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How do we find a natural clustering of a real-world point set which contains an unknown number

of clusters with different shapes, and which may be contaminated by noise? As most clustering

algorithms were designed with certain assumptions (Gaussianity), they often require the user to

give input parameters, and are sensitive to noise. In this article, we propose a robust framework

for determining a natural clustering of a given dataset, based on the minimum description length

(MDL) principle. The proposed framework, robust information-theoretic clustering (RIC), is orthog-

onal to any known clustering algorithm: Given a preliminary clustering, RIC purifies these clusters

from noise, and adjusts the clusterings such that it simultaneously determines the most natural

amount and shape (subspace) of the clusters. Our RIC method can be combined with any clustering

technique ranging from K-means and K-medoids to advanced methods such as spectral clustering.
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In fact, RIC is even able to purify and improve an initial coarse clustering, even if we start with very

simple methods. In an extension, we propose a fully automatic stand-alone clustering method and

efficiency improvements. RIC scales well with the dataset size. Extensive experiments on synthetic

and real-world datasets validate the proposed RIC framework.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—

Data mining; E.4 [Data]: Coding and Information Theory—Data compaction and compression

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Clustering, noise robustness, parameter-free data mining, data

summarization
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1. INTRODUCTION

The problem of clustering has attracted a huge volume of attention for sev-
eral decades, with multiple books [Hartigan 1975; Van-Rijsbergen 1979], sur-
veys [Murtagh 1983] and papers (X-means [Pelleg and Moore 2000], G-means
[Hamerly and Elkan 2003], CLARANS [Ng and Han 1994], CURE [Guha et al.
1998], CLIQUE [Agrawal et al. 1998], BIRCH [Zhang et al. 1996], DBSCAN
[Ester et al. 1996], to name a few). Recent interest in clustering has been on
finding clusters that have non-Gaussian correlations in subspaces of the at-
tributes, for example, the work of Böhm et al. [2004], Tung et al. [2005], and
Aggarwal and Yu [2000]. Finding correlation clusters has diverse applications
ranging from spatial databases to bioinformatics. The hard part of clustering
is to decide what is a good group of clusters, and which data points to label as
outliers and thus ignore for clustering.

For example, in Figure 1, we show a fictitious set of points in 2D. Figure 1(a)
shows a grouping of points that most humans would agree is “good:” a Gaussian-
like cluster at the left, a line-like cluster at the right, and a few noise points
(outliers) scattered throughout. However, typical clustering algorithms like
K-means may produce a clustering like the one in Figure 1(b): a bad num-
ber of clusters (five in this example) with Gaussian-like shapes, fooled by a few
outliers. There are two questions that we try to answer in this work, described
as follows:

—Q1: Goodness. How can we quantify the goodness of a grouping? We would
like a function that will give a good score to the grouping of Figure 1(a) and
a bad one to that of Figure 1(b).

—Q2: Efficiency. How can we write an algorithm that will produce good group-
ings efficiently and without getting distracted by outliers?

The contributions of this article directly address the preceding two questions:
For the first, we propose to envision the problem of clustering one of compression
and we use information-theoretic arguments. The grouping of Figure 1(a) is
good because it can succinctly describe the given dataset, with few exceptions:
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Fig. 1. A fictitious dataset (a) with a good clustering of one Gaussian cluster, one subspace cluster,

and noise; and (b) a bad clustering.

The points of the left cluster can be described by their (short) distances from the
cluster center; the points on the right line-like cluster can be described by just
one coordinate (the location on the line), instead of two; the remaining outliers
each need two coordinates, with near-random (and thus uncompressible) values.
Our proposal is to measure the goodness of a grouping as the volume after
compression (VAC): that is, record the bytes to describe the number of clusters
k; those to record their type (Gaussian, line-like, or something else from a
fixed vocabulary of distributions); those to describe the parameters of each
distribution (e.g., mean, variance, covariance, slope, intercept), and then the
location of each point, compressed according to the distribution, it belongs to
which.

Notice that the VAC criterion does not specify how to find a good grouping;
it can only say which of two groupings is better. This brings us to the next
contribution of this article: We propose to start from a suboptimal grouping
(e.g., using K-means, with some arbitrary k). Then, we propose to use two novel
algorithms, which we list next.

—Robust Fitting (RF). Instead of the fragile PCA, this algorithm finds low-
dimensionality subspace clusters; and

—Cluster Merging (CM). This one can stitch promising clusters together.

We continue fitting and merging, until our VAC criterion reaches a plateau.
The aforesaid sketch of our algorithm has a gradient-descent flavor. Notice that
we can use any and all of the known optimization methods, like simulated an-
nealing, genetic algorithms, and everything else that we want: Our goal is to
optimize our VAC criterion within the user-acceptable time frame. We propose
the gradient-descent version because we believe it strikes a good balance be-
tween speed of computation and cluster quality.

1.1 Contributions

The proposed method, RIC, answers both questions that we stated earlier: For
cluster quality, it uses the information-theoretic VAC criterion; for searching, it
uses the two new algorithms (robust fitting and cluster merging). The resulting
method has the following advantages.

—It is fully automatic, that is, no difficult or sensitive parameters must be
selected by the user.
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—It returns a natural partitioning of the dataset, thanks to the intuitive
information-theoretic principle of maximizing the data compression.

—It can detect clusters beyond Gaussians: clusters in full-dimensional data
space as well as clusters in axis-parallel subspaces (so-called subspace clus-
ters) and in arbitrarily oriented subspaces (correlation clusters), in addition
to combinations and mixtures of clusters of all different types during one
single run of the algorithm.

—It can assign model distribution functions such as uniform, Gaussian, Lapla-
cian (etc.) distribution to the different subspace coordinates and thus gives a
detailed description of the cluster content.

—It is robust against noise. Our robust fitting (RF) method is specifically de-
signed to spot and ignore noise points.

—It is space and time efficient, and thus scalable to large datasets.

To the best of our knowledge, no other clustering method meets all of the
aforementioned properties. The rest of the article is organized as follows:
Section 2 gives a brief survey of the large previous work. Section 3 describes
our proposed framework and algorithms. Section 4 illustrates our algorithms
on real and synthetic data, Section 5 proposes a more efficient variant of the
algorithm, and Section 6 concludes our work.

2. SURVEY

Clustering has attracted a huge volume of interest. Recently, there have been
several papers focusing on scalable clustering algorithms, such as, CURE [Guha
et al. 1998], CLIQUE [Agrawal et al. 1998], BIRCH [Zhang et al. 1996], DB-
SCAN [Ester et al. 1996], and OPTICS [Ankerst et al. 1999]. There are also
parameter-free algorithms like X-means [Pelleg and Moore 2000], and G-means
[Hamerly and Elkan 2003]. However, they all suffer from one or more of the
following drawbacks: They focus on spherical or Gaussian clusters, and/or are
sensitive to outliers, and/or need user-defined thresholds and parameters.

Gaussian clusters. Most algorithms are geared towards Gaussian or plain
spherical clusters; for example, the well-known K-means algorithm, BIRCH
[Zhang et al. 1996] (which is suitable for spherical clusters), X-means [Pelleg
and Moore 2000], and G-means [Hamerly and Elkan 2003]. These algorithms
tend to be sensitive to outliers because they try to optimize the log-likelihood of
a Gaussian, which is equivalent to the Euclidean (or Mahalanobis) distance—
either way, an outlier has high impact on the clustering.

Non-Gaussian clusters. Density-based clustering methods, such as DBSCAN
and OPTICS, can detect clusters of arbitrary shape and data distribution
and are robust against noise. For DBSCAN the user has to select a den-
sity threshold, and for OPTICS to derive clusters from the reachability
plot. K-harmonic means [Zhang et al. 2000] avoids the problem of outliers,
but still needs k. Spectral clustering algorithms [Ng et al. 2001] perform
K-means or similar algorithms after decomposing the n × n gram matrix of the
data (typically using PCA). Clusters of arbitrary shape in the original space
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correspond to Gaussian clusters in the transformed space. Here also k needs
to be selected by the user. Recent interest in clustering has been on finding
clusters that have non-Gaussian correlations in subspaces of the attributes
[Böhm et al. 2004; Tung et al. 2005; Aggarwal and Yu 2000]. Finding cor-
relation clusters has diverse applications ranging from spatial databases to
bioinformatics.

Parameter-free methods. A smaller number of papers have focused on the
subtle but important problem of choosing k, the number of clusters to shoot for.
Such methods include the aforementioned X-means [Pelleg and Moore 2000]
and G-means [Hamerly and Elkan 2003], which try to balance the (Gaussian)
likelihood error with the model complexity. Both X-means and G-means are
extensions of the K-means algorithm, which can only find Gaussian clusters
and cannot handle correlation clusters and outliers. Instead, they will force
correlation clusters into unnatural, Gaussian-like clusters.

In our opinion, the most intuitive criterion is based on information theory
and compression. There is a family of closely related ideas, such as model-based
clustering [Banfield and Raftery 1993], the gap-statistic [Tibshirani et al. 2000],
the information bottleneck method [Tishby et al. 2000], which is used by Slonim
and Tishby for clustering terms and documents [Slonim and Tishby 2000], and
the work of Still and Bialek [2004]. Based on information theory they derive
a suitable distance function for coclustering, but the number of clusters still
needs to be specified in advance by the user.

There are numerous information-theoretic criterions for model selection,
such as the Akaike information criterion (AIC), the Bayesian information crite-
rion (BIC), and minimum description language (MDL) [Grünwald 2005]. Among
them, MDL is the inspiration behind our VAC criterion because MDL also en-
visions the size of total, lossless compression as a measure of goodness. The
idea behind AIC, BIC, and MDL is to penalize model complexity, in addition to
deviations from the cluster centers. However, MDL is a general framework, and
does not specify which distributions to shoot for (Gaussian, uniform, or Lapla-
cian), nor how to search for a good fit. In fact, all four methods (BIC, G-means,
X-means, and RIC) are near-identical for the specific setting of a noise-free mix-
ture of Gaussians. The difference is that our RIC can also handle noise, as well
as additional data distributions (uniform, etc.). We use the term parameter-
free clustering, following the convention of all the mentioned approaches in the
sense that the parameter k (number of clusters), which is particularly impor-
tant and difficult to estimate, is automatically derived. This does not imply the
complete absence of any parameters. In the extreme case, we could even regard
the choice of distribution functions or of underlying basic algorithms as a pa-
rameter. However, our approach is (like other parameter-free methods) robust
with respect to all these choices.

PCA. Principal component analysis (PCA) is a powerful method for dimen-
sionality reduction, and is optimal under the Euclidean norm. PCA assumes
a Gaussian data distribution and identifies the best hyperplane on which to
project the data so that the Euclidean projection error is minimized. In other
words, PCA finds global correlation structures of a dataset [Jolliffe 1986].
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Table I. Table of Symbols and Acronyms

Symbol Definition

VAC Volume After Compression

RF Robust Fit

CM Cluster Merge

RIC Robust Information-Based Clustering

n The number of points in the dataset.

d The dimensionality of the dataset.

C The clusters of a dataset, C = {Ci |i = 1..k}.
C A cluster of data points, C = Ccore ∪ Cout.

Ccore The set of core points in C.

Cout The set of noise points (outliers) in C.

�x A data point in S.

xi The ith attribute of the data point �x.

�μ A cluster center of cluster S.

�μR A robust cluster center of cluster S.

� (�i) The covariance matrix of points in cluster C (or Ci).

�C The conventional version of � (from averaging).

�R The robust version of � (from taking medians).

V (or Vi) The candidate direction matrix derived from � (or �i).

VAC(C) The VAC value of points in cluster C. Small VAC value

indicates that C is a good cluster.

saveCost(Ci , Cj ) The improvement on the VAC value of the overall clustering

if Ci and Cj are merged.

3. PROPOSED METHOD

The quality of a clustering algorithm is usually sensitive to: (a) noise in the
dataset, (b) algorithm parameters (e.g., number of clusters), and (c) limitations
of the method used (e.g., unable to detect correlation clusters), often resulting in
a unnatural partition of a dataset. Given an initial clustering of a dataset, how
do we systematically adjust the clustering, overcome the influence of noise,
recognize correlation patterns for cluster formation, and eventually obtain a
natural clustering?

In this section, we introduce our proposed framework, RIC, for refining a
clustering and discovering a most natural clustering of a dataset. In particular,
we propose a novel criterion, VAC, for determining the goodness of a cluster,
and propose algorithms for:

—(M1) robust estimation of the correlation structure of a cluster in the presence
of noise;

—(M2) identification and separation of noise using VAC; and

—(M3) construction of natural correlation clusters by a merging procedure
guided by VAC.

The proposed algorithms and VAC criterion are described in detail in the
following subsections. Table I gives a list of symbols used in this work.

3.1 Goodness Criterion: VAC

The idea is to invent a compression scheme, and to declare as winner the method
that minimizes the compression cost, including everything: the encoding for
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Table II. Self-Delimiting

Integer Coding

Coding

Number Length Value

1 0 1

2 00 10

3 00 11

8 0000 1000

the number of clusters k, that for the shape of each cluster (e.g., mean and
covariance if it is a Gaussian cluster), and those for the cluster-id and (relative)
coordinates of the data points. We assume that all coordinates are integers,
since we have finite precision, anyway. In other words, we assume that our
data points are on a d -dimensional grid. The resolution of the grid can be
chosen arbitrarily.

The idea is best illustrated with an example. Suppose we have the dataset of
Figure 1. By incorporating two distribution types, Gaussian and uniform (with
a minimum bounding rectangle), in our RIC framework, the best compression
(best VAC score) is achieved when the spherical cluster at the left is encoded
using a Gaussian, and the linear cluster at the right is encoded by a uniform
distribution.

The description of the method consists of the following parts: (a) how to en-
code integers; and (b) how to encode the points, once we determine that they
belong in a given cluster. For (a), we propose to use self-delimiting encoding. As
for (b), once we decide to assign a point to a cluster, we can store it more econom-
ically by storing its offset from the center of the cluster and using Huffman-like
coding, since we know the distribution of points around the center of the cluster.

Self-delimiting encoding of integers. The idea is that small integers will re-
quire fewer bytes: We use the Elias codes, or self-delimiting codes [Chakrabarti
et al. 2004], where integer i is represented using O(log i) bits. As Table II shows,
we can encode the code length of the integer in unary (using log i zeros), and
then the actual value by using log i more bits. Notice that the first bit of the
value part is always “1”, which helps us decode a string of integers without
ambiguity. The system can be easily extended to handle negative numbers, as
well as zero itself.

Encoding of points. Associated with each cluster C is the following informa-
tion: rotatedness R (either false or a orthonormal rotation matrix to decorrelate
the cluster), and for each attribute (regardless wheather rotated or not) the type
T (Gaussian, Laplacian, uniform) and parameters of the data distribution. Once
we decide that point P belongs to cluster C, we can encode the point coordi-
nates succinctly, exploiting the fact that it belongs to the known distribution. If
p is the value of the probability density function for attribute Pi, then we need
O(log 1/p) bits to encode it. For a white Gaussian distribution, this is propor-
tional to the Euclidean distance; for an arbitrary Gaussian distribution, this is
proportional to the Mahalanobis distance. For a uniform distribution in, say, the
minimum bounding rectangle (MBR) (lbi, ubi, with 0 ≤ i < d and lb for lower

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 3, Article 10, Publication date: December 2007.



10:8 • C. Böhm et al.

Fig. 2. Example of VAC.

bound, ub for upper bound, respectively), the encoding will be proportional to
the area of the MBR.

The objective of this section is to develop a coding scheme for the points �x
of a cluster C which represents the points in a maximally compact way. For
this section, we assume that all attributes of the points of the cluster have
been decorrelated by PCA, and that a distribution function along with the cor-
responding parameters has already been selected for each attribute. In the
following sections, we will describe how we identify that probability density
function which gives the highest compression rate. For the example in Figure 2
we have a Laplacian distribution for the x-coordinate and a Gaussian distri-
bution for the y-coordinate. Both distributions are assumed with μ = 3.5 and
σ = 1. We need to assign codewords to the coordinate values such that co-
ordinate values with a high probability (such as 3 < x < 4) are assigned
short codewords, and those with a low probability (such as y = 12 to give
a more extreme example) are assigned longer codewords. Provided that a co-
ordinate is really distributed according to the assumed distribution function,
Huffman codes optimize the overall compression of the dataset. Huffman codes
associate to each coordinate xi a bit-string of length l = log2(1/P (xi)), where
P (xi) is the probability of the coordinate value. Let us fix this in the following
definition.

Definition 1 (VAC of a point �x). Let �x ∈ R
d be a point of a cluster C and−−→

pd f (�x) be a d -dimensional vector of probability density functions which are
associated to C. Each pdfi(xi) is selected from a set of predefined probability
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density functions with the corresponding parameters, that is, PDF =
{pdfGauss(μi ,σi )

, pdfuniform(lbi ,ubi )
, pdfLapl(ai ,bi )

, . . .}, μi, lbi, ubi, ai ∈ R, σi, bi ∈ R
+.

Let γ be the grid constant (distance between grid cells). The VACi (volume
after compression) of coordinate i of point �x corresponds to

VACi(�x) = log2

1

pdfi(xi) · γ
.

The VAC (volume after compression) of point �x corresponds to

VAC(�x) = (log2

n
|C| ) +

∑
0≤i<d

VACi(x).

In Figure 2 this is shown for the marked example point: The x-coordinate
(between 2 and 3) has a probability of 19%. Thus, Huffman compression needs
a total of log2(1/0.19) = 2.3 bits. The y-coordinate of this point is in a range of
lower probability (5%) and needs a longer bit-string (4.3 bits). In addition to 6.6
bits for the coordinates, the Huffman-coded cluster-id is stored for each point
with log2(n/|C|) bits.

The discretization of the data space by the γ -grid enables us to interpret
the obtained value as a probability (between 0 and 1) rather than a relative
probability (probability density). In this respect, the VAC is more general than
previous information-theoretic criteria such as BIC and AIC because it is not
limited to a certain class of distribution functions, and would even allow the
comparison of discrete and continuous distributions. The code lengths are al-
ways positive and correspond to the number of bits needed to compress the
data using the resolution γ . It can easily be shown that the code length of
each coordinate is increased by 1 bit if the number of grid cells per dimen-
sion is doubled (γ is divided by 2). This is independent of the applied proba-
bility distribution function, number of clusters, etc. However, when different
datasets are clustered using different grid resolutions, the absolute values of
the obtained VACs are not directly comparable. Since we only compare the
VACs of different cluster structures, distribution functions, subspaces, etc.,
and leave the grid resolution at a constant level (high enough to distinguish
the different points), the overall result of our algorithm is not sensitive to grid
resolution.

Next, we address the question of which set of probability density functions
has to be associated to a given cluster C. Our optimization goal is data com-
pression, so we should, for each coordinate, select the pdf (and corresponding
parameter setting) which minimizes the overall VAC of the cluster. It is well
known that for a fixed type of pdf (e.g., Gaussian), the optimal parameter set-
ting can correspond to the statistics (e.g., mean, variance, boundaries) of the
dataset. Therefore, if the Gaussian pdf is selected for an attribute i, we use the
mean and variance of the ith coordinate of the points as parameters of the pdf.
Likewise, for the Laplacian distribution, we apply ai = μi and bi = σi/

√
2. For

the uniform distribution, we apply the lower and upper limit of the range of the
coordinate values. For the selection of the type of probability density function,
we explicitly minimize the VAC of the cluster, as detailed next.
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Definition 2 (Characteristic
−→
pdf(�x) of Cluster C). Let C be a cluster with

points �x ∈ C. Let stat = (μi, σi, lbi, ubi, . . .) be the statistics of the data re-

quired in the set of allowed probability density functions PDF. Then,
−→
pdf is

composed from pdfi ∈ PDF, where

pdfi = argmin
pdfstat∈PDF

∑
�x∈C

log2

1

pdfstat(xi) · γ
.

For the x-coordinate of the example in Figure 2, this means the following:
First, the required statistics, namely, the mean (3.5), variance (1.0), and lower
and upper limits (1.4, 6.2) of the dataset are determined. Then, VACx is de-
termined for all allowed pdf ∈ PDF, that is, for pdfuniform(1.4,6.2), pdfGauss(3.5,1.0),
and pdfLapl(3.5,0.7). The function yielding the lowest VAXx is selected. Then, the
same is done for VACy . Throughout the article we focuss on three widespread
distributions of high practical relevance: Gaussian, Laplacian, and uniform.
Definition 2 can easily be extended to other pdf functions.

Finally, we define when to use a decorrelation matrix. A decorrelation matrix
is needed whenever a cluster is a correlation cluster, that is, if one (or more)
attribute values of the points of the cluster depend(s) on the value of one (or
more) other attributes. The decorrelation matrix can be gained from principal
component analysis (PCA) of the d × d covariance matrix � of the points of the
cluster, and corresponds to the transpose of the orthonormal matrix V gained
from PCA diagonalization V �V T = �. We give more details on estimating the
covariance matrix in a way robust to noise in Section 3.2. Decorrelating data
can greatly reduce the VAC of the cluster because, instead of having two at-
tributes with a high variance (which incurs high coding cost for any model pdf)
and a high correlation, we obtain two new variables without any correlation,
one having variance close to zero (VAC of almost 0 bits). Intuitively, we want
to use a decorrelation matrix if (and only if) the VAC improvement is consid-
erable. To obtain a fully automatic method without user-defined limits, we use
decorrelation iff the VAC savings at least compensate the effort of storing the
decorrelation matrix.

Definition 3 (Decorrelation of a Cluster). Let C be a cluster of points �x (in
the original coordinate system), � be a covariance matrix associated to C, and
V the decorrelation matrix obtained by PCA diagonalization of �. Let Y be the

set of decorrelated points, that is, for each �y ∈ Y : �y = V T · �x. Let
−→
pdf (�x) be the

characteristic pdf of the original cluster and
−→
pdf ( �y) that of the decorrelated set

Y . The decorrelation is

dec(C) =
{

I if
∑

�y∈Y VAC( y) + d2 f >
∑

�x∈C VAC(x)

V otherwise.

The information on which of the two cases is true is coded by 1 bit. The matrix
V is coded using d × d floating values using f bits. The identity matrix needs
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no coding (0 bits).

VAC(dec(C)) =
{

1 if
∑

�y∈Y VAC( y) + d2 f >
∑

�x∈C VAC(x)

d2 · f + 1 otherwise

The following definition puts these things together.

Definition 4 (Cluster Model). The cluster model of a cluster C is composed

from the decorrelation dec(C) and the characteristic
−→
pdf( �y), where �y = dec(C)· �x

for every point �x ∈ C. The volume after compression of the cluster VAC(C)
corresponds to

VAC(C) = VAC(dec(C)) +
∑
�x∈C

VAC(dec(C) · �x).

3.2 Robust Fitting (RF)

We consider the combination of the cluster’s subspace and the characteristic
probability distribution as the cluster model. A data point in a (tentative) cluster
could be either a core point or an outlier, where core points are defined as points
in the cluster’s subspace which follow the characteristic probability distribution
of the cluster model, while outliers are points that do not follow the distribution
specified by the cluster model. We will also call the outliers noise (points).

Having outliers is one factor that prevents conventional clustering methods
from finding the right cluster model (using, e.g., PCA). If the cluster model
is known, filtering outliers is relatively easy; just remove those points which
fit the worst, according to the cluster model. Likewise, determining the model
when clusters are already purified from outliers is equally simple. What makes
the problem difficult and interesting is that we have to filter outliers without
knowledge of the cluster model and vice versa.

Partitioning clustering algorithms, such as those based on K-means or
K-medoids, typically produce clusters that are mixed with noise and core points.
The quality of these clusters is hurt by the existence of noise, which leads to a
biased estimation of the cluster model.

We propose an algorithm for purifying a cluster in which, after the process-
ing, noise points are separated from their original cluster and form a cluster of
their own. We start with a short overview of our purification method before go-
ing into the details. The procedure starts with getting as input a set of clusters
C={C1, . . . , Ck} by an arbitrary clustering method. Each cluster Ci is purified
one-by-one: First, the algorithm estimates an orthonormal matrix called the
decorrelation matrix (V ) to define the subspace of cluster Ci. A decorrelation
matrix defines a similarity measure (an ellipsoid) which can be used to deter-
mine the boundary that separates core points and outliers. Our procedure will
pick the boundary which corresponds to the lowest overall VAC value of all
points in cluster Ci. The noise points are then removed from that cluster and
stored in a new one. Next, we elaborate on the steps for purifying a cluster of
points.
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Fig. 3. Conventional and robust estimation.

3.2.1 Robust Estimation of the Decorrelation Matrix. The decorrelation
matrix of a cluster Ci contains the vectors that define (span) the space in which
points in cluster Ci reside. By diagonalizing the covariance matrix � of these
points using PCA (� = V �V T ), we obtain an orthonormal Eigenvector matrix
V , which we defined as the decorrelation matrix. The matrices V and � have
the following properties: The decorrelation matrix V spans the space of points
in C, and all Eigenvalues in the diagonal matrix � are positive. To measure the
distance between two points �x and �y , taking into account the structure of the
cluster, we use the Mahalanobis distance defined by � and V .

d�C (�x, �y) = (�x − �y)T · V · �−1 · V T · (�x − �y)

Given a cluster of points C with center �μ, the conventional way to estimate the
covariance matrix � is by computing a matrix �C from points �x ∈ C by the
averaging

�C = 1/|C|
∑
�x∈C

(�x − �μ) · (�x − �μ)T ,

where (�x − �μ) · (�x − �μ)T is the outer vector product of the centered data. In other
words, the (i, j )-entry of the matrix �C, (�C)i, j , is the covariance between the ith
and j th attributes, which is the product of the attribute values (xi−μi)·(x j −μ j ),
averaged over all data points �x ∈ C. Moreover, �C is a d × d matrix, where d
is the dimension of the data space.

The two main problems of this computation when confronted with clusters
containing outliers are that: (1) the centering step is very sensitive to outliers,
namely, in that outliers may heavily move the determined center away from
the center of the core points, and (2) the covariances are heavily affected from
wrongly centered data and from the outliers as well. Even a small number of
outliers may thus completely change the complete decorrelation matrix. This
effect can be seen in Figure 3 where the center has been wrongly estimated using
conventional estimation. In addition, the ellipsoid which shows the estimated
“data spread” corresponding to the covariance matrix has a completely wrong
direction that is not followed by the core points of the clusters.

To improve the robustness of the estimation, we apply an averaging tech-
nique which is much more outlier robust than the arithmetic means: the
coordinate-wise median. To center the data, we determine the median of each
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Fig. 4. The decorrelation matrix.

attribute independently. The result is a dataset where the origin is close to the
center of core points of the cluster ( �μR), rather than the center of all points (�μ).

A similar approach is applied for the covariance matrix: Here, each entry of
the robust covariance matrix (�R)i, j is formed by the median of (xi −μRi ) · (x j −
μR j ) over all points �x of the cluster. The matrix �R reflects more faithfully the
covariances of core points, compared to the covariance matrix obtained by the
arithmetic means.

The arithmetic-mean covariance matrix �C has the diagonal dominance
property, where the each diagonal element �i,i is greater than the sum of other
elements of the row �∗,i. The direct consequence is that all Eigenvalues in the
corresponding diagonal matrix � are positive, which is essential for the defini-
tion of d�(�x, �y).

However, the robust covariance matrix �R might not have the diagonal dom-
inance property. If �R is not diagonally dominant, we can safely add a matrix
φ · I to it without affecting the decorrelation matrix. The value φ can be chosen
as the maximum difference of all column sums and the corresponding diagonal
element (plus some small value, say 10%).

φ = 1.1 · max
0≤i<d

{( ∑
0≤ j<d ,i 
= j

(�C)i, j

)
− (�C)i,i

}

It can easily be seen that adding the matrix φI does only affect the Eigenvalues
and not the Eigenvectors: If � = V �V T , then � + φI = V �V T + φI . Since V
is orthonormal, φI can also be written as V φIV T , and due to the distributive
law we have � + φI = V (� + φI )V T , that is, each Eigenvalue is increased by
φ and matrix V is unaffected by this operation.

Using our robust estimation technique, the center in Figure 3 is correctly
positioned and the ellipsoid which represents the covariance matrix follows
the distribution of core points. The safe decorrelation matrix V (compare with
Figure 4), which has been generated from the safely estimated covariance ma-
trix, is composed from Eigenvectors which indicate the directions of maximum
variance of the core of the cluster. When transforming the data by multiplica-
tion of V T , we remove the correlations of the attributes. Note that we do not
decide about a projection into a lower-dimensional space at this stage, that is,
there is no information loss.

3.2.2 Partitioning Points into Core and Noise. The first step of purifying
a cluster of points is to identify the proper decorrelation matrix. We generate
several estimates (called candidates) of the covariance matrix, using various
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estimation methods, and pick the one with the best overall VAC value. In our ex-
periments, the candidates include the matrix �C from the conventional method
using arithmetic average, and matrix �R from the robust method described ear-
lier. We also determine a conventional and a robust candidate, matrices �C,50

and �R,50, respectively, by considering only a certain percentage (e.g., 50%) of
points in the cluster being closest to the robustly estimated center �μR . In ad-
dition, we always have the identity matrix I as one candidate decorrelation
matrix. Among these matrices, our algorithm selects the matrix giving the best
(lowest) overall VAC. For our example in Figure 3, the diagram at the right
shows that the lowest VAC value of 1480 is reached for robust estimation in
contrast to 1600 for conventional estimation.

The next step is to detect noise points in the cluster. By now, we have com-
puted the robust center �μR , and have chosen a candidate covariance matrix
which we call �∗ (the corresponding decorrelation matrix is V ∗). The goal is to
partition the set of points in cluster C into two new sets: Ccore (for core points)
and Cout (outliers). First, our method orders the points of C according to the
Mahalanobis distance defined by the candidate covariance matrix �∗. Initially,
we define all points to be outliers (Cout = C, Ccore = {}). Then, we iteratively re-
move points �x from Cout (according to Mahalonobis sort order starting with the
point closest to the center) and insert them into Ccore, and compute the coding
costs before and after moving the point �x.

At each iteration, the point �x being moved from Cout to Ccore is first projected to
the space defined by the selected candidate decorrelation matrix V ∗. Then, the
coding cost of the new configuration (Ccore ∪ {�x}, Cout − {�x}) is determined as the
cost where each of the coordinates is modeled using that distribution function
which gives least coding costs. Outlier points are always coded using uniform
distribution. So, each of these configurations corresponds to one given radius
of the ellipsoid partitioning the set into core and noise objects. The partition
which has the least overall cost in this algorithm is finally returned (refer to
Figure 3 where at the minimum of 1480, we have 24 objects in the core set
and 6 in the noise set). The diagram in Figure 3 depicts the VAC value (v-axis)
of the different configuration (Ccore, Cout) at each iteration (x-axis). Figure 3
shows two VAC-value curves: one for the conventional candidate decorrelation
matrix (VC) and the other for the robust estimation (VR). At the beginning,
all points are regarded as noise points, yielding a VAC value of approximately
1800 for both candidate matrices. As more and more points are moved from
Cout to the set of core points Ccore, the VAC value improves (decreases). For the
robust decorrelation matrix (VR), the VAC value reaches the minimum of 1480
when there are 24 core points. After this, the VAC value increases again to
approximately 1800.

3.3 Cluster Merging (CM)

Our RIC framework is designed to refine the result of any clustering algorithm
(e.g., K-means). Due to imperfection of the clusters given by an algorithm, our
cluster purifying algorithm may lead to redundant clusters containing noise ob-
jects that fit well to other neighboring noise clusters. In this section we describe
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our proposed cluster merging procedure in more detail, to correct the wrong
cluster assignments caused by the original clustering algorithm.

For example, the K-means clustering algorithm tends to partition data incor-
rectly when the true clusters are noncompact. These clusters are often split up
into several parts by K-means. A typical, inappropriate partitioning is shown
in Figure 6(a). Our algorithm corrects the wrong partitions by merging clusters
that share common characteristics, taking into account the subspace orienta-
tion and data distribution. We use the proposed VAC value to evaluate how
well two clusters fit together. The idea is to check whether the merging of a pair
of clusters could decrease the corresponding VAC values. Mathematically, let
VAC(C) be the VAC value for a cluster C. We also define savedCost(Ci, Cj ) of a
cluster pair (Ci, Cj ) as

savedCost(Ci, Cj ) = VAC(Ci) + VAC(Cj ) − VAC(Ci ∪ Cj ).

If savedCost(Ci, Cj ) > 0, then we consider the cluster pair (Ci, Cj ) a potential
pair for merging. Our proposed merging process is an iterative procedure. At
each iteration, our algorithm merges those two clusters which have the max-
imum savedCost(., .) value, resulting in a greedy search toward a clustering
that has the minimum overall cost. To deter this greedy algorithm from getting
stuck in a local minimum, we do not stop immediately, even when no savings
of savedCost(., .) value can be achieved by merging pairs of clusters. In other
words, we do not stop when savedCost(., .) ≤ 0. Instead, the algorithm con-
tinues for another t iterations, continuing to merge cluster pairs (Ci, Cj ) with
the maximum savedCost(Ci, Cj ) value, even though now the savedCost(Ci, Cj )
value is negative and merging Ci and Cj will increase the VAC value of the
overall dataset. Whenever a new minimum is reached the counter is reset to
zero. Pseudocode for the RIC algorithm is given in Figure 5.

Complexity analysis. The RF algorithm considers (n − 1) partitions of the
dataset into core and noise points. For each partion the VAC is determined,
which requires O(n ·d3) time due to PCA, so the overall complexity is O(n2 ·d3).
The CM algorithm is quadratic in the number of initial clusters Cinit. In each
merging step, the VAC of the new cluster needs to be determined, which leads
to an overall complexity of O(Cinit · n · d3). The overall complexity of standard
RIC is quadratic in n and cubic in d . In Section 5 a more efficient solution is
proposed.

4. EXPERIMENTS

4.1 Results on Synthetic Data

Especially widespread K-means and K-medoid clustering methods often fail
to separate clusters from noise, and therefore produce results where the ac-
tual clusters are contaminated by noise points. Figure 6(a) shows the result
of K-means with k = 8 on a synthetic 2D dataset consisting of 4751 data ob-
jects. Two of the resulting clusters contain many noise objects, among them
the 1D correlation cluster. In Figure 6(b) the result of the cluster purifying al-
gorithm is depicted. Five of the eight initial clusters have been split up into
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Fig. 5. RIC algorithm.

clusters containing noise objects and clusters with core points. Three of the
initial clusters contain only noise objects. No objects need to be filtered out,
so these partitions remain unchanged. The purifying algorithm reduces the
overall VAC from 78,956 to 78,222.

As a building block we provide fully automatic noise filtering and outlier
detection. Our approach is model-based and supports both subspace and cor-
relation clusters as well as various data distributions. It provides a natural
cut-off point for the property of being an outlier based on the coding cost.

After the initial clusters have been purified, our algorithm merges together
those with common characteristics such as common subspace orientation or
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Fig. 6. 2D synthetic data.

Fig. 7. 3D synthetic data.

data distribution. In the example depicted in Figure 6(a), the cluster in the
center has been split up into three parts by K-means. This inappropriate parti-
tioning is corrected by the cluster merging algorithm (compare with Figure 6(c)).
Also, the noise clusters generated by the previously applied cluster purifying
algorithm are now merged. The resulting clustering in our example consists of
four clusters. The cluster merging algorithm drastically reduces the VAC score
by removing redundant clusters.

As a particular advantage over conventional clustering, RIC provides in-
formation on the data distribution of the coordinates. In our example, the x-
coordinate of the correlation cluster (top left in Figure 6(d)) is uniformly dis-
tributed, the y-coordinate Gaussian. Both coordinates of the top right cluster
follow a Gaussian distribution. Both coordinates of the bottom left cluster are
Laplacian, and both of the bottom right (representing noise objects) are uni-
formly distributed.

We demonstrate the performance of the cluster filtering and merging algo-
rithm on a 3D synthetic data containing 7500 data objects (cf. Figure 7). This
dataset consists of one plane (2D correlation cluster, 2000 objects) and three
lines (1D correlation clusters, two with 2000 objects each, one with 1000), and
500 noise objects. Note that one of the lines is embedded in the plane. Figure 7(a)
shows the clustering result of K-means with k = 20. The correlation clusters are
split up in several parts and the noise objects distributed among all clusters.
This initial clustering obtains a VAC score of 202,078. After applying the clus-
ter purifying and merging algorithm, we obtain a much better clustering result
with VAC 153,393. Further, 98.6% of the noise objects are correctly assigned to
the noise cluster. The plane is 94.6% pure and the lines, even the one embedded
in the plane, are from 99.5% to 100% pure.
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Table III. Clusters Found by RIC

Method c-id Control PKU VAC IMP

RIC+K-means 1 0 275

2 337 31 74,298 31

K-means k = 2 1 0 222

2 337 84 75, 497 84

RIC+spectral 1 2 282

2 335 24 72,131 26

spectral k = 2 1 2 224

2 335 82 75,922 84

The DBSCAN algorithm (MinPts = 4, ε = 0.1) correctly detects the lines,
but fails to separate the plane from the noise objects, and creates many small
clusters in dense areas of the plane (compare with Figure 7(b)). There are 34
initial clusters in total. This result has a VAC score of 195,276. After the pu-
rifying and merging algorithm we obtain a VAC of 155,412 and a very similar
result, as depicted in Figure 7(c). This demonstrates that the RIC framework
can be applied with various partitioning clustering methods. Since the dataset
has been artificially generated, we can determine the VAC for the ideal clus-
tering (exactly corresponding to the generated clusters): The VAC of the ideal
clustering (151, 637) is almost reached by RIC after K-means as well as RIC
after DBSCAN.

The greedy fashion optimization process is efficient. We implemented the
RIC algorithm in Java. Runtimes for synthetic datasets are 147 s for the 2D
dataset and 567 s for the 3D dataset on a PC with 3 GHz CPU and 1 GB RAM.

4.2 Performance on Real Data

4.2.1 Metabolic Data. We evaluate the RIC framework using a high-
dimensional metabolic dataset. This 14D dataset (643 instances) was pro-
duced by modern screening methodologies and represents 306 cases of PKU,
a metabolic disorder, and 337 objects from a healthy control group. As ini-
tial clusterings, we used spectral clustering (with d = 12 dimensions), and
K-means; in both cases we used k = 6 initial clusters. To evaluate class purity
of the clusterings, we report IMP, the count of impurities, defined as the count
of minority points in each cluster. The initial clusterings have an IMP of 31
and a VAC of 77,822 for K-means and an IMP of 26 and a VAC of 78,184 for
spectral clustering, respectively. Table III shows the same quantities and the
clustering results after we apply RIC. We obtain the best result by applying
RIC after spectral clustering. Two out of 14 features from cluster 1 hosting
class PKU are uniformly distributed; the remaining features follow the Lapla-
cian distribution. All features of cluster 2 containing the control group follow
the Laplacian distribution. Notice that in all cases, RIC achieved everything we
wanted: (a) It found the correct number of clusters, and (b) it achieved better
compression (lower VAC score, as expected). For comparison, we also show the
results of K-means and spectral clustering after setting k = 2 (which gives an
unfair advantage over RIC). Even so, notice that RIC achieves both lower VAC
scores as well as better impurity count IMP. Using k = 2, both K-means and
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Fig. 8. (a) Visualizing the distribution of 7D retinal image tiles. Each subfigure shows the distri-

bution of two dimensions. The dataset contains non-Gaussian clusters; (b) the 13 clusters found by

RIC.

spectral clustering assign many instances of class PKU to the cluster of the
control group.

4.2.2 Cat Retina Images. The data we consider here consists of image
blocks in retinal images from the UCSB BioImage (http://bioimage.ucsb.
edu/) database. The blocks are taken from 219 images of the retina under 9 dif-
ferent conditions (healthy, diseased, etc.). Each image is of size 512 × 768. We
take nonoverlapped pixel blocks (called tiles) of size 64 × 64 from each image,
and collect in 96 tiles per image, or 21,024 tiles in total. Each tile is repre-
sented as a vector of 7 features, exactly as suggested in Bhattacharya et al.
[2005]. Figure 8(a) depicts the distribution of image tiles. The distribution is
viewed from all possible pairs of dimensions; the (i, j )-subfigure plots the ith
dimension versus the j th. The histograms at the diagonal subfigures depict the
distribution of values in each dimension. The retina image tiles clearly have a
non-Gaussian distribution with correlation clusters. Some views show strong
correlation patterns, for example, the view of the 1st and 5th dimensions (the
subfigure at the first row and fifth column). In the following discussion, we
will focus on the view of the 1st and 5th dimensions, and show that our RIC
framework is able to find the non-Gaussian correlation clusters in this dataset.

Moreover, most of the coordinates in the detected clusters clearly show a
super-Gaussian distribution which is reported as Laplacian by RIC. Let us note
that our framework is extensible and can incorporate every data distribution
that has a pdf. Figure 8(b) shows the RIC clustering result on the retinal tiles,
where points of a cluster are plotted with an unique symbol. In total, RIC
produces 13 clusters for this dataset. We plot each cluster separately in different
figures for better visualization of the clustering result.

Some plots of individual clusters are shown in Figures 9(a)–(f).
It can be easily seen that the proposed RIC method successfully finds the

correlation clusters in this dataset, and, unlike other methods like K-means,
will neither overcluster nor undercluster the dataset.
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Fig. 9. Example clusters on retinal image tiles found by RIC.

Fig. 10. The white boxes in the two retinal images indicate example tiles in selected clusters. Left

(a) tiles at position A of cluster of Figure 9(a); right (b) tiles at position B of cluster of Figure 9(d).

The question is: Is there any biological meaning to the clusters derived by
RIC? “The answer is yes.” Tiles from cluster (A) (see Figure 9(a)) are shown in
Figure 10(a), and tend to correspond to the so-called “Müller cells.” Similarly,
tiles from cluster (B) (see Figure 9(d)) are shown in Figure 10(b), and tend to
correspond to the so-called “rod photoreceptors.”

Specifically, Figure 10 shows the layers of cells of a cat’s retina. The lighter
colors in the image indicate the distribution of two proteins (rod opsin and
GFAP). In Figure 10(a), the white boxes highlight two tiles at position A of the
cluster shown in Figure 9(a). The image shows the situation of a layer-detached
retina being treated with oxygen exposition. Highlighted tiles are Müller cells
with protein GFAP propagated from the inner layer of the retina.

In Figure 10(b), the white boxes highlight two tiles at position B of the cluster
shown at Figure 9(d). The image shows the case of a retina which has suffered
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layer detachment for three months. The tiles highlighted are rod photorecep-
tors, with the protein rod opsin redistributed into the cell bodies; this is typical
for detached retinas.

The point is that our clustering method, without any domain knowledge,
manages to derive groups of tiles that do have biological meaning (Müller cells
and rod photoreceptors, respectively).

5. EXTENSIONS

In this section, we propose several extensions to the RIC framework. In partic-
ular, we propose more effective and efficient methods for filtering non-Gaussian
clusters. In addition, we present an efficient top-down clustering method which
has been designed to optimize the VAC criterion. An extensive experimental
evaluation demonstrates that this algorithm is a good choice as stand-alone
clustering method, that is, no preclustering by another clustering algorithm is
required.

5.1 Purifying Clusters from Noise

As discussed in Section 3.2, it is an essential step of our algorithm to purify the
initial clusters from noise. The model and subspace orientation of the clusters
can be safely determined by the robust fitting method (refer to Section 3.2.1).
Subsequently, the points of a cluster can be separated into core points and noise
points (refer to Section 3.2.2).

5.1.1 FilterCost: Filtering by Coding Cost. The algorithm for partitioning
the points of a cluster into core and noise points, described in Section 3.2.2,
works well for clusters with a data distribution that is at least approximately
Gaussian. Recall that the main idea of this algorithm, subsequently called fil-
terDist, is to sort the points with respect to their distance from the robustly
estimated cluster center. The cluster is rotated according to its robustly esti-
mated decorrelation matrix if the saved cost due to this rotation pays off the
coding cost of the decorrelation matrix. In this case, the Mahalonobis distance is
used for sorting the points with respect to their distance from the cluster center.
The algorithm then determines the coding cost for each possible partitioning
into core and noise points according to this sorting order. For clusters that have
a data distribution clearly differing from Gaussian, this method is not optimal
because the sorting order does not correspond well to the data distribution.

However, considering a point �x and a cluster C, the VAC of �x as specified in
Definition 1 determines its correct position in the sorting order with respect to
C. The VAC of �x needs to be encoded using the characteristic

−→
pdf(�x) of cluster

C (refer to Definition 2). Based on this observation, we can easily modify the
filterDist algorithm to achieve better filtering results for non-Gaussian, for ex-
ample, Laplacian, clusters. Again, we code the noise points using the pdf for
uniform distribution. The filtering algorithm starts with all points being out-
liers, namely (Cout = C, Ccore = {}). As described in Section 3.2.2, the algorithm
removes at each iteration one point from the set of outliers and adds it to the
set of cluster points. The coding cost for the new configuration is determined
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Fig. 11. Mixed filtering.

and the cluster points are coded according
−→
pdf(�x). The main difference is that

the sorting order applied now is based on the coding costs of the points with
respect to the characteristic

−→
pdf(�x) of the corresponding cluster.

Since sorting order now depends on coding cost, the question arises as to
whether it is necessary to run the filtering algorithm more than once. In prin-
ciple, for each coordinate, one of the allowed distribution functions can be in-
dependently selected, which results in a total number of |PDF|d different sort
orders for each cluster C. However, the problem of an exponential number of
runs of the filtering algorithm can be completely avoided by the following mod-
ification of our method, which needs only one run instead of |PDF|d different
runs. Our algorithm still starts with a setting where all points are considered
outliers. However, our points are not sorted according to a fixed order. Instead,
in each step, the point which causes the highest cost gain is selected and in-
serted into the set of core points. Then the cluster model is updated. This means

that the characteristic probability density function ( �pdf(�x)) for the current set
of cluster points and the corresponding parameters (μi, σi) are redetermined
and will be used in the next step of our loop. Thus, the sorting order is allowed
to change during the run of the filtering algorithm.

As an example, Figure 11 displays the VAC of a 2D example consisting of
a Laplacian cluster of 2000 objects which is embedded in an environment of
1000 uniformly distributed noise objects. The diagram displays a varying as-
sociation of objects to noise and core, ranging from 1300 to 700 noise objects
(in descending order, analogously to the considered order of the algorithm). For
comparison we show the cost for a fixed sort order under the assumptions that
both coordinates are Laplacian and that both are Gaussian, respectively. The
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interesting observation here is that our new method of an updated sort order
(depicted in the thin, black line and denoted “mixed”) almost always adopts the
better of the two cost curves with fixed pdf association (our algorithm switches
from a Gaussian to a Laplacian model at approximately 1100 noise objects).
This is particularly true at the overall optimum of the association, which cor-
rectly partitions the dataset into 964 noise points and 2036 cluster points with
a VAC of 89,044 (position (b)). Note that some of the points which have been
generated as noise points are indeed located inside the cluster and can there-
fore not be distinguished from core points, which explains the fact that 36 more
objects are considered core objects. We can also learn from this diagram that
(not surprisingly) the Gaussian coding is not so appropriate (VAC = 89,138,
position (a)) for this dataset, as it reaches a local optimum for approximately
1100 noise points.

Let us note that the result of the filterDist algorithm is similar to Gaussian
filtering because the Euclidean (weighted Euclidean and Mahalonobis) dis-
tance is equivalent to sorting based on Gaussian coding cost. Compared to
distance-based filtering, the cost-based filtering algorithm, henceforth called
filterCost, achieves better results on non-Gaussian clusters. However, the run-
time is quadratic in the size |C| the cluster (due to selection of the maximum
cost gain in each iteration of the loop). Therefore, we propose a very efficient
solution to the cluster filtering problem in the next section.

5.1.2 FilterOpt: An Optimization-Based Filtering Algorithm. Although the
example depicted in Figure 11 is rather difficult (one-third of all points are
noise points), the VAC curve of the filter cost algorithm shows a distinct cost
minimum indicating the correct partitioning. Provided that the dataset to be
filtered only contains core points of the cluster and noise points, we observe a
VAC curve with a distinct global cost minimum. To find this minimum, it is not
required to examine all possible n−1 segmentations into core and noise points.
For this task, a much more efficient iterative algorithm optimizing the VAC can
be employed.

The main idea of this algorithm is to use a K-Means-style algorithm which
terminates after a few iterations to separate core from noise points. In each
partition from the initial clustering to be filtered, we run this algorithm for k = 2
clusters representing the core points and noise points, respectively. However,
the K-Means paradigm requires major modifications for our purposes. First, as
in the filterCost algorithm, we use the coding costs instead of a metric distance
function when assigning points to clusters. In addition, the cluster which should
finally contain the core points and that which should end up containing the
noise points (in the following called the noise cluster) cannot be handled equally
during the run of the algorithm. Otherwise, both core and noise points are
distributed over both clusters because the 2-Means algorithm aims at equally
optimizing the coding costs of both clusters. We avoid this effect by:

(1) fixing both cluster centers at the robustly estimated center of the core
points; and

(2) selecting an appropriate coding scheme for the noise cluster.
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Fig. 12. FilterOpt algorithm.

Fig. 13. Effectiveness of the FilterOpt algorithm.

The first aspect is motivated as follows: In a K-means-like approach, two
separate, nonequal centers for core and noise clusters always define a border
such that all objects at one side of the border are associated to the core clus-
ter and all objects on the other to the noise cluster. In subsequent iterations,
typically the centers become even more separated. In traditional K-means with
Euclidean distance, this border is a straight line (or hyperplane for data spaces
of dimensionality greater than 2), resulting in a Voronoi diagram for the com-
plete clustering. For ellipsoid distances and more complex distance measures
(including our cost-based assignment) the border is no longer a straight line, but
a higher-degree function; nonetheless, the border does still exist. In contrast,
fixing both centers in one common point allows the separation of two nested
datasets which correspond to different data distributions (noise and core). The
second aspect guides the algorithm to the desired result. We model the noise
cluster as a Gaussian distribution with high variance. The pseudocode of the
algorithm is presented in Figure 12. The algorithm can be applied in rotated
and unrotated space. For initialization, we selected to assign the 50% of objects
having higher coding costs to noise. We now compare this algorithm, called
filterOpt, to filterDist and filterCost in terms of effectiveness and efficiency.

Effectiveness. On the example depicted in Figure 11, filterOpt achieves a
very similar result as filterCost, with a VAC of 89,051. Figure 13 compares the
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Fig. 14. Efficiency and effectiveness of FilterOpt and FilterCost.

result of filterOpt to the result of filterDist on a 2D dataset containing a Lapla-
cian cluster and various amounts of noise. In all settings, filterOpt achieves a
lower VAC than filterDist.

Efficiency. The filterOpt algorithm is very efficient with a runtime com-
plexity O(iter ·n), where iter is the number of iterations. Usually, the algorithm
terminates after a few iterations; for example, it takes 7 iterations to filter
a dataset similar to the one depicted in Figure 11 with 1000 points, which
takes 328 milliseconds. The filterCost algorithm needs 17 seconds for the same
dataset. A data set with 10,000 points can be processed by filterOpt in 2 sec-
onds, whereas the filterCost algorithm needs 28 minutes. Figure 14 shows the
runtime in seconds for various sizes of the data set.

5.2 A Top-down Clustering Algorithm

In this section, we propose a top-down clustering algorithm which uses the
filterOpt algorithm as a building block. The algorithm is parameter-free and
guided by the optimization of the VAC. First, our algorithm automatically per-
forms a coarse approximation to the correct number of clusters such that the
robust fitting technique together with the filterOpt algorithm succeeds in de-
termining the correct model of the clusters and purifying them from noise. We
apply a simple top-down splitting technique similar to Pelleg and Moore [2000],
but we additionally apply the filterOpt algorithm and keep the result if purify-
ing reduces the VAC.

We start with the whole dataset as one cluster. The filterOpt algorithm is
applied to the whole dataset and the VAC of the result is saved. Then the first
split is performed. A split of a cluster C comprises the following steps: We run
ordinary K-Means with k = 2 to get an approximate partitioning of C into two
intermediate clusters Ci and Cj . On each of these two clusters, the filterOpt
algorithm is applied. For example, if we consider cluster Ci and let CiC be the
cluster containing the core points of Ci, and CiN be the cluster containing the
noise points, then we only split up Ci into CiC and CiN if VAC(CiC)+VAC(CiN) <

VAC(Ci), otherwise Ci remains unchanged. The same is done for Cj . Thus,
the result of a split of a cluster C consists of two clusters, each of which may
be further divided into core and noise clusters. The sum of the VAC of these
children is now compared to the VAC of C, and if an improvement has been
achieved, the split is accepted.
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Fig. 15. Top-down algorithm on 3D dataset.

Fig. 16. Top-down algorithm.

If at least for one cluster an improvement can be achieved, we continue split-
ting these clusters. For the next split, we consider each cluster Ci including its
core points and noise points as a single cluster. To avoid getting stuck in a local
cost minimum we continue splitting all clusters for another t iterations, even
if the VAC increases. Whenever a new cost minimum is reached, the counter is
reset to 0. Finally, we try to split all clusters and noise clusters of the last cost
minimum separately.

For cluster merging, the algorithm described in Section 3.3 can be used. As
a more efficient alternative, in each step an arbitrary pair of clusters Ci, Cj

can be considered. If VAC(Ci ∪ Cj ) < VAC(Ci) + VAC(Cj ), then Ci and Cj are
merged. On our synthetic examples, the greedy merging algorithm described
in Section 3.3 and this procedure achieve similar results. Figure 16 provides
pseudocode for the top-down algorithm.
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Experiments. Figure 15 illustrates the top-down algorithm on the 3D syn-
thetic dataset first presented in Figure 7. Applying the filterOpt algorithm to
the whole dataset results in two clusters (one with the core points, one noise
cluster) and a VAC of 209,823 item (a) in the figure). The dataset is then split as
long as splitting leads to an improvement of the VAC. At point (b) in the figure,
we obetain the the maximum number of 27 clusters with a VAC of 159,158.
Merging these clusters finally results in a clustering with 6 clusters and a VAC
of 152,855, which is very close to the VAC of the ideal clustering of 151,637.
Thus, the top-down algorithm performs better than both RIC after K-Means
(153,393) and RIC after DBSCAN (155,412).

Also on the 2D synthetic dataset we obtain a better result using the top-down
algorithm. The result of RIC after K-Means with a VAC of 76,940 is depicted
in Figure 6(c). Mainly due to improved filtering of the Laplacian cluster, we
achieve a VAC of 76,309 with the top-down algorithm.

6. CONCLUSIONS

The contributions of this work are the answers to the two questions we posed
in the introduction, organized in our RIC framework.

—(Q1) Goodness Measure. We propose the VAC criterion using information-
theory concepts, and specifically the volume after compression.

—(Q2) Efficiency. We introduce two novel algorithms, which together can help
us find good groupings in a fast, “greedy” fashion:
—the robust fitting (RF) algorithm, which carefully avoids outliers. Outliers

plague all methods that use the Euclidean distance (or, equivalently, try
to maximize the likelihood for Gaussian clusters).

—the cluster merging (CM) algorithm, which stitches clusters together if
the stitching gives a better VAC score.

We show that our RIC framework is very flexible, with several desirable
properties that previous clustering algorithms don’t have, summarized next.

—It can handle any of the known distributions (Gaussian, uniform, Laplacian).
The vast majority of clustering algorithms focus on Gaussian distributions
only.

—It can be extended to any other distribution we want.

—It is orthogonal to the searching algorithm that will look for clusters.

—It naturally gives outliers (single-member clusters).

—It gives more information; not only does it give the clusters, but also the
cluster shapes (uniform, Gaussian, Laplacian).

—It is fully automatic (no complex parameter setting) and time and space
efficient.

More importantly, the RIC framework does not compete with existing (or
future) clustering methods: In fact, it can benefit from them! If a clustering algo-
rithm is good, our RIC framework will use its grouping as a starting point, then
try to improve on it (through the robust fitting and cluster merging algorithms),
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either doing so, or declaring it as the winner. In short, the RIC framework can-
not lose—at worst, it will tie!

We also presented experiments on real and synthetic data, where we showed
that our RIC framework and algorithms give intuitive results while typical
clustering algorithms fail.
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