon grid order) than the point
p − [ε,ε,...,ε]T or greater than the point p + [ε,ε,...,ε]T. We note
without a formal proof that these bounds are in general much
tighter than the bounds of the ε-kdB-tree join algorithm: While
the ε-kdB-tree needs two contiguous stripes of grid cells simul-
taneously in the main memory, our algorithm needs only one
stripe plus one additional grid cell for a similarity self join.

Lemma 2. A point q with q <ego p − [ε,ε,...,ε]T cannot be a join
mate of p or of any point p’ which is not p’ <ego p.

Proof:
Following definition 1, there exists a dimension di such that

The monotonicity1 of the floor function insures that .
Because both ε and are positive we can rewrite this as

. This specific square (pi − qi)2 for some i cannot
be smaller than the sum of all squares, which corresponds to the
distance between p and q:

Due to the transitivity of (· <ego ·), there exists also a dimension di´
such that . Therefore, also is valid.

Lemma 3. A point q with p + [ε,ε,...,ε]T <ego q cannot be a
join mate of p or of any point p’ which is not p <ego p’.

Proof. Analogous to lemma 2.

3.2 I/O Scheduling Using the ε Grid Order
In the previous section we have shown that our join algorithm
must consider all points between p − [ε,ε,...,ε]T and
p + [ε,ε,...,ε]T to find the join mates of p. In this section we con-
struct an algorithm which schedules the disk I/O operations for
a similarity self join on a file of points which is sorted according
to the epsilon grid order.

In our algorithm, we want to allow for unbuffered I/O opera-
tions on raw devices. Therefore, we assume that the block size
for the I/O units is a multiple of some hardware given system
constant. Generally, an I/O unit does not contain a whole number
of data point records. Instead, an I/O unit is allowed to store frag-
ments of point records at the beginning and at the end. Our join
algorithm solves the corresponding problems by storing the frag-
ments in separate variables. The number of points contained in
an I/O unit is to some extent system given. Due to fragmentation,
the number of point records per I/O unit my vary by ±1. In gen-
eral, the points in an I/O unit are not perfectly aligned to rows and
columns of the grid, as in the 2-dimensional example depicted in
figure 1.

Figure 2 shows which pairs of I/O units must be considered
for join processing. Each entry in the matrix stands for one pair
of I/O units (taken from the example in figure 1), for instance,
the upper left corner for the pair (1,1), i.e. the self join of
“I/O-Unit 1”. For the self join operation, our algorithm needs not
to consider the lower left triangular matrix due to the symmetry
of the pairs. The pair (x,y) is equivalent to the pair (y,x), and,
therefore, the lower left half is canceled in the figure. A large, but
less regular part in the upper right corner is also cancelled. The

pi
ε

qi
ε
----<

pj
ε

qj
ε
----= j i<∀

pi ε⁄ pi ε⁄<

pi ε⁄ qi ε⁄< pj ε⁄ qj ε⁄=
qj ε⁄ pj ε⁄=

qi ε⁄ pi ε⁄< qi ε⁄ pi ε⁄=

pi ε⁄ qi ε⁄< pj ε⁄ qj ε⁄=
qi ′ ε⁄ ri ′ ε⁄<

qj ε⁄ rj ε⁄=

pj ε⁄ qj ε⁄ rj ε⁄= =
pi ε⁄ qi ε⁄< ri ε⁄=

1. can only be valid if also .

qi
ε

pi ε–
ε

-------------<

qi pi ε–<

a b< a b<

pi qi–()
pi qi–()2 ε2>

ε2 pi qi–()2 pj qj–()2

0 j d<≤

≤< p q– 2=

qi ′ p ′i ′ ε–< p ′ q– 2 ε2>

- 5 -

corresponding pairs, for instance (1,4), are excluded from pro-
cessing, because the complete I/O-Unit 1 is out of the ε-interval
of I/O-Unit 4 (and vice versa, due to the symmetry of · <ego ·).

In figure 2, a small area of pairs of I/O-Units remains (starting
at the diagonal) which must be scheduled efficiently. We indicate
one of the most obvious scheduling methods, column-by-col-
umn, by arrows in our running example. We start with the pair
(1,1), proceed to (1,2), then (2,2), (1,3), and so on. Additionally,
we mark the disk accesses caused by the schedule assuming main
memory buffers for up to 3 I/O-Units which are replaced using a
LRU strategy.

Our column-by-column scheduling method, which we call
the gallop mode, is very efficient (even optimal, because each
I/O unit is accessed only once) until the 6th column is reached.
Since 4 I/O-Units which are required for processing the 6th col-
umn do not fit into main memory our scheduling turns from best
case to worst case: For each scheduled pair an I/O-Unit must be
loaded into main memory.

We avoid this I/O thrashing effect by switching into a differ-
ent mode of scheduling, the crabstep mode. Since the ε-interval
does not fit into main memory, obviously, we have to read some
I/O units more than once. For those relational joins which have
to form all possible pairs of I/O units or at least many of them
(e.g. SELECT * FROM A,B WHERE A.a≠B.b) it is well known

that the strategy of outer loop buffering is optimal. We adopt this
strategy for the epsilon grid order where we do not have to form
all possible pairs of I/O units, but only those in a common ε-in-
terval. Our algorithm reserves in this mode only the main mem-
ory buffer for one I/O unit for the inner loop. Most of the buffer
space is reserved for the outer loop, and the next I/O units from
the outer loop are pinned in the buffer. The inner loop iterates
over all I/O units which are in the ε-interval of any of the pinned
pages. In figure 3, the two scheduling modes are visualized, as-
suming buffer space for up to 4 I/O units. Figure 3a shows the
gallop mode where enough buffer space is available. Here, 6 disk
accesses are enough to form 24 page pairs. Figure 3b shows the
case where the gallop mode leads to I/O thrashing (36 disk ac-
cesses for 36 page pairs). In contrast, the crabstep mode depicted
in figure 3c requires 16 disk accesses for 36 page pairs. The cor-
responding scheduling algorithm is shown in figure 4. Note that
for a clear presentation the algorithm is simplified.

In the main loop of the algorithm, first the buffers are deter-
mined which can be discarded according to the ε-interval (code
between marks 1 and 2). If free buffers are available after this
cleanup phase, we load the next I/O unit according to the strategy
of the gallop mode and join the new unit immediately with the
I/O units in the buffers (between marks 2 and 3). If no buffer is
free, we have to switch into the crabstep mode. In its first phase
(between 3 and 4) we discard all buffers up to one and fill them
with new I/O units (which are immediately joined among each
other). These new units are pinned in the cache. In the second
phase (from mark 4 to the end), we iterate over the discarded I/O
units, reload them, and join them with the pinned units.

3.3 Joining Two I/O-Units
It is not optimal to process a pair of I/O units by direct compari-
sons between the points stored in the I/O units. Instead, our algo-
rithm partitions the point set stored in each I/O unit into smaller
subsets. In contrast to other partitioning approaches without pre-
constructed index, where partitioning requires multiple sorting
of the subset according to different dimensions or the explicit
construction of a space-consuming main-memory search struc-
ture, our approach exploits the epsilon grid order of the subsets

d1

d0

I/O-Unit 1

I/O-Unit

I/O-Unit 3

5 6 I/O-

Unit 7

2 I/O-

Unit 4

I/O Unit 8

Figure 1. I/O Units in the Data Space

2ε 3ε 4ε 5εε

5ε

4ε

3ε

2ε

ε

1 2 3 4 5 7 86

Unit y

1
2
3
4
5
6
7
8

Unit x

: Disk Access

out of
ε-interval

Figure 2. I/O Units in the Schedule

excluded due to self-join
out
of
ε-interval

(a) gallop mode (b) I/O thrashing (c) crabstep

Figure 3. Scheduling Modes

9 10 11 12 13 148 9 10 11 12 13 9 10 11 12 13 14

4
5
6
7
8
9

10
11
12
13
14

4
5
6
7
8
9

10
11
12
13
14

4
5
6
7
8
9

10
11
12
13
14

- 6 -

stored on the I/O units. Therefore, both sorting of the data set dur-
ing the join phase as well as the explicit construction of a search
structure can be avoided. Our algorithm for joining two I/O units
(two sequences of epsilon-grid-ordered points) follows the di-
vide and conquer paradigm, i.e. the algorithm divides one of the
sequences in two subsequences of approximately the same num-
ber of points and performs a recursive self-call for each of the
subsequences unless a minimum sequence capacity is reached or
the pair of sequences does not join (distance exceeds ε). For the
purpose of excluding pairs of such sequences, we introduce a
concept called inactive dimensions of a sequence. The intuitive
idea is as follows: In general, a sequence of epsilon-grid-ordered
points subsumes several different grid cells. If the sequence is
short, however, it is likely that all these grid cells have the same
position in the dimension d0 of highest weight. If so, with de-
creasing probability it is also likely that the cells also share the
same position at the second and following dimensions. The lead-
ing dimensions which are common, are called the inactive di-
mensions. The name inactive dimensions is borrowed from the
indexing domain [LJF 95] where an inactive dimension also de-
notes a value which is common to all items stored in a subtree.

Definition 2 (active, inactive and unspecified dimension):
For a sequence p1,p2,...,pk of k points which are epsi-
lon-grid-ordered (i.e. p1 <ego p2 <ego ... <ego pk) a dimension di is
active if and only if the following two conditions hold:

(1)

(2)

If an active dimension exists, all dimensions dj with j < i are
called inactive dimensions. If no active dimension exists, all di-
mensions are called inactive. Dimensions which are neither ac-
tive nor inactive (i.e. dl with i < l < d) are unspecified.

The intuitive meaning of definition 2 is: The active dimen-
sion of a sequence is the first dimension where the points are ex-
tended over more than one grid cell length (if any exists). Due to
the properties of the order relation, this can be decided according
to the first point p1 and the last point pk of the sequence. Dimen-
sion di is the first dimension where p1 and pk are different after
dividing and rounding.

Figure 5 shows for a 3-dimensional data space an example se-
quence (shaded area) where d1 is the active dimension. The par-
ticular property of the inactive dimensions is that they can be
used very effectively to determine whether two sequences
P = �p1,p2,...,pk and Q = �q1,q2,...,qm of epsilon-grid-ordered
points have to be joined. They need not be joined if for at least
one of the common inactive dimensions the distance between the
cells exceeds ε. Formally: If ∃ dj such that dj is inactive in P and
dj is inactive in Q and

.

Active and unspecified dimensions are not used for excluding a
sequence from being join mate. Figure 6 shows our recursive al-
gorithm for the join of two sequences. It has two terminating cas-
es: (1) the rule discussed above applies and (2) both sequences are
short enough. The cases where only one sequence has more than
minlen points are straightforward and left out in figure 6.

algorithm ScheduleIOunits ()
Load (0) ; JoinBuffer (0,0) ;
i := 1 ;
while i < NumberIOunits do

1 foreach b ∈ Buffers \ LastBuffer do
if b.LastPoint+[ε,ε,...,ε] <ego LastBuffer.LastPoint

then MakeBufferEmpty (b) ;
if EmptyBufferAvailable then

2 (* Gallop Mode *)
Load (i) ; i := i + 1 ;
foreach b ∈ Buffers do

JoinBuffer (b, LastBuffer) ;
else

3 (* Crabstep Mode *)
n := FirstBuffer.IOunitNumber ;
m := i ;
foreach b ∈ Buffers \ LastBuffer do

MakeBufferEmpty (b) ;
LoadAndPin (i) ; i := i + 1 ;
foreach c ∈ PinnedBuffers do

JoinBuffer (b,c) ;
4 for j := n to m − 1 do

Load (j) ;
foreach b ∈ PinnedBuffers do

JoinBuffer (b, LastBuffer) ;
UnpinAllBuffers () ;

end ;

Figure 4. Scheduling Algorithm

p1 i,
ε

pk i,
ε

--------<

p1 j,
ε

pk j,
ε

--------= j i<∀

p1 j,
ε

q1 j,
ε

--------– 2≥

d 0 (
ina

cti
ve

)

d 1
 (a

ct
iv

e)

d2 (unspecified)

Figure 5. The active dimension of a sequence

- 7 -

4. OPTIMIZATION POTENTIAL
In this section, we illustrate some of the optimization potential
which is inherent to our new technique. Due to the space restric-
tions, we can only demonstrate two optimization concepts that
integrate particularly nicely into our new technique. Further op-
timization techniques which are subject to future research are
modifications of the sort order of the relation · <ego · and optimi-
zation strategies in the recursion scheme of the algorithm
join_sequences().

4.1 Separate Optimization of I/O and CPU
It has been pointed out in [BK 01] that, for index-based process-
ing of similarity joins, it is necessary to decouple the blocksize
optimization for I/O and CPU. Therefore, a complex index struc-
ture has been proposed which utilizes large primary pages for I/O
processing. These primary pages accommodate a number of sec-
ondary pages the capacity of which is much smaller and opti-
mized for maximum CPU performance.

For our technique, the Epsilon Grid Order, a separate optimi-
zation of the size of the sequences is equally beneficial as in in-
dex based join processing. As the algorithm is based on sequenc-
es of points, ordered by a particular relation, we need no complex
structure for the separate optimization. Our algorithm simply
uses larger sequences for I/O processing. The length of these se-
quences can be optimized such that disk contention is mini-
mized. Later, the algorithm join_sequences decomposes these
large I/O units recursively into smaller subsequences. The size
of these can be optimized for minimal CPU processing time.

In contrast to approaches that use a directory structure such
as the ε-kdB-tree [SSA 97] or the Multipage Index [BK 01] the
EGO-join yields almost no space overhead for this separate op-
timization. For CPU, the optimal size of processing units is typ-
ically below 10 points. Therefore, the Multipage Index combines
these points to an accommodated bucket the MBR of which must
be stored in the hosting page. The corresponding storage over-
head increases when the capacity of the accommodated buckets

is decreased for optimization. Therefore, the optimization poten-
tial for this structure is a priori limited. The ε-kdB-tree also suf-
fers from the problem of explicitly holding a hierarchical search
structure in main memory.

For Epsilon Grid Ordering, no directory is explicitly con-
structed. Instead, the point sequences (stored as arrays) are recur-
sively decomposed. Therefore, the only space overhead of our
technique is the recursion stack which is O (log n). Our tech-
nique can optimize the final size of the sequences (parameter
minlen in figure 6) without considering any limiting overhead.

4.2 Active Dimensions and Distance Calculations
In spite of the CPU optimization proposed in section 4.1 the CPU
cost is dominated by the final distance calculations between can-
didate pairs of points. A well-known technique to avoid a con-
siderable number of these distance calculations is to apply the tri-
angle inequality [BEKS 00]. In our experiments, however, the
triangle inequality did not yield an improvement of the Epsilon
Grid Order due to the use of small, CPU optimized sequences. A
more successful way is to determine the distances between two
points (dimension by dimension) and testing in each step wheth-
er the distance already exceeds ε. The corresponding algorithm
is depicted in figure 7.

For this step-by-step test, it is essential that the dimensions
are processed in a suitable order, depending on the inactive di-
mensions, because some dimensions have a rather high probabil-
ity of adding large values to the distance (a high distinguishing
potential), others not. Therefore, in the line marked with (1) the
dimensions are taken from a lookup table which is sorted accord-
ing to the distinguishing potential. The lookup table is filled
when starting the join between two minimal sequences. In the
following we will show how to estimate the distinguishing po-
tential of the dimensions for a given pair of sequences. For the
analysis in this section, we assume that the points of a sequence
follow a uniform (not necessarily independent) distribution in
the inactive dimensions, i.e. if di is inactive in sequence s and the
corresponding cell extension in di is [xi·ε..(xi+1)·ε], then for the
i-th coordinate pi of each point p ∈ s every value between
[xi·ε..(xi+1)·ε] has the same probability. In the following, we de-
termine the distinguishing potential of the inactive dimensions
of a pair of sequences (i.e. the dimensions which are inactive in
both sequences).

How large the distinguishing potential of a dimension di is,
depends on the relative position of the two sequences in the data

algorithm join_sequences (Sequence s, Sequence t)
sa := s.activeDimension() ;
ta := t.activeDimension() ;

1 for i:=0 to min {sa,ta,d−1} do
if ��s.firstPoint[i]/ε =−=�t.firstPoint[i]/ε �=> 2 then

return ;
2 if s.length ≤ minlen AND t.length ≤ minlen then

simple_join (s,t) ; return ;
if s.length ≥ minlen AND t.length ≥ minlen then

join_sequences (s.firstHalf, t.firstHalf) ;
join_sequences (s.firstHalf, t.secondHalf) ;
join_sequences (s.secondHalf, t.firstHalf) ;
join_sequences (s.secondHalf, t.secondHalf) ;
return ; ... (* remaining cases analogously *)

Figure 6. Algorithm for Joining Sequences

function distance_below_eps (Point p, Point q): boolean
distance_sq := 0.0 ;
for i:=0 to d−1 do

1 j := dimension_order [i] ;
distance_sq := distance_sq + (p [j] − q [j])2 ;
if distance_sq > ε2 then return false ;

return true ;

Figure 7. Algorithm for Distance Calculations

- 8 -

space (cf. figure 8). Since we consider only the inactive dimen-
sions (in the example both dimensions d0 and d1), both sequences
sj and rj have an extension of ε in all considered dimensions. Due
to the grid, the sequences are in an inactive dimension di either
perfectly aligned to each other or directly neighboring. In
figure 8, s1 and r1 are aligned in both dimensions; s4 and r4 are
neighboring in both dimensions; s2 and r2 are aligned in d0, and
s3 and r3 are aligned in d1, neighboring in the other dimension.
Other relationships are not considered, because if the sequences
are neither aligned nor neighboring, they are excluded from pro-
cessing, as described in section 3.3.

A single, aligned dimension has no distinguishing power at
all, because the difference between two coordinates is at most the
cell length ε. It is possible that the combination of several aligned
dimensions distinguishes points, but not very likely. In contrast,
a dimension where the two sequences are neighboring has a high
distinguishing power. Under the above mentioned assumptions
the distinguishing power can be determined as follows, accord-
ing to the sequences s2 and r2 in figure 8 for which we determine
the distinguishing power of d1: A point on the left boundary of s2
cannot have any join mate on r2 (exclusion probability 1). For
points on the right boundary of s1, no points on r2 can be excluded
by only considering d1 (probability 0). Between these extremes,
the exclusion probability (with respect to d1) decreases linearly
from 1 to 0 (e.g. 50% for a point in the middle of s2). Integrating
this linear function yields an overall exclusion probability of
50% for each neighboring dimension.

The distinguishing power of unspecified and active dimen-
sions is relatively difficult to assess. It depends on the ratio be-
tween ε and the extension of the data space in the corresponding
dimension and on the data distribution. Our join method gener-
ally does not require knowledge about the data space or the data
distribution. Determining these parameters just for the optimiza-
tion of this section would not pay off. According to our experi-
ence, the distinguishing power of unspecified dimensions is in
most cases below 50% (i.e. worse than that of neighboring inac-
tive dimensions), but also clearly better than 0 (aligned inactive
dimensions).Our lookup table is filled in the following order:
 • First all neighboring inactive dimensions,
 • then the unspecified dimensions,
 • next the active dimension(s) of the two sequences,
 • and, finally, the aligned inactive dimensions.
This order reveals decreasing distinguishing powers of the di-
mensions and leads to an exclusion of point pairs as early as pos-
sible in the algorithm of figure 7.

5. EXPERIMENTAL EVALUATION
In order to show the benefits of our technique we implemented
the EGO-algorithm and performed an extensive experimental
evaluation using database sizes of well beyond 1 GB. For com-
parison, we applied the original source code of the Multipage In-
dex Join [BK 01] and a similarity join algorithm based on the
R-tree spatial join (RSJ) algorithm [BKS 93]. The latter join al-
gorithm, RSJ with Z-ordering optimization, employs a page
scheduling strategy based on Z-ordering and will be denoted as
Z-Order-RSJ. It is very similar to the Breadth-First-R-tree-Join
(BFRJ) proposed in [HJR 97]. The values for the well known
nested loop join with its quadratic complexity were merely cal-
culated and should give a reference for comparison. All algo-
rithms were allowed to use the same amount of buffer memory
(10% of the database size).

For our new technique, EGO, we considered both CPU cost
as well as I/O cost, including the sorting phase which was imple-
mented as a mergesort algorithm on secondary storage. As in
figure 4 shown, our algorithm switches between the gallop and
the crabstep mode on demand.

For the index based techniques (Z-Order-RSJ and MuX-Join)
we assumed that indexes are already preconstructed. To be on the
conservative side, we did not take the index construction cost of
our competitors into account.

All our experiments were carried out under Windows NT4.0
on Fujitsu-Siemens Celsius 400 machines equipped with a Pen-
tium III 700 MHz processor and 256 MB main memory (128 MB
available for the cache). The installed disk device was a Seagate
ST310212A with a sustained transfer rate of about 9 MB/s and
an average read access time of 8.9 ms with an average latency
time of 5.6 ms.

We used synthetic as well as real data. Our 8-dimensional
synthetic data sets consisted of up to 40,000,000 uniformly dis-
tributed points in the unit hypercube (i.e. a database size of 1.2
GB). Our real-world data set is a CAD database with 16-dimen-
sional feature vectors extracted from geometrical parts and vari-
ants thereof.

The Euclidean distance was used for the similarity join. We
determined the distance parameters ε for each data set such that
they are suitable for clustering following the selection criteria
proposed in [SEKX 98].

Figure 10 shows our experiments using uniformly distributed
8-dimensional point data. In the left diagram, the database size
is varied from 0.5 million to 40 million points while on the right
side results are compared for varying values of the ε=parameter.
The largest database was about 1.2 GB. For this size (as well as
for the 20 million points) only the results for EGO could be ob-
tained in reasonable time. The nested loop join has the worst per-
formance off all the compared techniques. The Z-Order-RSJ out-
performs the nested loop join by factors ranging from 30 to 140
while the MuX-Join still is at least two times faster than Z-Order
RSJ. By far the best performance is obtained with our new EGO
technique. EGO outperforms the best of the other techniques, the

d1

d0

s1

r1
s2 r2

s3

r3

s4

r4

Figure 8. Distinguishing Potential of the Dimensions

ε

- 9 -

MuX-Join, by factors between 6 and 9, and the Z-Order-RSJ by
factors between 13 and 14. The right diagram shows perfor-
mance for varying distance parameter ε. Depending on its actual
page boundary configuration, the Z-Order-RSJ sometimes is not
as sensitive to small changes in the distance parameter as the oth-
er techniques. Again, we observe that our novel approach clearly
outperforms all other techniques for all values of ε. The speedup
factors were between 3.2 and 8.6 over MuX and between 4.7 and
19 over Z-Order-RSJ.

The experiments with real data are depicted in figure 9. The
results for the 16-dimensional CAD data set confirm our exper-
iments on uniform data. Again, the left diagram shows perfor-
mance for varying database size while the right diagram shows
performance for varying ε values. EGO was 9 times faster than
the MuX-Join for the largest database size and 16 times faster
than the Z-Order-RSJ. In the right diagram we can observe, that
the performance of the MuX-Join and the Z-Order-RSJ converge
for larger ε=values while EGO still shows substantially better per-
formance for all values of ε. The improvement factors of our
technique varied between 4.0 and 10 over the Multipage Index
and between 4.5 and 17 over Z-Order-RSJ.

6. CONCLUSIONS
Many different applications are based on the similarity join of
very large data sets, for instance similarity search in multimedia
databases, data analysis tools and data mining techniques. Un-
fortunately, there is no technique available which efficiently
scales to very large data sets, i.e. data sets in the order of 1 GB.
In this paper, we focused on this specific problem. We introduced
and discussed a novel similarity join algorithm, denoted as epsi-
lon grid order, which is based on a particular sorting order of the
data points. This sorting order is derived by laying an equi-dis-
tant grid with cell length ε over the data space and comparing the
grid cells lexicographically. We proposed to apply an external
sorting algorithm combined with a sophisticated scheduling
strategy which allows our technique to operate with a limited
cache buffer. Additionally, we developed several optimization
techniques which further enhance our method. In an experimen-
tal evaluation using data sets with sizes up to 1.2 GB we showed
that our novel approach is very efficient and clearly outperforms
competitive algorithms. For future work we plan a parallel ver-
sion of the EGO join algorithm and the extension of our cost
model for the use by the query optimizer.

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

10 100 1000

Database Size [MByte]

T
ot

al
 T

im
e

[S
ec

.]

Nested Loop
Z-Order-RSJ
MuX-Join
EGO

1.E+01

1.E+02

1.E+03

1.E+04

0.025 0.050 0.075 0.100

Epsilon

To
ta

l T
im

e
[S

ec
.] Nested Loop

Z-Order-RSJ
MuX-Join
EGO

Figure 9. Experimental Results on 16-Dimensional Real Data from a CAD-Application

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

10 100 1000 10000

Database Size [MByte]

T
ot

al
 T

im
e

[S
ec

.]

Nested Loop
Z-Order-RSJ
MuX-Join
EGO

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.10 0.20 0.30 0.40

Epsilon

T
ot

al
 T

im
e

[S
ec

.]

Nested Loop
Z-Order-RSJ
MuX-Join
EGO

Figure 10. Experimental Results on Uniformly Distributed, 8-Dimensional Data

- 10 -

REFERENCES
[ABKS 99] Ankerst M., Breunig M. M., Kriegel H.-P., Sander

J.: OPTICS: Ordering Points To Identify the Clustering
Structure, ACM SIGMOD Int. Conf. on Management of
Data, 1999.

[AFS 93] Agrawal R., Faloutsos C., Swami A. Efficient similar-
ity search in sequence databases. Int. Conf. on Foundations
of Data Organization and Algorithms, 1993.

[BBBK 00] Böhm C., Braunmüller B., Breunig M. M., Kriegel
H.-P.: Fast Clustering Based on High-Dimensional Similar-
ity Joins, Int. Conf. on Information Knowledge Manage-
ment (CIKM), 2000.

[BBK 98] Berchtold S., Böhm C., Kriegel H.-P.: Improving the
Query Performance of High-Dimensional Index Structures
Using Bulk-Load Operations, Int. Conf. on Extending Data-
base Technology (EDBT), 1998.

[BBKK 97] Berchtold S., Böhm C., Keim D., Kriegel H.-P.: A
Cost Model For Nearest Neighbor Search in High-Dimen-
sional Data Space, ACM Symposium on Principles of Data-
base Systems (PODS), 1997.

[BEKS 00]Braunmüller B., Ester M., Kriegel H.-P., Sander J.:
Efficiently Supporting Multiple Similarity Queries for Min-
ing in Metric Databases, IEEE Int. Conf. on Data Engineer-
ing, 2000.

[BK 01] Böhm C., Kriegel H.-P.: A Cost Model and Index Ar-
chitecture for the Similarity Join, IEEE Int. Conf on Data
Engineering (ICDE), 2001.

[BKS 93] Brinkhoff T., Kriegel H.-P., Seeger B.: Efficient Pro-
cessing of Spatial Joins Using R-trees, ACM SIGMOD Int.
Conf. on Management of Data, 1993.

[BKS 96] Brinkhoff T., Kriegel H.-P., Seeger B.: Parallel Pro-
cessing of Spatial Joins Using R-trees, IEEE Int. Conf. on
Data Engineering (ICDE), 1996.

[BSW 97] van den Bercken J., Seeger B., Widmayer P.:A Gen-
eral Approach to Bulk Loading Multidimensional Index
Structures, Int. Conf. on Very Large Databases, 1997.

[FBFH 94] Faloutsos C., Barber R., Flickner M., Hafner J., et
al.: Efficient and Effective Querying by Image Content, Jour-
nal of Intelligent Information Systems, Vol. 3, 1994.

[GRS 98] Guha S., Rastogi R., Shim K.: CURE: An Efficient
Clustering Algorithm for Large Databases, ACM SIGMOD
Int. Conf. on Management of Data, 1998.

[HJR 97] Huang Y.-W., Jing N., Rundensteiner E. A.:Spatial
Joins Using R-trees: Breadth-First Traversal with Global
Optimizations, Int. Conf. on Very Large Databases
(VLDB), 1997.

[HT 93] Hattori K., Torii Y.: Effective algorithms for the near-
est neighbor method in the clustering problem. Pattern Rec-
ognition, Vol. 26, No. 5, 1993.

[Jag 91] Jagadish H. V.: A Retrieval Technique for Similar
Shapes, ACM SIGMOD Int. Conf. on Management of Data,
1991.

[KF 94] Kamel I., Faloutsos C.: Hilbert R-tree: An Improved
R-tree using Fractals. Int. Conf. on Very Large Databases,
1994.

[KH 95] Koperski K. and Han J.: Discovery of Spatial Associa-
tion Rules in Geographic Information Databases, Int. Symp.
on Large Spatial Databases (SSD), 1995.

[KN 96] Knorr E.M. and Ng R.T.: Finding Aggregate Proximity
Relationships and Commonalities in Spatial Data Mining,
IEEE Trans. on Knowledge and Data Engineering, 8(6),
1996.

[KN 98] Knorr E.M. and Ng R.T.: Algorithms for Mining Dis-
tance-Based Outliers in Large Datasets, Int. Conf. on Very
Large Databases (VLDB), 1998.

[KS 97] Koudas N., Sevcik C.: Size Separation Spatial Join,
ACM SIGMOD Int. Conf. on Management of Data, 1997.

[KS 98a] Koudas N., Sevcik C.: High Dimensional Similarity
Joins: Algorithms and Performance Evaluation, IEEE Int.
Conf. on Data Engineering (ICDE), Best Paper Award,
1998.

[KS 98b] Kriegel H.-P., Seidl T.: Approximation-Based Similar-
ity Search for 3-D Surface Segments, GeoInformatica Jour-
nal, Kluwer Academic Publishers, 1998.

[KSF+ 96] Korn F., Sidiropoulos N., Faloutsos C., Siegel E.,
Protopapas Z.: Fast Nearest Neighbor Search in Medical
Image Databases, Int. Conf. on Very Large Data Bases
(VLDB), 1996.

[LJF 95] Lin K.-I., Jagadish H. V., Faloutsos C.: The TV-Tree:
An Index Structure for High-Dimensional Data,
VLDB-Journal Vol. 3, 1995.

[LR 94] Lo M.-L., Ravishankar C. V.: Spatial Joins Using
Seeded Trees, ACM SIGMOD Int. Conf. Management of
Data, 1994.

[LR 96] Lo M.-L., Ravishankar C. V.: Spatial Hash Joins,
ACM SIGMOD Int. Conf. on Management of Data, 1996.

[PD 96] Patel J.M., DeWitt D.J., Partition Based Spatial-Merge
Join, ACM SIGMOD Int. Conf. on Management of Data,
1996.

[SEKX 98] Sander J., Ester M., Kriegel H.-P., Xu X.: Den-
sity-Based Clustering in Spatial Databases: The Algorithm
GDBSCAN and its Applications, Data Mining and Knowl-
edge Discovery, Kluwer Academic Publishers, Vol. 2, No.
2, 1998.

[Sib 73] Sibson R.: SLINK: an optimally efficient algorithm for
the single-link cluster method, The Computer Journal 16(1),
1973.

[SSA 97] Shim K., Srikant R., Agrawal R.: High-Dimensional
Similarity Joins, Int. Conf. on Data Engineering (ICDE),
1997.

