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Abstract. Many clustering algorithms are not applicable to high-dimensional
feature spaces, because the clusters often exist only in specific subspaces of the
original feature space. Those clusters are also called subspace clusters. In this
paper, we propose the algorithm HiSC (Hierarchical Subspace Clustering) that
can detect hierarchies of nested subspace clusters, i.e. the relationships of lower-
dimensional subspace clusters that are embedded within higher-dimensional sub-
space clusters. Several comparative experiments using synthetic and real data sets
show the performance and the effectivity of HiSC.

1 Introduction

In high-dimensional feature spaces, many clustering algorithms are not applicable be-
cause the clusters often exist only in specific subspaces of the original feature space.
This phenomenon is also often called curse of dimensionality. To detect such lower-
dimensional subspace clusters, the task of subspace clustering (or projected cluster-
ing) has been defined recently. We will refer to a subspace cluster associated to a
λ-dimensional projection/subspace (i.e. spanned by λ attributes) as a λ-dimensional
subspace cluster. The dimensionality of a subspace associated to a subspace cluster is
called subspace dimensionality.

In this paper, we focus on a second class of algorithms that assign each object to a
unique cluster (or noise) rather than algorithms that allow overlapping subspace clus-
ters. Existing algorithms for non-overlapping subspace clustering usually have one se-
vere limitation in common. In case of hierarchically nested subspace clusters, i.e. several
subspace clusters of low dimensionality may together form a larger subspace cluster of
higher dimensionality, these algorithms will miss important information about the clus-
tering structure. For example, consider two axis-parallel lines in a 3D space that are
embedded into an axis-parallel 2D plane (cf. Figure 1(a)). Each of the two lines forms
a 1-dimensional subspace cluster. On the other hand the plane is a 2-dimensional sub-
space cluster that includes the two 1-dimensional subspace clusters. In order to detect the
lines, one has to search for 1-dimensional subspace clusters, whereas in order to detect
the plane, one has to search for 2-dimensional subspace clusters. Moreover, searching
subspace clusters of different dimensionality is essentially a hierarchical problem be-
cause the information that a point belongs e.g. to some k-dimensional subspace cluster
that is itself embedded into an l-dimensional subspace cluster (k < l) can only be un-
covered using a hierarchical approach.
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Several subspace clustering algorithms aim at finding all clusters in all subspaces
of the feature space. Those algorithms produce overlapping clusters where one point
may belong to different clusters in different subspaces. Well-known examples of such
algorithms include e.g. CLIQUE [1], ENCLUS [2], SUBCLU [3], and FIRES [4].

Here, we focus on finding non-overlapping subspace clusters, i.e. assigning each
point to a unique subspace cluster or noise. The probably most prominent examples for
subspace clustering algorithms producing non-overlapping clusters are e.g. PROCLUS
[5], DOC [6], and PreDeCon [7].

However, none of the proposed approaches to subspace clustering can detect nested
hierarchies of subspace clusters. Thus, in this paper, we propose HiSC (Hierarchical
Subspace Clustering), a new algorithm that applies a hierarchical approach to subspace
clustering and, thus, detects hierarchies of subspace clusters.

2 Hierarchical Subspace Clustering

Let D be a data set of n feature vectors of dimensionality d (D ⊆ �
d). Let A =

{a1, . . . , ad} be the set of all attributes ai of D. Any subset S ⊆ A, is called a sub-
space. The projection of an object o ∈ D into a subspace S ⊆ A is denoted by
πS(o). The distance function is denoted by dist. We assume that dist is one of the
Lp-norms.

The aim of HiSC is to detect clusters of lower dimensional subspaces contained in
clusters of higher dimensional subspaces. Our general idea is to evaluate whether two
points are contained in a common subspace cluster. For example, two points that are
in a 1D subspace cluster may be contained in a 2D cluster that consists of the two 1D
projections. We perfom this evaluation with a special distance measure called subspace
distance. This distance results in a small value whenever two points are in a common
low-dimensional subspace cluster, whereas the subspace distance is high if both points
are in a common high-dimensional subspace cluster or are not in a subspace cluster at
all. Therefore, our strategy is to merge those points into common clusters which have
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small subspace distances. A hierarchy of subspace clusters means that clusters with
small subspace distances are nested in clusters with higher subspace distances.

In order to define the already mentioned subspace distance, we assign a subspace
dimensionality to each point of the database, representing the subspace preference of
its local neighborhood. The subspace dimensionality of a point reflects those attributes
having a small variance in the local neighborhood of the point. As local neighborhood of
a point p we use the k-nearest neighbors of a point p, denoted by NNk(p). The variance
of the local neighborhood of a point p ∈ D from p along an attribute Ai ∈ A, denoted
by VARAi (NNk(p)), is defined as follows:

VARAi(NNk(p)) =

∑
q∈NNk(p)(πAi(q) − πAi(p))2

|NNk(p)| .

Intuitively, the subspace dimensionality is the number of attributes with high vari-
ance. Similar to [7], we assign a subspace preference vector to each point, indicating
attributes with high and low variance.

Definition 1 (subspace preference vector of a point)
Let α ∈ � be a threshold value. The subspace preference vector of a point p ∈ D,
wp = (w1

p, . . . , wd
p)T, is defined as

wi
p =

{
0 if VARAi(NNk(p)) > α
1 if VARAi(NNk(p)) ≤ α

The subspace dimensionality of a point can now be defined as follows.

Definition 2 (subspace dimensionality of a point)
The subspace dimensionality λp of a point p ∈ D is the number of zero-values in the

subspace preference vector of p, wp, formally:

λp =
d∑

i=1

{
1 if wi

p = 0
0 if wi

p = 1

An example is visualized in Figure 1(b). The 9-nearest neighbors of the 3D point p
exhibit a 1D subspace cluster spanned by the attribute A3, i.e. the variance of the neigh-
borhood of p is high along attribute A3, whereas it is low along attributes A1 and A2.
Consequently, wp = (1, 1, 0)T and λp = 1.

Once we have associated the points of our database to a (local) subspace dimen-
sionality and to a subspace preference vector, we can now explain the main idea of
our hierarchical clustering algorithm. Conventional hierarchical clustering algorithms
like SLINK [8] or OPTICS [9] work as follows: They keep two separate sets of points,
points which were already placed in the cluster structure and those which were not. In
each step, one point of the latter set is selected and placed in the first set. The algorithm
always selects that point which minimizes the distance to any of the points in the first
set. By this selection strategy, the algorithm tries to extend the current cluster hierarchy
as close to the bottom of the hierarchy as possible.
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We will adapt this paradigm to the context of hierarchical subspace clustering where
the hierarchy is a containment hierarchy of the subspaces. Two or more 1D subspace
clusters may together form a 2D subspace cluster and so on. We simulate this behavior
by defining a similarity measure between points which assigns a distance of 1, if these
two points share a common 1D subspace cluster. If they share a common 2D subspace
cluster, they have a distance of 2, etc. Sharing a common subspace cluster may mean
different things: Both points may be associated to the same 2D subspace cluster, or both
points may be associated to different 1D subspace clusters that intersect at some point
or are parallel (but not skew).

If we assign a distance measure to a pair of points with the properties mentioned
before, we can generally use the well-known hierarchical clustering algorithms. Intu-
itively, the distance measure between two points corresponds to the dimensionality of
the data space which is spanned by the attributes of high variance of the neighborhoods
of the two points. We first give a definition of the subspace dimensionality of a pair
of points λ(p, q) which follows the intuition of the spanned subspace. Then, we will
define our subspace distance measure based on these concepts. In fact, the subspace
dimensionality is the most important component of our distance measure.

Definition 3 (subspace preference vector/dimensionality of a pair of points)
The subspace preference vector w(p, q) of a pair of points p, q ∈ D representing the

attributes with low and high variance of the combined subspace is defined by

w(p, q) = wp ∧ wq (attribute-wise logical AND-conjunction).

The subspace dimensionality between two points p, q ∈ D, denoted by λ(p, q), is the
number of zero-values in w(p, q).

A first approach is defining the subspace distance between two points p and q as the
subspace dimensionality λ(p, q). We only need a slight extension for points that have
the same subspace preference vector, but do not belong to the same subspace cluster.
For these points, we have to check whether the preference vectors of two points are
equal. If so, we have to determine the distance between the points along the attributes
of low variance. If this distance, which can be evaluated by a simple weighted Euclidean
distance using one of the preference vectors as weighting vector, exceeds α, the points
(or corresponding clusters) do not belong to the same cluster but belong to different
(parallel) clusters. The threshold α, playing already a key role in Definition 1, controls
the degree of jitter of the subspace clusters.

As λ(p, q) ∈ �, many distances between different point pairs are identical. There-
fore, there are many tie situations during clustering. We resolve these tie situations
by additionally considering the Euclidean distance within a subspace cluster as a sec-
ondary criterion. This means, inside a subspace cluster (if there are no nested lower-
dimensional subspace clusters), the points are clustered in the same way as using a
conventional hierarchical clustering method. The Euclidean distance between p and q
hereby is weighted by the inverse of the combined preference vector w(p, q) (as given
in Definition 3). This inverse, w̄(p, q), weights the distance along attributes spanning
the cluster with 1, the distance along any other attribute is weighted with 0. Formally
we define:
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Definition 4 (subspace distance)
Let w = (w1, . . . , wd)T be a d-dimensional vector, and distw(p, q) =

∑
wi(πai(p)−

πai(q))2 be the weighted Euclidean distance w.r.t. w between two points p, q ∈ D.
The subspace distance between p and q, denoted by SDIST(p, q) = (d1, d2), is a pair
consisting of the following two values:

d1 = λ(p, q) +
{

1 if max{distwp(p, q), distwq (q, p)} > α
0 else,

d2 = distw̄(p,q)(p, q).

We say that SDIST(p, q) ≤ SDIST(r, s) if SDIST(p, q).d1 < SDIST(r, s).d1, or SDIST

(p, q).d1 = SDIST(r, s).d1 and SDIST(p, q).d2 ≤ SDIST(r, s).d2.

As discussed above, d1 corresponds to the subspace dimensionality of p and q, taking
special care in case of parallel clusters. The value d2 corresponds to the weighted Eu-
clidean distance between p and q, where we use the inverse of the combined preference
vector, w̄(p, q), as weighting vector.

Using the subspace distance as defined in Definition 4 as a distance measure, we
can basically run every hierarchical (or even non-hierarchical) clustering algorithm
which is based on distance comparisons. Examples for such algorithms are Single-Link,
Complete-Link, and the density-based method OPTICS [9]. HiSC computes a “walk”
through the data set similar to OPTICS and assigns to each point o its smallest subspace
distance with respect to a point visited before o in the walk. In each step of the algo-
rithm, HiSC selects that point o having the minimum subspace distance to any already
processed point. This process is managed by a seed list which stores all points that have
been reached from already processed points sorted according to the minimum subspace
distances. A special order of the database according to its subspace-based clustering
structure is generated, the so-called cluster order, which can be displayed in a subspace
distance diagram. Such a subspace distance diagram consists of the subspace distance
values on the y-axis of all points, plotted in the order which HiSC produces on the x-
axis. The result is a visualization of the clustering structure of the data set which is very
easy to comprehend and interpret. The “valleys” in the plot represent the clusters, since
points within a cluster typically have lower subspace distances than points outside of a
cluster. The complete integration of our distance measure into the algorithm HiSC can
be seen in Figure 1.

Input parameters. HiSC has two input parameters. First, the parameter k specifies the
locality of the neighborhood from which the local subspace dimensionality of each
point is determined. Obviously, this parameter is rather critical because if it is chosen
too large, the local subspace preference may be blurred by noise points, whereas if it
is chosen too small, there may not be a clear subspace preference observable, although
existing. However, in our experiments, choosing k in the range between 10 and 20
turned out to produce very stable and robust results. Second, the parameter parameter
α is important for specifying the attributes with low and high variance and, thus, α
also affects the computation of the (local) subspace dimensionality of each point. In
fact, attributes where the variance of the k-nearest neighbors of a point is below α are
relevant for the subspace preference of the point. In our experiments, it turned out that



Finding Hierarchies of Subspace Clusters 451

algorithm HiSC(D, k, α)
initialize empty priority queue pq // ordered by SDIST

for each p ∈ D do
compute wp;
p.SDIST = ∞;
insert p into pq;

while pq �= ∅ do
o := pq.next();
for each p ∈ pq do

pq.update(p, SDIST(o, p));
append o to the cluster order;

return the cluster order;

Fig. 1. The HiSC algorithm

HiSC is quite robust against the choice of α, as long as α is chosen between 0.1% and
0.5% of the attribute range, i.e. the maximum attribute value. However, if one expects
subspace clusters having a lot of jitter, α can be increased accordingly.

Runtime complexity. In the first loop the (local) subspace dimensionalities and prefer-
ence vectors are precomputed which requires the determination of the k-nearest neigh-
bors of each object. This step be done in O(n log n · d) time assuming the use of a
spatial index or in O(n2 · d) withou index support. During the run of HiSC, we have to
evaluate for each pair of points of the database its subspace dimensionality which is a
simple logical AND-conjunction on the subspace dimensionality vectors and, thus, has
a complexity of O(d). Thus, the overall runtime complexity of HiSC is O(n2 · d).

3 Experimental Evaluation

We evaluated the scalability of HiSC on a workstation featuring a 3.2 GHz CPU with
1GByte RAM. All parameters were choosen as suggested above. The scalability of
HiSC w.r.t. the data set size is depicted in Figure 2(a). The experiment was run on a
set of 3D synthetic data sets with varying number of records. Each data set contained
two 1D clusters, two 2D clusters, and noise points. As it can be seen, HiSC scales
nearly linearily w.r.t. the number of tuples in the dataset. A similar observation can be
made when evaluating the scalability of HiSC w.r.t. the dimensionality of the data set
(cf. Figure 2(b)). The experiments were obtained using data sets with 1,300 data points
with varying dimensionality. Each data set contained two (d − 2)-dimensional clusters,
two (d − 1)-dimensional clusters, and noise. Again, the result shows a linear increase
of runtime when increasing the dimensionality of the data set.

We first evaluated HiSC on several synthetic data sets. Exemplary, we show the re-
sults on two data sets. Data set “DS1” (cf. Figure 3(a)) contains 3D points grouped in
three hierarchical subspace clusters and noise. Two 1D clusters (cluster 1.1 and cluster
1.2) are both embedded within a 2D cluster (cluster 1). Data set “DS2” is a 20D data
set containing three clusters of significantly different dimensionality and noise: cluster
1 is a 15D subspace cluster, cluster 2 is 10 dimensional, and cluster 3 is a 5D subspace
cluster.
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(b) Scalability w.r.t. dimensionality.

Fig. 2. Scalability of HiSC

cluster 1.1 (1D)
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(a) Data set.

cluster 1.1 cluster 1.2

cluster 1 noise

(b) Rechability diagram.

Fig. 3. Results on DS1 (3D)

The results of HiSC applied to DS1 are depicted in Figure 3(b). As it can be seen,
the complete hierarchical clustering structure can be obtained from the resulting reach-
ability plot. In particular, the nested clustering structure of the two 1D subspace clusters
embedded within the 2D subspace cluster can be seen at first glance. Similar observa-
tions can be made when evaluating the reachability diagram obtained by HiSC on DS2
(cf. Figure 4(a)). HiSC has no problems with the three subspace clusters of considerably
different dimensionality. The clusters can again be visually explored at first glance.

We also applied PreDeCon and PROCLUS on DS1 and DS2 for comparison. Neither
PreDeCon nor PROCLUS are able to detect the hierarchies in DS1 and the subspace
clusters of significantly different dimensionality.

We applied HiSC to a real-world data set containing metabolic screening data of
2,000 newborns. For each newborn, the blood-concentration of 43 different metabo-
lites were measured. Thus, the data set is 43-dimensional containing 2,000 objects. The
newborns are labeled by one of three categories. The healthy patients are marked by
“control”, newborns suffering phenylketonuria (a well-known metabolic disease) are
labeled with “PKU”, and newborns suffering any other metabolic disease are labeled
with “others”. The resulting reachability plot HiSC generates when applied to this data
set is visualized in Figure 4(b). As it can be seen, HiSC produced a large hierarchy of
17D to 22D subspace clusters nested into each other. All these clusters contain approx-
imately 98% newborns marked with “control”. A second hierarchy of nested clusters
contains only newborns marked with “PKU”. The rest is a mix of all three categories.
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Fig. 4. Results on higher-dimensional data

4 Conclusions

In this paper, we presented HiSC, the first subspace clustering algorithm for detecting
hierarchies of subspace clusters. HiSC scales linearly in the dimensionality of the data
space and quadratically in the number of points. Several comparative experiments using
synthetic and real data sets show that HiSC has a superior performance and effectivity
compared to existing methods.
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