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Abstract 

In this paper, we present a new cost model for nearest neigh- 
bor search in high-dimensional data space. We first analyze 

different nearest neighbor algorithms, present a generaliza- 
tion of an algorithm which has been originally proposed for 
Quadtrees [13], and show that this algorithm is optimal. 
Then, we develop a cost model which - in contrast to previous 
models - takes boundary effects into account and therefore 
also works in high dimensions. The advantages of our model 
are in particular: Our model works for data sets with an arbi- 
trary number of dimensions and an arbitrary number of data 
points, is applicable to different data distributions and index 
structures, and provides accurate estimates of the expected 
query execution time. To show the practical relevance and ac- 
curacy of our model, we perform a detailed analysis using 

synthetic and real data. The results of applying our model to 
Hilbert and X-tree indices show that it provides a good esti- 
mation of the query performance, which is considerably bet- 
ter than the estimates by previous models especially for high- 
dimensional data. 

Key Words: Nearest Neighbor Search, Cost Model, Multidimen- 
sional Searching, Multidimensional Index Strnc- 
tures, High-Dimensional Data Space 

1. Introduction 

In this paper, we describe a cost model for nearest neighbor 
queries in high-dimensional space. Nearest neighbor queries 
are very important for many applications. Examples include 
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multimedia indexing [9], CAD [17], molecular biology (for 
the docking of molecules) [24], string matching [l], etc. Most 
applications use some kind of feature vector for an efficient 
access to the complex original data. Examples of feature vec- 
tors are color histograms [23], shape descriptors [16, 181, 
Fourier vectors [26], text descriptors [15], etc. Nearest neigh- 
bor search on the high-dimensional feature vectors may be 
defined as follows: 

Given a data set DS of d-dimensional points, find the data 
point NN from the data set which is closer to the given query 
point e than any other point in the data set. More formally: 

NIV(Q) = {ZE DSl’v’eE DS: Ili2-Qjl5Ije-Qjj}. 

Usually nearest neighbor queries are executed using some 
kind of multidimensional index structure such as k-d-trees, 
R-trees, Quadtrees, etc. In section 2, we discuss the different 
nearest neighbor algorithms proposed in the literature. We 
present a generalization of an algorithm, which has been 
originally proposed for Quadtrees [13] and show that this al- 
gorithm is optimal. 

A problem of index-based nearest neighbor search is that it 
is difficult to estimate the time which is needed for executing 
the nearest neighbor query. The estimation of the time, how- 
ever, is important not only for a theoretic complexity analysis 
of the average query execution time but it is also crucial for 
optimizing the parameters of the index structures (e.g., the 
block size) and for query optimization. An adequate cost 
model should work for data sets with an arbitrary number of 
dimensions and an arbitrary number of data points, it should 
be applicable to different data distributions and index struc- 
tures, and most important, it should provide accurate esti- 
mates of the expected query execution time. 

Unfortunately, existing models fail to fulfill these require- 
ments. In particular, none of the models provides accurate es- 
timates for nearest neighbor queries in high-dimensional 
space, and most models pose awkward and unrealistic re- 



quirements on the number of necessary data points prevent- 
ing the models from being practically applicable. One of the 
reasons for the problems of existing models is that basically 
none of them accounts for boundary effects, i.e. effects that 
occur if the query processing reaches the border of the dam 
space. As we will show later, boundary effects play an im- 
portant role in processing nearest neighbor queries in high- 
dimensional space. Our model determines the expected num- 
ber of page accesses when performing a nearest neighbor 
query by intersecting all pages with the minimal sphere 
around the query point containing the nearest neighbor. In 
contrast to previous approaches, our cost model considers 
boundary effects and therefore also provides accurate esti- 
mates for the high-dimensional case. Furthermore, our model 
works for an arbitrary number of data points and is applicable 
to a wide range of index structures such as k-d-trees, R-trees, 
quadtrees, etc. 

initialize PartitionList with the 
subpartitions of the root-partition 

sort PartitionList by MINDIST; 

while (PartitionList is not empty) 

if (top of PartitionList is a leaf) 
find nearest point NNC in leaf; 
if (NNC closer than NN 

prune PartitionList with NNC; 
let NNC be the new NN 

else 
replace top of PartitionList with 

its son nodes; 
endi f 
resort PartitionList by MINDIST; 

endwhile 
output NN; 

Figure 1: Algorithm NV-opt 

Besides describing our cost model, we provide a detailed ex- 
perimental evaluation showing the accuracy and practical 

tree algorithm of Friedmann, Bentley and Finkel[12]. In con- 

relevance of our model. In our experiments, we use artificial 
trast to Welch’s algorithm, the order in which the k-d-algo- 

as well as real data and compare the model estimates with the 
rithm visits the partitions of the data space is determined by 
the structure of the k-d-tree. Ramasubramanian and Paliwal 

actually measured page counts obtained from two different 
index structures: the Hilbert-index and the X-tree. 

[21] propose an improvement of the algorithm by optimizing 
the structure of the k-d-tree. 

2. Algorithms for Nearest Neighbor Search 

In the last decade, a large number of algorithms and index 
structures have been proposed for nearest neighbor search. In 
the following, we give an overview of these algorithms. 

2.1 Known Algorithms 

Algorithms for nearest neighbor search may be divided into 
two major groups: partitioning algorithms and graph-based 
algorithms. Partitioning algorithms partition the data space 
(or the actual dam set) recursively and store information 
about the partitions in the nodes. Graph-based algorithms 
precalculate some nearest neighbors of points, store the dis- 
tances in a graph and use the precalculated information for a 
more efficient search. Examples for such algorithms are the 
RNG* algorithm of Arya [2] and algorithms using Voronoi 
diagrams [20]. Although in this paper we concentrate our dis- 
cussion on partitioning algorithms, we believe that our re- 
sults are applicable to graph-based algorithms, as well 

A rather simple partitioning algorithm is the bucketing algo- 
rithm of Welch [27]. The algorithm divides the data space 
into identical cells and stores the data objects inside a cell in 
a list which is attached to the cell. During nearest neighbor 
search the cells are visited in order of their distance to the 
query point. The search terminates if the nearest point which 
has been determined so far is nearer than any cell not visited 
yet. Unfortunately, the algorithm is not efficient for high-di- 
mensional or real dam. A more practical approach is the k-d- 

Roussopoulos et.al. [22] propose a different approach using 
the R*-tree [4] for nearest neighbor search. The algorithm 
traverses the R*-tree and stores for every visited partition a 
list of subpartitions ordered by their minmuxdist. The min- 

dist of a partition is the maximal possible distance from 

the query point to the nearest data point inside the partition. 
If a point is found having a distance smaller than the nearest 
point determined so far, all partition lists can be pruned be- 
cause all nodes with a larger mindist cannot contain the 
nearest neighbor. A problem of the R*-tree algorithm is that 
it traverses the index in a depth-first fashion. Subnodes are 
sorted before descent, but once a branch has been chosen, its 
processing has to be completed, even if sibling branches ap- 
pear more likely to contain the NN. The algorithm therefore 
accesses more partitions than actually necessary. 

In [13], Hjaltason and Samet propose an algorithm using 
PMR-Quadtrees. In contrast to the algorithm of Roussopou- 
10s etal., partitions are visited ordered by their mimfist. The 

mindist of a partition is the minimal distance from the query 
point Qto any point p inside the partition P. More formally: 

Mz~~~WP,Q> = ~$ll~-Qb. 

The algorithmic principle of the method of Hjaltason and 
Samet can be applied to any hierarchical index structure 
which uses recursive and conservative partitioning. In Figure 
1, we present a generalization of the algorithm which works 
for any hierarchical index structure. Pruning the partition list 
with a point NNC means that all partitions in the list which 
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. have a mindist larger than the distance of NNC to the query 
point are removed from the list. 

2.2 Optimal@ of Algorithm AN-opt 

In this section, we show that the algorithm NN-opt (cf.Figure 
1) is optimal. For this purpose, we need to define the minimal 
sphere around the query point containing the nearest neigh- 
bor: 

Definition 1: (iVN-sphere) 

Let Q be a query point and NN be the nearest neighbor of Q. 
Then NN-dist = IlQ - NN[l is the distance of the nearest 
neighbor and the query point. The NN-sphere SP(Q, r) of a 
query point Q is defined as the sphere with center Q and ra- 
dius r =NN-dist. 

DejZtion 2: (Optima@) 

An algorithm for nearest neighbor search is optimal if the 
pages accessed by the algorithm during the nearest neighbor 
search are exactly the pages that intersect the NN-sphere. 

Note that we use the term ‘Optimality’ relative to an under- 
lying index structure and not relative to the nearest neighbor 
problem itself. 

Lemma 1: 

Algorithm NN-opt is an optimal algorithm according to def- 
inition 2, i.e. algorithm NN-opt accesses exactly the parti- 
tions which intersect the NN-sphere but no other partitions. 

Proof: 

From the correctness of algorithm NN-opt as provided in [13] 
it follows that any partition intersecting the NN-sphere is ac- 
cessed during the search process. 

To show the minimality of the accessed partitions, let us as- 
sume that algorithm NN-opt accesses a partition NA, which 
does not intersect the NN-sphere, i.e. mindist(NA) > r . Let 

NP, be the partition (data page) containing the nearest 
neighbor, NP, be the partition containing NPO, . . . . and 
NPk be the partition in the root-page containing NPO, ,.., 
NP, _ t . Thus, 

r 2 mindist(NPo) 2 . . . Z mindist(NP& . 

Consequently, 

mindist(NA) > r 2 mindist(NPd) L mindist(NPJ . 

Since NPk is in the root-page, NPk is replaced during the 
search process by NPk _ 1 and so on, until NPO is loaded. If, 
as assumed, the algorithm accesses NA, NA has to be on top 
of the partition list at some point during the search. Since 
mindist(NA) is smaller than the mindist of any partition 
containing the nearest neighbor, NA cannot be loaded until 
NP, has been loaded. If NP, is loaded, however, the algo- 
rithm prunes all partitions which have a mindist smaller than 

d number of dimensions 

N number of data points 

c eff average number of data points 
per index page 

a 

NPi 

edge length of a data page 

partition of the index structure con- 
taining partitions NPI, . . . . NPi-, 

Q I query point I 

Ds 
SPd( E, r) 

V&Jr) 

data space 

average volume of a d-dimensional 
hypersphere, boundary effects con- 
sidered 

Minkowski sum of an index page 
and a query sphere with radius r 

p(r), P(r) distribution function of the radius, 
density function of the radius 

NN-dist, E(NN-dist) nearest neighbor distance, 
expected nearest neighbor distance 

number of page accesses, 
expected number of page accesses 

r. Therefore, NA is pruned and not accessed which is in con- 
tradiction to the assumption. n 

3. The Cost Model 

The objective of our cost model is to provide accurate esti- 
mates of the execution time of nearest neighbor queries in- 
cluding high-dimensional data. It is a well-known fact that 
simple queries, including nearest neighbor queries, are I/O- 
bound and only complex queries such as the spatial join may 
be CPU-bound. Therefore, it is justified to take the number 
ofpage accesses as a measure for the query performance. Our 
cost model may be used for optimizing the parameters of the 
index structures such as the block size as well as for query op 
timization. 

3.1 Previous Approaches and their Problems 

Due to the high practical relevance of nearest neighbor que- 
ries, cost models for estimating the number of necessary page 
accesses have been proposed already several years ago. The 
first approach is the well-known cost model proposed by 
Friedman, Bentley and Finkel[12]. The assumptions of the 



model, however, are unrealistic for nearest neighbor queries 

on high-dimensional data, since N is assumed to converge to 

infinity and boundary effects are not considered. The model 

by Cleary [7] extends the Friedman, Bentley and Finkel mod- 
el by allowing non-rectangular-bounded pages, but still does 

not account for boundary effects. Sproull[25] uses the exist- 

ing models for optimizing the nearest neighbor search in high 

dimensions and shows that the number of data points must be 

exponential in the number of dimensions for the models to 

provide accurate estimates. According to [25], boundary ef- 

fects significantly contribute to the costs unless the following 

condition holds: 

where Vo $ r) is the volume of a hypersphere with radius P 

r which can be computed as 

with r(x + 1) = x. I?(X), 

I?(l) = I and 

r; 0 = & 
Unfortunately, the assumptions made in the existing models 

do not hold in the high-dimensional case. The main reason 

for the problems of the existing models is that they do not ac- 

count for boundary effects. Boundary effects is short for an 

exceptional performance behavior, when the query reaches 

the boundary of the data space. As we show later, boundary 

effects occur frequently in high-dimensional data spaces and 

lead to a pruning of major amounts of empty search space, 

which is not considered by the existing models. To examine 

these effects, we performed experiments to compare the nec- 

essary page accesses with the model estimates. Figure 2 

shows the real page counts versus the estimates of the Fried- 

man, Bentley and Finkel model. For high-dimensional data, 

the model completely fails to estimate the number of page ac- 

cesses. 

Papadopoulos and Manolopoulos present in a very recent 

work [19] an analysis of nearest neighbor queries using R- 

trees. In a recent paper [3], Arya, Mount, and Narayan devel- 

op a model that is capable of accounting for boundary effects. 

The problem of the Arya approach, however, is that the mod- 

el still assumes N to be growing exponentially with the di- 

mension and it also uses the L, metric, which is not suitable 

for most database applications. Note that our model also con- 
firms the earlier results of Yao and Yao 1281. 

3.2 Overview of our Cost Model 

The main objective of this paper is to present a new cost mod- 
el for nearest neighbor queries in high dimensions. In con- 
trast to existing models, our cost model provides accurate es- 
timates of the number of page accesses in the high- 
dimensional case since it accounts for boundary effects. Fur- 
thermore, our model is based on the optimal algorithm for 
nearest neighbor search (cf. subsection 2.2) and works for an 
arbitrary number of data points. For the presentation of our 
cost model, we first assume that the data is uniformly distrib- 
uted and that the split is performed in a k-d tree fashion. We 
will show later that our model is also applicable to arbitrary 
data distributions and a wide range of index structures such 
as k-d-trees, R-trees, quadtrees, Z-indices, etc. 

The goal of our model is to determine the expected number 
of pages which have to be accessed in performing a nearest 
neighbor query. The number of data pages which have to be 
accessed can be determined by intersecting all pages with the 
minimal sphere around the query point containing the nearest 
neighbor. The first step in developing the cost function is to 
determine the average portion of a query sphere with a given 
query radius, which is inside the data space. Note, that the 
data space is assumed to be normalized to the unit hypercube 
[O...lld. Then, we determine the expected radius of the 
sphere, which can be described as a stochastic variable. Tak- 
ing boundary effects into account, we derive the distribution 
function, probability density, and expected value of the near- 
est neighbor distance (cf. subsection 3.3). In the next step, we 
have to determine the number of pages intersected by the 
query sphere. For this purpose, we require the Minkowski 
sum of the query sphere and the shape of an index page (e.g., 
the bounding box of the page in case of the R-tree). Due to 
boundary effects, portions of the volume of the Minkowski 
sum are outside of the data space, and therefore we have to 
introduce some modifications to the standard Minkowski 
sum (cf. subsection 3.4). The last step is the integration of the 
separate steps into the cost function. For determining the ex- 

Figure 2: Real Page Counts versus Estimates by Model [12] 
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petted number of page accesses, we have to form the weight- 
ed average of the costs associated with the nearest neighbor 
distances weighted by the probability of their occurrence. 
The details are provided in subsection 3.5. 

3.3 Expected Nearest Neighbor Distance 

The goal of this subsection is to determine the expected dis- 
tance between a query point and its nearest neighbor in a da- 
tabase of Npoints. Before we are able to solve this problem, 
however, we first consider a simpler problem, namely the ex- 
pected distance of two uniformly distributed points (one que- 
ry point and one data point) in the data space. Let us first as- 
sume that the data point (data entry E) has a fixed position E 

= [q, 9, -**, ed]. Then, the probability that the distance from 
the query point Q = [41, 42, . . . . qd] is less than r can be mod- 
eled as the volume of the hypersphere around E with radius 
r. If point E is close to the border of the data space 
[SE {l...d}: (r>ei)v(ei>l-r)],wehavetoconsider 
that part of the hypersphere volume is outside of the data 
space and does not contribute to the probability. The volume 
of the intersection of the data space and the hypersphere can 
be expressed as the integral of a piecewise defined function 
integrated over all possible positions of Q 

VoZ(S#(E, r) n OS) = 1 if ([E-QII<-r 

0 . otherwise 1 dQ 

d 

where IIE - Qlj 2 r w C (ei - q$2 I r2 
i=l 

1 1 

and f(X)dX = 
II 

. . . f(X,, . . . . Xd)“l . ..dXd. 

DS 0 0 

d 

If we assume that the data point is also randomly taken from 
the data space, the above formula has to be averaged over all 
possible positions of E’ 

VoZj&(r) = 
II 

Vol(SPd(E, r) n DS) dE . 

DS 

Note that Vol,d,,(r) corresponds to the probability 

NE - Qll 5 4 - 

To determine the expected distance between a query point 
and its nearest neighbor in a database of Npoints, we have to 
determine the probability distribution of the minimum dis- 
tance between query and data points. The probability that the 
nearest neighbor distance is at most r can also be described 
by the opposite: None of the N data points is in the intersec- 

1. As DS is [O..lJd, the denominator of the average is 1. 

Figure 3: Transforming a Spherical Query into a Point Query 
by the Concept of Minkowski Sum 

tion of DS and the NN-sphere. The corresponding distribu- 
tion function P(r) is therefore: 

P(r) = l-(l-Vol,d,,(r))N, 

The density function p(r) of P(r) can be derived by deter- 
mining the derivative of this function 

p(r) = -$W 

= $Vor,d,,(r) .N.(l-Vol,dV,(r))N-l, 

From this, we obtain the expected nearest neighbor distance 
by the integral 

Q) 

E(NN-dist) = r. p(r) dr 
I 
0 

00 

= N. 
s 

r.-$Voliv,(r))*(l- Vol,dys(r))N-ldr. 

0 

In section 4, we will show that this formula may be used to 
accurately predict the expected nearest neighbor distance, 

3.4 Number of Pages Intersected by the Query 
Sphere 

In this subsection, we now determine the number of pages in- 
tersected by a query sphere with a given radius r. For this pur- 
pose, we have to determine the Minkowski sum of the query 
sphere and the index pages. As can be seen in Figure 3, the 
concept of the Minkowski sum transforms a spherical query 
on a set of boxes into an equivalent point query on a set of 
enlarged objects. The Minkowski sum directly corresponds 
to the volume of the intersected pages. Graphically present- 
ed, the Minkowski sum describes the volume which results 
from moving the center of the query sphere over the surface 
of the bounding box of the index page (cf. Figure 4 for an ex- 
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Figure 4: Example of the Minkowski Sum in Two Dimensions 

ample of the two-dimensional Minkowski sum). For calcu- 
lating the Minkowski sum, we have to consider volumes of 
each dimension between 1 and d which result from the dif- 
ferent faces of the bounding box. If the index page is a bound- 
ing box with an extension a in all dimensions, the Minkowski 
sum may be calculated as 

d-i - voz&>. 

The Minkowski sum is the expected value of the hyper-vol- 
ume of the bounding boxes of the data pages which are inter- 
sected by the W-sphere. The expected value of the number 
of data pages can easily be determined by normalizing the 
Minkowski sum using the volume of the bounding box 

The Minkowski sum, however, does not consider boundary 
effects which occur in high-dimensional space because r be- 
comes large and portions of the volume of the Minkowski 
sum are outside of the data space. To obtain a more realistic 
model for the high-dimensional case, we have to introduce 
some modifications to the Minkowski sum. Similar to the 
case described in the previous subsection, we integrate over 
the data space and determine the intersection of partition B 
with the query sphere around Q: 

VO&&r) = Vol&(r) n DS 

= 
N-i 

1 if MZNDZST(B,Q) 5 f d,. . 

0 otherwise 
DS 

1 

If B is a rectilinear bounding box with a lower comer 
[bi , . . . , b$ and an upper comer [by, . . . , bi] , MZNDZST 
may be computed as 

d 0 if (bf I qi < by) 

z>lST(B,Q)2 = 
c (b f - 4ij2 if (qi<bf) 
i= 1 

(by-qi12 otherwise 

To determine the Minkowski sum according to this formula, 
we would need a stochastic model for the parameters bf and 
by of the index pages. In practical experiments, we observed 
that in high-dimensional space usually one of the two param- 
eters, bf or b; , falls together with one of the borders of the 
data space which results from the fact that each dimension 
has been split at most once. If all dimensions are of about the 

same significance, the split algorithm has to use all dimen- 
sions as split axes in order to obtain a high selectivity. III this 

case it is practically impossible in a high-dimensional space 
to obtain more than one split per dimension since the number 
of data points does not increase exponentially with the di- 
mension. In general, the number of data points is even not 
high enough that all dimensions are split once. Therefore, 
without loss of generality, we may assume that only the first 
d’ I d dimensions have been split at position si in dimension 
i (1 I i 5 d’). d’ may be determined as 

The Minkowski sum over all index pages which directly cor- 
responds to the average number of pages intersected by the 
query sphere can be determined as 

#Pages(r) = i c VoZ(S&[s., . . . . sJ, r) n DS) 
k = 0 {il, . . . . ik} E fl{ 1, . ..f’S>) 

For each k, the partitions have some (d’-k)-dimensional faces 
inside DS. At these faces, a hyper-cylinder arises which is 
spherical in k dimensions (with radius r) and cubical in the 
remaining dimensions (with side-length 1). The spherical 
part may be intersected with DS and only this intersection is 
relevant. The second sum iterates over all elements of the 
power set of { 1, . . . . d’ }and thus, selects exactly all possible 
k-dimensional projections of the split dimensions, encounter- 
ing all possible cylinders. 

For uniformly distributed data, the si. are all at the same po- 
sition (s. ‘, = $ . In this case, the formula becomes 

#Pages(r) = 2 c VoZ(SPk([;. . . . ..I. r) n DS) 
k = 0 {i,, . . . . it} E fl{ 1, . . . . 8)) 

As the volume of all k-dimensional cylinders is identical 
now, we may simplify the formula to: 

#Pages(r) = - Vo&[;, . . . . ;], r) n DS) . 
k=O\ K / 
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E(#Puges) = 
-=d 

N. &q&(r) * (1 - Vol,d,,(r) > 
N-l 

* i C VO~(SP~([S* 9 ..., Sit], r) nDS) dr 
0 k = 0 {iI, . . . . ik} E P({ 1 , . . ..tf., 

3.5 Expected Number of Page Accesses 

In the previous section, we developed a model to determine 
the number of page accesses for a query sphere with a given 
radius. The goal of this section is to determine the expected 
number of page accesses for a nearest neighbor query. 

To determine the expected number of page accesses for a 
nearest neighbor query, we have to integrate over the radius 
multiplied with the probability with which the radius occurs. 
More formally, the expected number of page accesses for a 
nearest neighbor query E(#Puges) may be determined as 

00 

E(#Pages) = 
s 

#Pages(r) - p(r) dr . 

0 

If we integrate the partial results from subsections 3.3 and 
3.4, we obtain the formula presented in Figure 5. 

4. Experimental Evaluation 

In this section, we first describe the implementation of our 
cost model presented in section 3. Then, we describe the ex- 
periments conducted to show the practical applicability of 
our cost model and provide a short interpretation of the ex- 
perimental results. 

4.1 Implementation of the Cost Model 

In subsection 3.3, we presented an integral formula to deter- 
mine the volume of the intersection between the data space 
and a query sphere with radius r. This volume integral can be 
evaluated easily using numerical integration. Among the var- 
ious methods, the so-called Montecarlo integration is best- 
suited in the high-dimensional case. 

Montecarlo integration [14] is based on the principle of ran- 
domization and can be concisely described, as follows: The 
volume of a complex object corresponds directly to theprob- 
ability that a point, randomly selected from the data space, is 
inside this object. Therefore, an approximation of the volume 
can be gained by selecting a number of points and measuring 
the fraction of points inside the object. Note that Montecarlo 
integration may be used for arbitrary data distributions. 

We used a variatio; of this technique t; determine the vol- 
ume functions Vol n,,g(r) and VoZ(SP ([i,...,$j, r) nDS) 
as well as the corresponding derivative for the required rang- 
es of d and r. These functions are independent from individ- 
ual parameters such as the number of points in the database 
or the capacity or geometrical shape of the data pages and are 

thus universally applicable for all subsequent cost computa- 
tions. 

Theexpected valueof theNN-distancecan then beefficiently in- 
tegrated from the precomputed function V01,d,~ (r) by the ex- 
tended trapezoidal rule. The same applies for the cost function, 

4.2 Experiments 

To show the accuracy of our model, we made several exper- 
iments on both, synthetic and real data. We integrated the al- 
gorithm N&opt in an implementation of the well-known Hil- 
be&index [l 11 and in the original implementation of the X- 
tree [5]. The Hilbert-index maps d-dimensional points to a 
one-dimensional space which is then indexed by a Bt-tree. 
According to subsection 2.1, the algorithm NN-opt first ex- 
amines the partition (given by a range of Hilbert values) with 
the lowest MINDIST during the search process. The X-tree is 
an R-tree-like multidimensional index structure which has 
been especially designed for indexing high-dimensional data, 

Our cost model is based on an estimation of the radius of the 
NN-sphere. To show the accuracy of our model, we compnre 
the average nearest neighbor distance of a uniformly distrib- 
uted data set with the radius estimated by our model, For the 
experiments, we varied d from 2 to 16 using up to 369,000 
data points. We averaged the radius over 100 NN-queries and 
found our expected nearest neighbor distance perfectly con- 
firmed (cf. Figure 6). 

To evaluate the accuracy of our cost function and its applica- 
bility to various index structures, we performed several ex- 
periments. In the first experiment, we fixed the dimension to 
16 and varied the number of uniformly distributed data points 
from 93,000 to 2,976,OOO. In this experiment, we used the 
Hilbert index with a Bt-tree page size of 32 ISBytes which 
implies an effective capacity of 360 data objects per data 
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L 

Figure 6 Expected NN-distance Depending on the Dimension 
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Figure 7: Expected Number of Page Accesses and Elilbert In- 
dex Performance Depending on the Number of Data Points 

page. The experiment confirmed our cost model up to a rel- 
ative error of 5-8% (cf. Figure 7). This remaining error is due 
to the impact of the specific split behavior, which is difficult 
to include in any formal model. 

In the experiment shown in Figure 8, we compare our cost 
model to the performance of the X-tree with a’fixed number 
of data pages and varying dimensional@ (d = 2 . . 50). The 
performance of the X-tree is slightly better than the estimate 
of our cost model. The reason for the better performance is 
that the X-tree ignores ‘dead space’, i.e. parts of the data 
space which are not covered by any partition. As the experi- 
ments show, however, the estimates of our model are suffi- 
ciently close to the real performance of the X-tree. Even for 
low and medium dimensions, the accuracy of our model is 
much better than the model of Friedman, Bentley and Finkel. 
Note that in general our model is also applicable to R-tree- 
like index structures - especially in higher dimensions. 

To show the practical relevance of our approach, we also per- 
formed experiments using real data. The test data used for the 
experiments originate from a real database consisting of high- 
dimensional Fourier points. Each 16dimensional Fourier 
point corresponds to a region of a CAD-model describing an 
industrial part. We stored the Fourier-points in the Hilbert-in- 
dex and performed 100 random nearest neighbor queries. 
Since in general the actual dimensionality of a real data set is 
lower than the formal dimensionality [lo], we have to use the 
fractal dimension of the Fourier database ford in our model. 
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Figure 8: Expected Number of Page Accesses and Measured 

X-tree Performance Depending on the Dimension 
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Figure 9: Application of the Cost Model to Real Data 

We therefore determined the fractal dimension of the Fourier 
data set which is 10.56. Using 10 as the dimension in our 
model, we get an accurate estimation of the page accesses. 
Figure 9 shows the result of some experiments using different 
numbers N of data items. 

5. Conclusion 

In this paper, we presented a new cost model for nearest 
neighbor queries in high-dimensional data space using con- 
servative recursive index structures such as the R-tree, k-d- 
B-tree or quadtree. Our cost model is accurate even in high 
dimensions, where other models completely fail, because our 
model considers boundary effects. As a further advantage, 
our model uses the Euclidean metric which is relevant to 
many database applications. We showed the applicability and 
accuracy of our model by presenting the results of various ex- 
periments both on synthetic and real data sets comparing our 
predictions with the performance of X-tree and Hilbert-based 
indices. Whereas previous models such as the model by 
Friedman, Bentley and Finkel overestimate the cost by orders 
of magnitude in high dimensions, our model is exact up to a 
moderate relative error. Our further research will focus on the 
extension of our model to k-nearest neighbor queries. In ad- 
dition, we plan to perform a theoretically well-founded anal- 
ysis of various index structures for high-dimensional data. 
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