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Abstract

Machine learning has a great potential to mine potential markers from high-dimensional metabolic data without any a priori

knowledge. Exemplarily, we investigated metabolic patterns of three severe metabolic disorders, PAHD, MCADD, and 3-MCCD,

on which we constructed classification models for disease screening and diagnosis using a decision tree paradigm and logistic regres-

sion analysis (LRA). For the LRA model-building process we assessed the relevance of established diagnostic flags, which have been

developed from the biochemical knowledge of newborn metabolism, and compared the models� error rates with those of the decision

tree classifier. Both approaches yielded comparable classification accuracy in terms of sensitivity (>95.2%), while the LRA models

built on flags showed significantly enhanced specificity. The number of false positive cases did not exceed 0.001%.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Newborn screening permits the detection of meta-

bolic disorders in newborns during the first few days

of life prior to the manifestation of symptoms [1–3].

Due to recent innovations and refinements of the screen-

ing methodology using modern tandem mass spectrom-

etry (MS/MS) more than 20 inherited metabolic

disorders can be detected simultaneously from a single

blood spot by quantifying concentrations of up to 50
metabolites [4,5]. Machine learning techniques offer an

obvious and promising approach to examine high-di-

mensional metabolic data, where manual analysis is te-

dious and time-consuming due to the great number

and complexity. The investigation of novel metabolic
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patterns, the construction of classification models with

high diagnostic prediction and the discovery of new
clues for unknown causal relations lead to a better

understanding of mined data in metabolic networks

and constitutes a significant contribution to preventive

medicine [6].

Our goal was to investigate high-dimensional meta-

bolic data with respect to three severe inborn errors of

metabolism to construct classification models for disease

screening and diagnosis. In particular, we focused on
(i) phenylalanine hydroxylase deficiency (PAHD), an

amino acid disorder, which includes cases of classic

phenylketonuria (PKU, OMIM No. 261600 [7]) and

hyperphenylalaninemia (non-PKU HPA, OMIM No.

264070) [8,9], (ii) medium-chain acyl-CoA dehydroge-

nase deficiency (MCADD, OMIM No. 201450), a fatty

acid oxidation defect [10], and (iii) 3-methylcrotonyl

CoA carboxylase deficiency (3-MCCD, OMIM No.
210200), an organic acid disorder [11,12].
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For the model-building process we applied two di-

rectly interpretable classification algorithms, i.e., the

C4.5 decision tree paradigm and binary logistic regres-

sion analysis (LRA), to a metabolome training dataset.

Decision trees optimize classification accuracy by reduc-

ing the full feature dimensionality to a relevant feature
subset according to the algorithms� internal feature

selection strategy. The aim is to assess the relevance of

metabolic knowledge for the model-building process

by comparing C4.5s feature subset with established

diagnostic flags which have been developed from the

current biochemical knowledge of abnormalities in new-

born metabolism. For this task we built LRA models on

these flags and benchmarked their error rates with those
of the decision tree classifier which does not require any

a priori knowledge for tree construction.
2. Metabolic data

Metabolites analyzed by modern MS/MS employing

appropriate internal standards can be quantified very
rapidly, sensitively and accurately requiring only mini-

mal sample preparation [1]. For MS/MS analysis a sin-

gle blood sample, which has been taken within few

days after the newborn�s birth, is sufficient. This screen-

ing methodology creates a high-dimensional metabolic

dataset of each newborn including concentration values

of more than 40 metabolites (14 amino acids and 29

fatty acids, see Table 1).
Our experimental datasets were anonymously pro-

vided from the newborn screening program of the State

of Bavaria, Germany, between 1999 and 2002. For our

train-and-test design cycle we focused on one represen-

tative disorder of the amino acid, one of the fatty acid

oxidation, and one of the organic acid metabolism, each

of them showing a relatively high incidence in-between
Table 1

Overview of metabolites measured from MS/MS analysis

Amino acids (symbols) Fatty acids (symbols)

Alanine (Ala) Free carnitine (C0)

Arginine (Arg) Acetyl-carnitine (C2)

Argininosuccinate (Argsuc) Propionyl-carnitine (C3)

Citrulline (Cit) Butyryl-carnitine (C4)

Glutamate (Glu) Isovaleryl-carnitine (C5)

Glycine (Gly) Hexanoyl-carnitine (C6)

Methionine (Met) Octanyl-carnitine (C8)

Ornitine (Orn) Decanoyl-carnitine (C10)

Phenylalanine (Phe) Dodecanoyl-carnitine (C12

Pyroglutamate (Pyrglt) Myristoyl-carnitine (C14)

Serine (Ser) Hexadecanoyl-carnitine (C

Tyrosine (Tyr) Octadecanoyl-carnitine (C1

Valine (Val) Tiglyl-carnitine (C5:1)

Leucine + Isoleucine (Xle) Decenoyl-carnitine (C10:1)

Myristoleyl-carnitine (C14:

Fourteen amino acids and 29 fatty acids are analyzed from a single blood s
their group of disorders (PAHD, n = 94 cases including

43 cases of classic PKU and 51 cases of non-PKU HPA,

classic MCADD, n = 63 cases, and 3-MCCD, n = 22

cases). Unfortunately, the number of cases of further

screened metabolic disorders was too small (n < 5 cases)

for useful examination.
Based on the given number of PAHD, MCADD, and

3-MCCD cases we sampled a statistically representative

control group from the newborn screening (NBS) data-

base (�600,000 entries, end of year 2002) using a rate of

�1:15–50 (disorder to controls). The PAHD sub-data-

base thus contains all 94 cases designated as confirmed

PAHD and 1241 randomly sampled controls, i.e., each

500th case from NBS controls. The MCADD and
3-MCCD sub-databases consist of all 63 and 22 cases

designated as classic MCADD and 3-MCCD, and again

1241 controls. In our study population ‘‘controls’’ repre-

sent individuals without verified cases of known meta-

bolic disorders.

A much larger randomly sampled control database of

98,411 cases, i.e., one sixth of the NBS control database,

serves to estimate the real specific power of our con-
structed models. Table 2 gives a short clinical overview

of the investigated disorders (enzyme defects, symptoms,

proposed treatments, and diagnostic tests) [7,13–15].
3. Process of data analysis

3.1. Overview of data mining steps

The data analysis process constructing classification

models on high-dimensional metabolic data is illustrated

in Fig. 1. We constructed classification models using

C4.5 decision tree paradigm and LRA. Both models

were trained and 10-fold-cross validated according to a

two-class problem on a training dataset containing n
Fatty acids (symbols)

Hexadecenoyl-carnitine (C16:1)

Octadecenoyl-carnitine (C18:1)

Decenoyl-carnitine (C10:2)

Tetradecadienoyl-carnitine (C14:2)

Octadecadienoyl-carnitine (C18:2)

Hydroxy-isovaleryl-carnitine (C5-OH)

Hydroxytetradecadienoyl-carnitine (C14-OH)

Hydroxypalmitoyl-carnitine (C16-OH)

) Hydroxypalmitoleyl-carnitine (C16:1-OH)

Hydroxyoleyl-carnitine (C18:1-OH)

16) Dicarboxyl-butyryl-carnitine (C4-DC)

8) Glutaryl-carnitine (C5-DC)

Methylglutaryl-carnitine (C6-DC)

Methylmalonyl-carnitine (C12-DC)

1)

pot using MS/MS. The concentrations are given in lmol/L.
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cases of disorder (PAHD: n = 94, MCADD: n = 63 and

3-MCCD: n = 22) and a randomly sampled control

group (n = 1241). The decision tree classifier optimises

classification accuracy by reducing full metabolite

dimensionality, while the LRA model was constructed

on the biochemical knowledge—using diagnostic flags
as input variables—with the goal to assess the metabolic

knowledge for the model-building process. Finally, the

models were validated on a larger dataset of �100,000

controls to estimate the false positive rate representative

for a real screening population.

Although the use of separate datasets for the model-

building process is preferred when enough data is avail-

able (see larger control database), the number of cases
designated as a metabolic disorder was too small to sep-

arate them into training and test sets so that cross-vali-

dation was proposed. We also tested the classifiers

trained from the different disorders against each other

by validating each model with all cases of disorder

which the model was not built on (e.g., the PAHD mod-

el was validated on all cases of MCADD and 3-MCCD

to demonstrate the model�s specific behaviour for the
screened disease it was developed for).

3.2. Classification algorithms

Decision trees. Decision trees are rooted, usually

binary trees, with simple classifiers placed at each inter-

nal node and a class label at each leaf. These simple

classifiers associated with the internal nodes are in
the majority of algorithms comparisons between an

input variable and a fix value. Decision trees are gener-

ally trained by means of a top down growth procedure,

which starts from the root node and greedily chooses a

split of the data that maximizes some cost function,

usually a measure of the class purity of the two sub-

groups defined by the split. After choosing a split,

the subgroups are mapped to the two child nodes. This
procedure is then recursively applied to the children,

and the tree grows until some stopping criterion is

met. If the resulting tree is too complex (and, therefore,

often overfitted) some of the branches can be pruned.

The algorithm most often used to generate decision

trees is C4.5 and C5.0, respectively. These algorithms

select the next node to place in the tree by computing

the information gain (IG) for all candidate features.
Information gain is a measure how well the given fea-

ture A separates the remaining training data by expect-

ing a reduction of entropy (E), a measure of the

impurity in the data [16–20].

EðSÞ ¼
X

c2C
� jScj

jSj : ln
jScj
jSj ð1Þ

IGðS;AÞ ¼ EðSÞ �
X

v2V ðAÞ

jSvj
jSj :EðSvÞ: ð2Þ



Fig. 1. Experimental design of model-building on high-dimensional metabolic data. Several intermediate data mining steps are performed resulting

in a classification model with high diagnostic prediction.
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S represents the data collection, jSj its cardinality, C is
the class collection, Sc the subset of S containing items

belonging to class c, V (A) is the set of all possible values

for feature A, Sv is the subset of S for which A has value

v. For our experiments we used C4.5 for tree construc-

tion with pruning option.

Logistic regression analysis. We constructed classifi-

cation models on diagnostic flags using logistic regres-

sion analysis, which is widely used in medical
applications. LRA constructs a linear separating hyper-

plane between two datasets (cases of disorder and

controls) which have to be distinguished by the classifi-

ers. This hyperplane is mathematically described by a

linear discriminant function z = f (x1, . . . ,xn) = b1x1 +

b2x2 + � � � + bnxn + c. Here, x1, . . . ,xn are the input vari-
ables. The coefficients b1, . . . ,bn and the constant c have

to be learned by the method.
The distance from the hyperplane is considered as

probability measure of class membership based on a

so-called logistic function p = 1/(1 + e�z), where p is

the conditional probability of the form P (z = 1jx1, . . .,
xn) and z the logit (discriminant function) of the model.

The class membership is indicated by a cut-off value

(p = 0.5 by default, p < 0.5 classifies controls and
p P 0.5 cases of disorder). LRA uses a maximum likeli-
hood method which maximizes the probability of getting

the observed results given the fitted coefficients [21].

3.3. Diagnostic flags

In NBS labs diagnostic flags are routinely used to

pre-screen newborns that are highly suspicious for the

screened disorders. The procedure how these flags have
been modelled is briefly sketched by an example.

In the abnormal PAHD metabolism the essential

amino acid Phe can not be metabolized to Tyr due to

a blockade of the enzyme phenylalanine hydroxylase.

Therefore, Phe shows strongly elevated concentration

levels accompanied by slightly decreased Tyr concentra-

tions. The diagnostic flags for PAHD contain the key

marker Phe showing the most significant concentration
changes and additionally the ratio of Phe/Tyr represent-

ing the block of the enzyme phenylalanine hydroxylase.

For our experiments we used flags, which were devel-

oped by biochemical and medical experts of the Bavar-

ian newborn screening program, as summarized in

Table 3. NBS centres worldwide use such decision rules

with slight modifications for disease screening [22,23].



T
a
b
le

3

S
ta
ti
st
ic
a
l
a
n
a
ly
si
s
o
f
m
et
a
b
o
li
c
p
a
tt
er
n
s
in
v
es
ti
g
a
te
d
fr
o
m

d
ec
is
io
n
tr
ee

a
n
d
ex
p
er
t
k
n
o
w
le
d
g
e
a
p
p
ro
a
ch

M
et
a
b
o
li
c
d
is
o
rd
er
s

M
et
a
b
o
li
te
s
fi
lt
er
ed

fr
o
m

d
ec
is
io
n
tr
ee

a
p
p
ro
a
ch

D
ia
g
n
o
st
ic

fl
a
g
s
d
ev
el
o
p
ed

fr
o
m

ex
p
er
t
k
n
o
w
le
d
g
e

M
et
a
b
o
li
te
s

C
o
n
tr
o
ls

(l
m
o
l/
L
)

C
V

D
is
o
rd
er

(l
m
o
l/
L
)

C
V

D
is
o
rd
er
/

co
n
tr
o
ls
(%

)

F
la
g
s

C
o
n
tr
o
ls

(l
m
o
l/
L
)

C
V

D
is
o
rd
er

(l
m
o
l/
L
)

C
V

D
is
o
rd
er
/

co
n
tr
o
ls

P
h
en
y
la
la
n
in
e
h
y
d
ro
x
y
la
se

d
efi
ci
en
cy

(P
A
H
D
)

P
h
e
(r
o
o
t)

5
7
.9

(1
7
.1
)

0
.3
1

4
0
6
(2
4
2
)

0
.5
9

+
6
0
1

P
h
e

*
*

*
*

*

T
y
r

9
7
.2

(6
4
.2
)

0
.6
6

6
7
.6

(2
7
.6
)

0
.4
1

�
3
1

P
h
e/
T
y
r

0
.7
4
(0
.4
0
)

0
.5
4

7
.2

(6
.1
)

0
.8
4

+
8
7
6

A
la

5
0
9
(2
1
1
)

0
.4
1

4
4
4
(1
8
5
)

0
.4
2

�
1
3

M
ed
iu
m

ch
a
in

a
cy
l
C
o
A

d
eh
y
d
ro
g
en
a
se

d
efi
ci
en
cy

(M
C
A
D
D
)

C
8

0
.2
2
(0
.1
4
)

0
.6
4

8
.3
5
(6
.5
6
)

0
.7
9

+
3
6
4
9

C
8

*
*

*
*

*

C
1
0
:1

(r
o
o
t)

0
.0
9
(0
.0
6
)

0
.6
3

0
.0
8
(0
.4
8
)

0
.5
9

+
7
5
0

C
1
0
:1

*
*

*
*

*

C
1
6

4
.4
1
(2
.1
4
)

0
.4
9

4
.0
7
(1
.6
1
)

0
.4
0

�
8

C
6

0
.4
1
(0
.5
2
)

1
.2
4

1
.9
9
(1
.8
2
)

0
.9
1

+
3
8
0

C
8
/C
1
0

5
.0
2
(6
.0
9
)

1
.2
1

1
3
.0

(1
0
.4
)

0
.8

+
1
5
9

C
8
/C
6

0
.8
8
(0
.8
9
)

1
.0
1

4
.3
4
(2
.1
6
)

0
.5

+
3
9
0

3
-M

et
h
y
lc
ro
to
n
y
l
C
o
A

ca
rb
o
x
y
la
se

d
efi
ci
en
cy

(3
-M

C
C
D
)

C
5
-O

H
(r
o
o
t)

0
.1
6
(0
.0
8
)

0
.4
9

4
.6
8
(3
.1
5
)

0
.6
7

+
2
9
4
1

C
5
-O

H
*

*
*

*
*

C
6

0
.4
1
(0
.5
2
)

1
.2
4

0
.1
5
(0
.1
1
)

0
.7
0

�
6
3

C
5
-O

H
/C
3

0
.0
9
(0
.0
7
)

0
.8
0

3
.9
1
(4
.2
7
)

1
.0
9

+
4
3
5
1

M
ea
n
(S
D
)
co
n
ce
n
tr
a
ti
o
n
v
a
lu
es

o
f
m
et
a
b
o
li
te
s
(l
m
o
l/
L
)
a
n
d
co
effi

ci
en
t
o
f
v
a
ri
a
ti
o
n
(C

V
,
w
h
ic
h
is
st
a
n
d
a
rd

d
ev
ia
ti
o
n
d
iv
id
ed

b
y
th
e
m
ea
n
v
a
lu
e
o
f
m
et
a
b
o
li
te
s�
co
n
ce
n
tr
a
ti
o
n
s)

a
re

g
iv
en

fo
r
b
o
th

cl
a
ss
es

co
n
tr
o
ls
a
n
d
d
is
o
rd
er
.
R
el
a
ti
v
e
ch
a
n
g
es

o
f
m
a
rk
er
s�
m
ea
n
co
n
ce
n
tr
a
ti
o
n
s
re
fe
re
n
ce
d
to

m
ea
n
co
n
tr
o
l
v
a
lu
es

(D
is
o
rd
er
/c
o
n
tr
o
ls
)
a
re

d
en
o
u
n
ce
d
in

p
er
ce
n
t
(%

).
T
h
e
a
st
er
is
k
(*
)
re
p
re
se
n
ts
eq
u
a
l

v
a
lu
es

a
s
a
lr
ea
d
y
sh
o
w
n
.

C. Baumgartner et al. / Journal of Biomedical Informatics 38 (2005) 89–98 93
3.4. Classification accuracy and validation process

The discriminatory power of the models was evalu-

ated from stating all true positive (TP), true negative

(TN), false positive (FP), and false negative (FN) cases.

We used sensitivity (Sn), specificity (Sp), positive predic-
tive value (PPV) and accuracy (Acc = (TP + TN)/all

cases) as measure of classification accuracy.

For both approaches the model-building process was

validated using 10-fold-cross validation on our training

datasets which has been proved to be statistically good

enough in evaluating the classification accuracy of the

models [18]. Traditionally, 10-fold-cross validation uses

‘‘train on 9-folds, test on onefold.’’ For our experiments
we used the publicly available, widespread, and compre-

hensive data mining tool set WEKA (http://www.cs.wai-

kato.ac.nz/~ml/weka) to perform classification and

cross-validation. The WEKA tool constructs LRA mod-

els based on the default cut-off of p = 0.5 [18].
4. Metabolic patterns

Metabolic patterns mined from the decision tree par-

adigm—the nodes of the generated tree represent the rel-

evant feature subset—and basic statistical analysis are

summarized in Table 3. The detected metabolites (tree

nodes) are well comparable to the established diagnostic

metabolites/flags representing the present metabolic

knowledge. In particular, the mined metabolites Phe
and Tyr (PAHD), C8 and C10:1 carnitines (MCADD)

and C5-OH carnitine (3-MCCD) represent the estab-

lished markers known from the disorders� metabolism

[15]. However, the decision tree paradigm only selects

single metabolites with highest information gain,

whereas diagnostic flags also take interacting metabo-

lites (ratios) into account. Easy statistical analysis as

illustrated in Table 3 showed that the ratio Phe/Tyr,
for instance, further increases the relative concentration

changes compared to the single markers (Phe/Tyr

+876% vs. Phe +601% and Tyr �31% alone, Table 3).

However, all presented ratios (Phe/Tyr, C8/C10, C8/

C6, and C5-OH/C3) revealed an enhanced coefficient

of variation (CV), predominantly observed in the con-

trol groups. It is of interest to note that each disorder

is characterized by one key metabolite i.e., Phe for
PAHD, C8 for MCADD and C5-OH for 3-MCCD

showing a significant concentration enhancement with

a moderate CV (<1).
5. Screening models

Following the process of data analysis decision tree
and LRA models were trained and 10-fold-cross vali-

dated on pre-selected training datasets. Classification

http://www.cs.waikato.ac.nz/~ml/weka
http://www.cs.waikato.ac.nz/~ml/weka


Table 4a

Classification accuracy of decision tree and LRA models trained and cross-validated on a small training set

Disorder (No. of cases) Classification model Model input

variables

Sn (%) FN (No.

of cases)

Sp

(%)

FP (No.

of cases)

Acc (%) Tree structure of C4.5 classifier/logit

of LRA models z = a0 + a1 m1+ � � �+ an mn

Standard error

of coefficients

RMS

error

PAHD (n = 94) Decision tree classifier Phe 96.809 3 99.758 3 99.551 Phe < = 115.58: control 0.0678

Tyr Phe > 115.58

Ala j Ty r < = 95.92: PAHD

j Tyr > 95.92

j j Ala < = 686.13: PAHD

j j Ala > 686.13: control

LRA built on diagnostic flags Phe 96.809 3 99.758 3 99.551 �14.776 2.622 0.0598

Phe/Tyr +0.0738 Æ Phe 0.015

+2.2157 Æ Phe/Tyr 0.519

Phe* 93.617 6 99.678 4 99.251 �11.8681 1.429 0.0687

+0.081 Æ Phe 0.011

MCADD (n = 63) Decision tree classifier C8 95.238 3 99.517 6 99.310 C10:1 <= 0.37 0.0813

C10:1 j C8 <= 0.46: control

C16 j C8 > 0.46

j j C16 <= 3.16: MCADD

j j C16 > 3.16

j j j C8 <= 1.48: control

j j j C8 > 1.48: MCADD

C10:1 > 0.37: MCADD

LRA built on diagnostic flags C8 95.238 3 99.678 4 99.463 �8.5391 2.394 0.0658

C10:1 +7.1856 Æ C8 2.865

C6 +11.0392 Æ C10:1 4.092

C8/C10 �1.6439 Æ C6 2.893

C8/C6 �0.1836 Æ C8/C10 0.060

�0.1774 Æ C8/C10 1.837

C8* 95.238 3 99.839 2 99.617 �7.5362 0.746 0.0595

+5.7931 Æ C8 0.764

3-MCCD (n = 22) Decision tree classifier C5-OH 95.455 1 99.839 3 99.683 C5–OH <= 0.41: Control 0.0563

C6 C5–OH > 0.41

j C6 <= 0.37: 3-MCCD

j C6 > 0.37: control

LRA built on diagnostic flags C5-OH 90.909 2 99.919 1 99.762 �722.52 3935.91 0.0486

C5-OH/C3 +1054.41 Æ C5-OH 5719.10

�248.09 Æ C5-OH/C3 1348.61

C5-OH* 95.455 1 99.919 1 99.942 �47.349 48.291 0.0404

+63.205 Æ C5-OH 65.095

n, number of PAHD, MCADD and 3-MCCD cases, No, number of FN and FP cases. Classification results are given in terms of sensitivity (Sn), specificity (Sp) and accuracy (Acc). The generated

C4.5 tree structures as well as the logit z of the LRA models and the standard error of their coefficients are given. For both algorithms the root mean squared (RMS) error, which is a measure of

success of numeric prediction, is shown. The asterisk (*) highlights those LRA models built on the disease�s predominant metabolite (see Table 3, Disorder/controls). Tenfold-cross validation was

applied to validate both classifiers.

9
4

C
.
B
a
u
m
g
a
rtn

er
et

a
l.
/
J
o
u
rn
a
l
o
f
B
io
m
ed
ica

l
In
fo
rm

a
tics

3
8
(
2
0
0
5
)
8
9
–
9
8



C. Baumgartner et al. / Journal of Biomedical Informatics 38 (2005) 89–98 95
accuracy in terms of sensitivity (Sn), specificity (Sp) and

accuracy (Acc) is given in Table 4a. In addition to the

parameters Sn, Sp and PPV we also denounce the gener-

ated tree structure as well as the logit of the LRA model

and its standard error of the coefficients, and for both

approaches the root mean squared (RMS) error, a
measure of success of numeric prediction. Both the

decision tree and LRA model for PAHD showed equal

classification accuracy (Sn = 96.809%, Sp = 99.758%,

and Acc = 99.551%). The MCADD models� error rates
were comparable to the PAHD ones. Only the decision

tree model yielded a slightly reduced specificity. The

3-MCCD models achieved the highest classification

accuracy showing only small alterations in sensitivity
and specificity.

However, to estimate specificity and positive predic-

tive value (PPV) representative for a real screening pop-

ulation we validated our models on a larger control

database of approximately 100,000 cases. All validation

results based on a real screening population are summa-

rized in Table 4b. As expected, the specificity of both

models decreased, while the number of false positive
cases of the decision tree models was 6–16th fold re-

duced compared to that of the LRA/flag approach.

For instance, considering Phe, and Phe/Tyr as LRA

model input variables, the most specific PAHD model

was established showing a Sp of 99.905% and a PPV

of 49.5%, respectively. In other words, only a fraction

of 93 FP cases (i.e., 0.0009% out of 98,411 controls)
Table 4b

Classification accuracy of decision tree and LRA models validated on a larg

Disorder (No. of cases) Classification model Model input

variables

PAHD (n = 94) Decision tree classifier Phe

Tyr

Ala

LRA built on diagnostic flags Phe

Phe/Tyr

Phe*

MCADD (n = 63) Decision tree classifier C8

C10:1

C16

LRA built on diagnostic flags C8

C10:1

C6

C8/C10

C8/C6

C8*

3-MCCD (n = 22) Decision tree classifier C5-OH

C6

LRA built on diagnostic flags C5-OH

C5-OH/C3

C5-OH*

n, number of PAHD, MCADD, and 3-MCCD cases, No. number of FN an

specificity (Sp), positive predictive value (PPV), and accuracy (Acc). Sp, PPV a

estimate specificities of a representative screening population. Sn remain unch

built on the disease�s predominant metabolite (see Table 3, Disorder/control
was wrongly classified. Testing the PAHD model with

all MCADD and 3-MCCD cases no additional false

negative cases were observed, because abnormal PAHD

metabolism only alters amino acid, but not fatty acid

concentrations. In analogy, no false negative cases were

observed when checking the MCADD or 3-MCCD
models with all PAHD/3-MCCD or PAHD/MCADD

cases, respectively.

For MCADD our results yielded a different picture.

Constructing a model on the diagnostic flags (model in-

puts are three single metabolites and two ratios) the

number of FP cases could be reduced from 915 to 55

false positive cases compared to the decision tree clas-

sifier. The best classification accuracy (Sn = 95.2%,
Sp = 99.992%, PPV = 88.2%) was obtained by building

the model solely on the predominant marker C8 carni-

tine which basically can be explained by the dramatic

concentration changes of C8 caused by the erroneous

fatty acid metabolism of MCADD (cf. increase of

mean concentration level of +3649%, Table 3). The

flags C6, C10:1, C8/C10, and C8/C6 yielded a promis-

ing impact (mean concentration changes 159–750%)
and moderate CV in the MCADD class (<0.92), but

they were not able to further increase specificity. How-

ever, the false positive rates for MCADD between dif-

ferent screening programs most likely vary because of

differences in acylcarnitine analysis and profiling. C8,

the predominant, but not specific marker for MCADD,

which is elevated in several other disorders (e.g.,
er control database

Sn (%) FN (No.

of cases)

Sp (%) FP (No.

of cases)

PPV (%) Acc (%)

96.809 3 99.404 587 13.41 99.401

96.809 3 99.905 93 49.46 99.903

95.745 4 99.885 113 44.34 99.881

95.238 3 99.070 915 6.15 99.068

95.238 3 99.944 55 52.17 99.941

95.238 3 99.992 8 88.24 99.989

95.455 1 99.627 367 5.41 99.626

90.909 2 99.955 44 33.33 99.955

95.455 1 99.957 42 33.33 99.956

d FP cases. Classification results are given in terms of sensitivity (Sn),

nd Acc were re-evaluated on a larger database of �100,000 controls to

anged (see results Table 4a). The asterisk (*) highlights the LRA models

s).
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medium/short chain 3-OH acyl CoA dehydrogenase

deficiency), can be used to pre-screen several fatty oxi-

dation disorders. Both presented models including

additional markers to C8 are specific for MCADD

which is important when physicians consider differen-

tial diagnostic aspects.
The classification models for 3-MCCD differed signif-

icantly from that of PAHD and MCADD as both ap-

proaches showed the lowest classification error rates.

The LRA model built on the predominant marker C5-

OH, however, yielded the best classification accuracy.

The ratio C5-OH/C3 seems to be redundant.
6. Procedure to optimize sensitivity

In newborn screening the declared aim is to optimise

sensitivity to 100% and to increase specificity as far as

possible. This assignment is of high importance as ethi-

cal arguments and cost effectiveness related to an erro-

neous diagnosis are concerned. However, the presented

models showing high specificity do not always have opti-
mal Sn of 100%. Exemplarily, Fig. 2 illustrates a proce-

dure to optimize sensitivity of our most specific PAHD

model (constructed on Phe and Phe/Tyr) by changing

the default cut-off level from p = 0.5 stepwise to

p = 0.25, 0.15, 0.1, and 0.01. By reducing the cut-off

value to p = 0.15, all PAHD cases can be correctly
Fig. 2. Procedure to optimize sensitivity of the LRA model for PAHD

constructed on the input variables Phe and Phe/Tyr: costs to optimize

sensitivity by reduction of specificity are illustrated. The changes of

sensitivity (%), specificity (%) and absolute number of FP cases (n) are

given for cut-off values of p = 0.5, 0.25, 0.15, 0.1, and 0.01. The arrow

indicates 100% sensitivity and a lower specificity of 99.818% (n = 179

FP cases) at p = 0.15 compared to p = 0.5 by default showing a

sensitivity of 96.809% and a specificity of 99.905% (n = 93 FP cases).

The cut-off optimization was performed on full training data (not

validated).
classified (Sn = 100%, arrow in Fig. 2), while the num-

ber of FP cases increases from 93 to 179. Therefore, Sp

demounted from 99.905 to 99.818%. However, this

procedure to optimize sensitivity of the regression

model was performed only on the full training dataset,

thus giving too optimistic results in general. For cross-
or leave-one-out validation, which is recommended, if

training sets are small, the entire model-building pro-

cess including optimisation of the cut-off value, and

classification has to be repeated in each cross-valida-

tion training subset. Currently, the validation proce-

dure is in progress, these results have to be presented

later.
7. Discussion

To satisfy the ever growing need for effective screen-

ing and diagnostic tests MS/MS provides a very high

throughput and has the potential to be highly accurate.

The complexity of analysed high-dimensional metabolic

data using MS/MS requires machine learning and data
mining techniques to support the classification of disease

and the identification of potentially useful diagnostic

markers. In turn, the identification of key metabolites

could shed light on the nature of the disorder.

However, there are many data mining techniques for

the processing and general learning of high-dimensional

data in proteomics/metabolomics. Current research

focuses on the detection of regions of interest in ma-
trix-assisted desorption/ionization-time of flight mass

spectra to mine differences in the protein pattern

between healthy and diseased persons using established

supervised and unsupervised methods [24,25]. Our

experiments were not directly applied to the protein

mass spectra, but were performed on data by the con-

version of raw mass spectra into clinically meaningful

results (amino acid and fatty acid concentrations) [1].
We investigated two different approaches to build clas-

sification models on provided newborn screening data

with high diagnostic prediction. Machine learning offers

the advantage that markers are found without any other

a priori assumptions or conditions, and our results cor-

respond well to the established biochemical knowledge

[8–12]. In our approach we used the decision tree para-

digm to identify potentially useful metabolites (nodes of
tree) by computing the information gain for all candi-

date features. However, filter based selection techniques

like information gain or correlation-based filters also

yield promising results, but solely select single attributes

as subsets [26,27]. Building LRA models on single

metabolites and ratios, which reflect the interaction

of single metabolites in newborn metabolism (cf.

PAHD: Phe ›\ Tyr fl) Phe/Tyr), the number of false
positive cases could be diminished significantly (up to

6–16 times) compared to the decision tree classifier.
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Therefore, knowledge on abnormal newborn metabo-

lism modelled as ratios of interacting attributes thus

provides an important contribution to enhance a mod-

el�s specific power, while sensitivities in both approaches

remain unchanged.

However, no classification model in both approaches
achieved 100% sensitivity. In this context we briefly

sketched a procedure showing the best trade-off between

optimal sensitivity and specificity that can be accepted

by adjusting the cut-off value in LRA. As mentioned be-

fore, further validation studies are warranted.

In addition to the decision tree classifier we used

LRA, which shows highest discriminatory performance

as we could demonstrate in prior experiments compar-
ing various classification algorithms on metabolic data

[27]. Some of them are well accepted in current proteo-

mic research as other authors described [28]. However,

both paradigms can be classified as directly interpretable

techniques, which represent their data relations in an

explicit way like a probabilistic model (LRA) or a tree

structure, and so they find more acceptance in a clinical

ambience.
8. Conclusion

Data mining in MS/MS data enables us to identify

disease state metabolites without any a priori knowl-

edge. The consideration of biochemical knowledge for

the model-building process by combining interacting
disease state metabolites revealed a further increase of

the classifiers� discriminatory performance and lead to

a significant increase of the specific power of our screen-

ing models. Our models achieved sensitivity values

>95.2%. The number of FP cases in all three disorders

did not exceed 0.001%.

The presented approach, which considers mining

techniques and expert knowledge for the model-building
process, permits the construction of classification rules

with high diagnostic prediction.
Acknowledgments

We thank Dr. A.A. Roscher from Dr. von Hauner

Children�s Hospital, University of Munich, Germany
for providing anonymous newborn screening data. This

study was generously supported by the Austrian Indus-

trial Research Promotion Fund FFF (Grant No. HITT-

10 UMIT).
References

[1] Chace DH, DiPerna JC, Naylor EW. Laboratory integration and

utilization of tandem mass spectrometry in neonatal screening: a
model for clinical mass spectrometry in the next millennium. Acta

Paediatr (Suppl) 1999;88:45–7.

[2] Liebl B, Nennstiel-Ratzel U, von Kries R, Fingerhut R, Olgmoller

B, Zapf A, et al. Expanded newborn screening in Bavaria:

tracking to achieve requested repeat testing. Prev Med

2002;34:132–7.

[3] Liebl B, Nennstiel-Ratzel U, Roscher AA, von Kries R. Data

required for the evaluation of newborn screening programmes.

Eur J Pediatr 2003;162(Suppl. 1):57–61.

[4] Millington DS, Terada N, Kodo K, Chace DH. A review:

carnitine and acylcarnitine analysis in the diagnosis of metabolic

diseases: advantages of tandem mass spectrometry. In: Matsum-

oto I, editor. Advances in chemical diagnosis and treatment of

metabolic disorders, vol 1. New York: John Wiley; 1992. p.

59–71.

[5] Rashed MS, Ozand PT, Bucknall MP, Little D. Diagnosis of

inborn errors of metabolism from blood spots by acylcarnitines

and amino acids profiling using automated electrospray tandem

mass spectrometry. Pediatr Res 1995;38:324–31.

[6] Mendes P. Emerging bioinformatics for the metabolome. Brief

Bioinform 2002;3:134–45.

[7] National Center for Biotechnology Information. Online Mende-

lian Inheritance in Man (OMIM), Available from: http://

www3.ncbi.nlm.nih.gov/Omim.

[8] Adler C, Ghisla S, Rebrin I, Heizmann CW, Blau N, Curtius

HC. Suspected pterin-4a-carbinolamine dehydratase deficiency:

hyperphenylalaninemia due to inhibition of phenylalanine

hydroxylase by tetrahydro-7-biopterin. J Inherit Metab Dis

1992;15:405–8.

[9] Chace DH, Millington DS, Terada N, Kahler SG, Roe CR,

Hofman LF. Rapid diagnosis of phenylketonuria by quantitative

analysis for phenylalanine and tyrosine in neonatal blood spots by

tandem mass spectrometry. Clin Chem 1993;39:66–71.

[10] Van Hove JL, Zhang W, Kahler SG, Roe CR, Chen YT, Tereda

N, et al. Medium-chain acyl-CoA dehydrogenase (MCAD)

deficiency: diagnosis by acylcarnitine analysis in blood. Am J

Hum Genet 1993;52:958–66.

[11] Bannwart C, Wermuth B, Baumgartner R, Suormala T,

Wiesmann UN. Isolated biotin-resistant deficiency of 3-meth-

ylcrotonyl-CoA carboxylase presenting as a clinically severe

form in a newborn with fatal outcome. J Inherit Metab Dis

1992;15:863–8.

[12] Blau N, Thony B, Cotton RGH, Hyland K. Disorders of

tetrahydrobiopterin and related biogenic amines. In: Scriver

CR, Kaufman S, Eisensmith E, Woo SLC, Vogelstein B, Childs

B, editors. The metabolic and molecular bases of inherited

disease. 8th ed. New York: McGraw Hill; 2001. chapter 78.

[13] Children�s Health System and University of Washington, Gene-

Tests. A medical genetics information resource, Available from:

http://www.geneclines.org.

[14] California Department of Health Services, Newborn Screening

Program MS/MS Research Project, Available from: http://

www.dhs.ca.gov/pcfh/gdb/html/PDE/MSMSMainPage.htm.

[15] American College of Medical Genetics/American Society of

Human Genetics Test and Technology Transfer Committee

Working Group. Tandem mass spectrometry in newborn screen-

ing. Genet Med 2000;2:267–9.

[16] Mitchell TM. Machine learning. Boston, MA: McGraw-Hill;

1997.

[17] Langley P. Selection of relevant features in machine learning. In:

Proceedings of the AAAI fall symposium on relevance. New

york: AAAI Press; 1994. p. 140–4.

[18] Witten IH, Frank E. Data mining—practical machine learning

tools and techniques with java implementations. San Fran-

cisco: Morgan Kaufmann; 2000.

[19] Quinlan RJ. Induction of decision trees. Machine learning

1986;1:81–106.

http://www3.ncbi.nlm.nih.gov/Omim
http://www3.ncbi.nlm.nih.gov/Omim
http://www.geneclines.org.
http://www.dhs.ca.gov/pcfh/gdb/html/PDE/MSMSMainPage.htm.
http://www.dhs.ca.gov/pcfh/gdb/html/PDE/MSMSMainPage.htm.


98 C. Baumgartner et al. / Journal of Biomedical Informatics 38 (2005) 89–98
[20] Quinlan RJ. C4.5: program for machine learning. San Mateo,

CA: Morgan Kaufmann; 1993.

[21] Hosmer DW, Lemeshow S. Applied logistic regression. 2nd

ed. New York: Wiley; 2000.

[22] Health professionals guide to newborn screening. Wisconsin state

laboratory of hygiene.Available from:www.slh.wisc.edu/newborn/

guide.

[23] Chace DH, Sherwin JE, Hillman SL, Lorey F, Cunningham GC.

Use of phenylalanine-to-tyrosine ratio determined by tandem

mass spectrometry to improve newborn screening for phenylke-

tonuria of early discharge specimens collected in the first 24 hours.

Clin Chem 1998;44:2405–9.

[24] Lee KR, Lin X, Park DC, Eslava S. Megavariate data analysis of

mass spectrometric proteomics data using latent variable projec-

tion method. Proteomics 2003;3:1680–6.
[25] Neville P, Tan PY, Mann G, Wolfinger R. Generalizable mass

spectrometry mining used to identify disease state biomarkers

from blood serum. Proteomics 2003;3:1710–5.

[26] Baumgartner C, Baumgartner D, Böhm C, Classification on high
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