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Abstract. There is an increasing need to integrate spatial index structures into
commercial database management systems. In geographic information systems
(GIS), huge amounts of information involving both, spatial and thematic at-
tributes, have to be managed. Whereas relational databases are adequate for han-
dling thematic attributes, they fail to manage spatial information efficiently. In
this paper, we point out that neither a hybrid solution using relational databases
and a separate spatial index nor the approach of existing object-relational database
systems provide a satisfying solution to this problem. Therefore, it is necessary to
map the spatial information into the relational model. Promising approaches to
this mapping are based on space-filling curves such as Z-ordering or the Hilbert
curve. These approaches perform an embedding of the multidimensional space
into the one-dimensional space. Unfortunately, the techniques are very sensitive
to the suitable choice of an underlying resolution parameter if objects with a spa-
tial extension such as rectangles or polygons are stored. The performance usually
deteriorates drastically if the resolution is chosen too high or too low. Therefore,
we present a new kind of ordering which allows an arbitrary high resolution with-
out performance degeneration. This robustness is achieved by avoiding object
duplication, allowing overlapping Z-elements, by a novel coding scheme for the
Z-elements and an optimized algorithm for query processing. The superiority of
our technique is shown both, theoretically as well as practically with a compre-
hensive experimental evaluation. 

1.  Motivation

Index structures for spatial database systems have been extensively investigated during
the last decade. A great variety of index structures and query processing techniques has
been proposed [Güt 94, GG 98]. Most techniques are based on hierarchical tree-struc-
tures such as the R-tree [Gut 84] and its variants [BKSS 90, SRF 87, BKK 97]. In these
approaches, each node corresponds to a page of the background storage and to a region
of the data space.

There is an increasing interest in integrating spatial data into commercial database
management systems. Geographic information systems (GIS) are data-intensive appli-
cations involving both, spatial and thematic attributes. Thematic attributes are usually
best represented in the relational model, where powerful and adequate tools for evalua-
tion and management are available. Relational databases, however, fail to manage spa-
tial attributes efficiently. Therefore, it is common to store thematic attributes in a rela-
tional database system and spatial attributes outside the database in file-based
multidimensional index structures (hybrid solution).
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The hybrid solution bears various disadvantages. Especially the integrity of data
stored in two ways, inside and outside the database system, is difficult to maintain. If an
update operation involving both, spatial and thematic attributes fails in the relational
database (e.g. due to concurrency conflicts), the corresponding update in the spatial
index must be undone to guarantee consistency. Vice versa, if the spatial update fails, the
corresponding update to the relational database must be aborted. For this purpose, a
distributed commit protocol for heterogeneous database systems must be implemented,
a time-consuming task which requires a deep knowledge of the participating systems.
The hybrid solution involves further problems. File systems and database systems have
usually different approaches for data security, backup and concurrent access. File-based
storage does not guarantee physical and logical data independence. Thus, changes in
running applications are complicated.

A promising approach to overcome these disadvantages is based on object-relational
database systems. Object-relational database systems are relational database systems
which can be extended by application-specific data types (called data cartridges or data
blades). The general idea is to define data cartridges for spatial attributes and to manage
spatial attributes in the database. For data-intensive GIS applications it is necessary to
implement the multidimensional index structures in the database. This requires the ac-
cess to the block-manager of the database system, which is not granted by most commer-
cial database systems. For instance the current universal servers by ORACLE and IN-
FORMIX do not provide any documentation of a block-oriented interface to the
database. Data blades/cartridges are only allowed to access relations via the SQL inter-
face. Thus, current object-relational database systems are not very helpful for our inte-
gration problem.

We can summarize that anyway, using current object-relational database systems or
pure relational database systems, the only possible way to store spatial attributes inside
the database is to map them into the relational model. An early solution for the manage-
ment of multidimensional data in relations is based on space-filling curves. Space-fill-
ing curves map points of a multidimensional space to one-dimensional values. The map-
ping is distance preserving in the sense that points which are close to each other in the
multidimensional space, are likely to be close to each other in the one-dimensional
space. Although distance-preservation is not strict in this concept, the search for match-
ing objects is usually restricted to a limited area in the embedding space.

The concept of space-filling curves has been extended to handle polygons. This idea
is based on the decomposition of the polygons according to the space-filling curve. We
will discuss this approach in section 2 and reveal its major disadvantage that it is very
sensitive to a suitable choice of the resolution parameter. We will present a new method
for applying space-filling curves to spatially extended objects which is not based on
decomposition and avoids the associated problems.

For concreteness, we concentrate us in this paper on the implementation of the first
filter step for queries with a given query region such as window queries or range queries.
Further filter steps and the refinement step are beyond the scope of this paper. The rest
of this paper is organized as follows: In section 2, we introduce space-filling curves and
review the related work. Section 3 explains the general idea and gives an overview of
our solution. The following sections show how operations such as insert, delete and



search are handled. In section 5, a comprehensive experimental evaluation of our tech-
nique using the relational database management system ORACLE 8 is performed,
showing the superiority of our approach over standard query processing techniques and
competitive approaches.

2.  Z-Ordering
Z-Ordering is based on a recursive decomposition of the data space as it is provided by
a space-filling curve [Sag 94, Sam 89] called Z-ordering [OM 84], Peano/Morton
Curve [Mor 66], Quad Codes [FB 74] or Locational Codes [AS 83]. 

2.1  Z-Ordering in Point Databases
Assume a point taken from the two-dimensional unit
square [0..1]2. The algorithm partitions the unit square into
4 quadrants of equal size (we change the description of Z-
ordering here slightly to make it more comparable to our ap-
proach), which are canonically numbered from 0 to 3 (cf.
figure 1). We note the number of the quadrant and partition
this quadrant into its four sub-quadrants. This is recursive-
ly repeated until a certain basic resolution is reached. The
fixed number of recursive iterations is called the resolution
level g. Then we stop and use the obtained sequence of g

digits (called quadrant sequence) as ordering key for the points (we order lexicograph-
ically). Each quadrant sequence represents a region of the data space called element. For
instance, the sequence <00> stands for an element with side length 0.25 touching the
lower left corner of the data space. Elements at the basic resolution which are represent-
ed by quadrant sequences of length g are called cells. If an element e1 is contained in
another element e2, then the corresponding quadrant sequence Q(e2) is a prefix of Q(e1).
The longer a quadrant sequence is, the smaller is the corresponding element. In the unit
square, the area of an element represented by a sequence of length l is (1/4)l. In a point
database, only cells at the basic resolution are used. Therefore, all quadrant sequences
have the same lengths and we can interpret the quadrant sequences as numbers repre-
sented in the quaternary system (i.e. base 4). Interpreting sequences as numbers facili-
tates their management in the index and does not change ordering of the points, because
the lexicographical order corresponds to the less-equal relation of numbers. The points
are managed in an order-preserving one-dimensional index structure such as a B+-tree.

2.2  Query Processing in Z-Ordering
Assume a window query with a specified window. The data space is decomposed into its
four quadrants. Each quadrant is tested for intersection with the query window. If the
quadrant does not intersect the query window, nothing has to be done. If the quadrant is
completely enclosed in the query window, we have to retrieve all points from the data-
base having the quadrant sequence of this element as a prefix of their keys. If the keys
are represented as integer numbers (cf. section 3.2), we have to retrieve an interval of
subsequent numbers. All remaining quadrants which are intersected by the window but
not completely enclosed in the window (i.e. “real” intersections) are decomposed recur-
sively until the basic resolution is reached. 
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Figure 1: Z-Ordering. 
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2.3  A Naive Approach for Polygon Databases
To extend the concept of Z-ordering for the management of objects with a spatial exten-
sion (e.g. rectangles or polygons), we face the problem that a given polygon intersects
with many cells. A naive approach could be to store every cell covered by the object in
the database. Obviously, this method causes a huge storage overhead unless the basic
grid is very coarse. Therefore, several methods have been proposed to reduce the over-
head when using a finer grid.

2.4  One-Value-Approximation
The objects are approximated by the smallest element which encloses the complete
object (cf. figure 2). In this case our recursive algorithm for the determination of the
quadrant sequence is modified as follows: Partition the current data space into four
quadrants. If exactly one quadrant is intersected by the object, proceed recursively with
this quadrant. If more than one quadrant is intersected, then stop. Use the quadrant
sequence obtained up to that point as the ordering key. This method has the obvious
advantage that each object is represented by a single key, not by a set of keys as in our
naive approach. But this method yields also several disadvantages. The first disadvan-
tage is that the quadrant sequences in this approach have different lengths, depending on
the resolution of the smallest enclosing quadrant. Thus, our simple interpretation as a
numerical value is not possible. Keys must be stored as strings with variable length and
compared lexicographically, which is less efficient than numerical comparisons. The
second problem is that objects may be represented very poorly. For instance any poly-
gon intersecting one of the axis-parallel lines in the middle of the data space (the line
x = 0.5 and the line y = 0.5) can only be approximated by the empty quadrant sequence.
If the polygon to be approximated is very large, an approximation by the empty se-
quence or by very short sequences seems to be justified. For small polygons, the relative
approximation error is too large. The relative space overhead of the object approxima-
tion is thus unlimited. In fact, objects approximated by the empty quadrant sequence are
candidates to every query a user asks. The more objects with short quadrant sequences
are stored in the database, the worse is the selectivity of the index.

2.5  Optimized Redundancy
To avoid the unlimited approximation overhead, Orenstein proposes a combination of
the naive approach and the one-sequence representation [Ore 89a, Ore 89b]. He adopts
the idea of the object decomposition in the naive approach, but does not necessarily
decompose the object until the basic resolution is reached. Instead, he proposes two
different criteria, called size-bound and error-bound to control the number of quadrants
into which an object is decomposed. Each subobject is stored in the index by using its
quadrant sequence, e.g. represented as a string. Although this concept involves object
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Figure 2: The one-value-representation. 



duplication (which is called redundancy by Orenstein), the number of records stored in
the index is not directly determined by the grid resolution as in the naive approach.
Unlike in the one-sequence approach, it is not necessary to represent small objects by the
empty sequence or by very short sequences. According to Orenstein, typically a decom-
position into 2-4 parts is sufficient for a satisfactory search performance.

Orenstein’s approach alleviates the problems of the two previous approaches, but a
duplicate elimination is still required and the keys are sequences with varying length.
Orenstein determines an optimal degree of redundancy only experimentally. An analyt-
ical solution was proposed by Gaede [Gae 95] who identified the complexity of the
stored polygons, described by their perimeter and their fractal dimension, as the main
parameters for optimization. A further problem when redundancy is allowed arises in
connection with secondary filters in a multi-step environment. Information which can
be exploited for fast filtering of false hits, such as additional conservative approxima-
tions (e.g. minimum bounding rectangles MBR), should not be subject to duplication due
to its high storage requirement. To avoid duplication of such information, it must be
stored in a separate table which implies additional joins in query processing.

A further consequence of Gaede’s analysis [Gae 95] is that the number of intervals
which are generated from the query window is proportional to the number of grid cells
intersected by the boundary of the query window (i.e. its perimeter). This means that a
too fine resolution of the grid leads to a large number of intervals and thus to deteriorated
performance behavior when a relational database system is used. The reason is that the
intervals must be transferred to and processed by the database server, which is not neg-
ligible, if the number of intervals is very high (e.g. in the thousands).

2.6  Alternative Techniques

Several improvements of the Z-ordering concept are well-known (cf. figure 3). Some
authors propose the use of different curves such as Gray Codes [Fal 86, Fal 88], the
Hilbert Curve [FR 89, Jag 90] or other variations [Kum 94]. Many studies [Oos 90,
Jag 90, FR 91] prefer the Hilbert curve among the proposals, due to its best distance
preservation properties (also called spatial clustering properties). [Klu 98] proposes a
great variety of space-filling curves and makes a comprehensive performance study
using a relational implementation. As this performance evaluation [Klu 98] does not
yield a substantial performance improvement of the Hilbert curve or other space-filling
curves over Z-ordering, we use the Peano/Morton curve because it is easier to compute.

a) Hilbert b) Peano (Z-Order) c) Gray-Codes d) Z-mirror e) U-Index

Figure 3: Various Space-Filling Curves. 



3.  A Space-Filling Curve for Spatially Extended Objects
In contrast to the previous approaches, we propose a solution which avoids the disad-
vantages of object duplication and variable-length quadrant sequences. Our method is
thus completely insensitive against a too fine grid resolution. There is no need to opti-
mize the resolution parameter. It can always be taken as fine as possible, i.e. the full bit
precision of the CPU can be exploited. Three ideas are applied to achieve this robust-
ness: The first idea presented in section 3.1 is to incorporate overlap into the concept of
elements. We will define the elements such that adjacent elements at the same resolution
level l overlap each other up to 50%. This method enables us to store objects without
redundancy (i.e. object duplication) and without uncontrolled approximation error. In
particular, it is impossible that a very small object must be represented by a very short
sequence or even by the empty sequence. 

The second idea is to use a sophisticated coding scheme for the quadrant sequences
which maps quadrant sequences with varying length into the integer domain in a dis-
tance-preserving way. The coding algorithm is presented in section 3.2. The third idea
(cf. section 4.3) is an efficient algorithm for interval generation in query processing. The
goal of the algorithm is to close small gaps between adjacent intervals if the overhead of
processing an additional interval is larger than the cost for overreading the interval gap.

We call our technique which maps polygons into integer-values extended Z-ordering
or XZ-ordering. The integer values forming the keys for search are called XZ-values. For
each polygon in the database, we store one record which contains its XZ-value and a
pointer to the exact geometry representation of the polygon. As we avoid object dupli-
cation, further information such as thematic attributes or information for secondary fil-
ters (the MBR or other conservative and progressive approximations, cf. [BKS 93]) can
be stored in the same table.

3.1  Overlapping Cells and Elements
The most important problem of the one-value representation is that several objects are
approximated very poorly. Every object intersecting with one of the axis-parallel lines
x = 0.5 and y = 0.5 is represented by the empty quadrant sequence which characterizes
the element comprising of the complete data space. If the object extension is very small
(close to 0), the relative approximation error diverges to infinity.

In fact, every technique which decomposes the space into disjoint cells gets into trou-
ble if an object is located on the boundary between large elements. Therefore, we modify
our definition of elements such that overlap among elements on the same resolution
level l is allowed.

The easiest way to envisage a definition of overlapping elements is to take the original
elements as obtained by Z-ordering and to enlarge the height and width by a factor 2
upwards and to the right, as depicted in figure 4. Then, two adjacent cells overlap each
other by 50%. The special advantage is, that this definition contains also small elements
for objects intersecting with the middle axis.

Definition 1: Enlarged elements

The lower left corner of an enlarged element corresponds to the lower left corner of
Z-ordering. Let s be the quadrant sequence of this lower left corner and let |s| denote



its length. The upper right corner is translated such that the height and width of the
element is 0.5|s|-1.

It is even possible to guarantee bounds for a minimal length of the quadrant sequence
(and thus of the approximation quality) based on the extension of the object in x- and y-
direction. 

Lemma 1. Minimum and Maximum Length of the Quadrant Sequence
The length of the quadrant sequence s for an object with height h and width w is
bounded by the following limits:

 with  and 

Proof (Lemma 1)
Without loss of generality, we assume . We consider the two disjoint space
decompositions into elements at the resolution levels l1 and l2 and call the arising
decomposition grids the l1-grid and the l2-grid, respectively. The distances w1 and
w2 between the grid-lines are equal to the widths of the elements at the correspond-
ing decomposition levels l1 and l2.
(1) As the distance w1 between two lines of the l1-grid is greater than or equal to w, 

because ,

the object can at most be intersected by one grid line parallel to the y-axis and by one
grid line parallel to the x-axis. If the lower left element among the intersecting ele-
ments is enlarged as in definition 1, the object must be completely contained in the
enlargement.
(2) As the distance w2 between two lines of the l2-grid is smaller than w/2, 

because ,

the object is intersected at least by two y-axis parallel lines of the l2-grid. Therefore,
there is no element at the l2-level which can be enlarged according to definition 1
such that the object is contained.

❏

Lemma 1 can be exploited to provide boundaries for the relative approximation error of
objects. As polygons can be arbitrary complex, it is not possible for any approximation
technique with restricted complexity (such as MBRs or our technique) to provide error
boundaries. However, we can guarantee a maximum relative error for square objects
which are not smaller than the basic resolution:
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Figure 4: Enlarged Regions in XZ-Ordering. 
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Lemma 2. Maximum approximation error

The relative approximation error for square objects is limited.

Proof (Lemma 2)

According to lemma 1, the quadrant sequence for a square object of width w has at
least the length . The width of the corresponding cell is

.

The enlarged element has the area .

The maximum approximation error is limited by the following value:

.

❏

Although a relative approximation error of 15 seems rather large, it is an important
advantage of our technique over the one-value representation that the approximation
error is limited at all. Our experimental evaluation will show that also the average ap-
proximation error of our technique is smaller than that of the one-value representation.

3.2  Numbering Quadrant Sequences

We are given a quadrant sequence with a length varying from 0 to the maximum length
g determined by the basic resolution. Our problem is to assign numbers to the sequences
in an order-preserving way, i.e. the less-equal-order of the numbers must correspond to
the lexicographical order of the quadrant sequences. Let the length of the quadrant se-
quence s be l. The following lemma is used to determine the number of cells and ele-
ments contained in the corresponding region R(s):

Lemma 3. Number of cells and elements inside of region R(s)

The number of cells of resolution g contained in a region described by the quadrant
sequence s with |s| = l is 

.

The corresponding number of elements (including element R(s) and the cells) is

.

Proof (Lemma 3)

(1) There is a total of 4l elements with length l and a total of 4g cells in the data space.
As both cells and elements of length l cover the data space in a complete and overlap-
free way, the area of an element is  times larger than the
area of a cell.
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(2) The number of elements of length i contained in an element of length l corre-
sponds to . For obtaining the number of all elements, we have to summarize
over all i ranging from l to g:

❏

For the definition of our numbering scheme, we have to make sure that between the
codes of two subsequent strings s1 and s2 of length l there are enough numbers for all
strings which are ordered between s1 and s2. These are exactly the strings having s1 as
prefix, and their number is thus . We therefore multiply each quadrant
number qi in the sequence s = <q0 q1 ... qi ... ql-1> with .

Definition 2: Sequence Code

The sequence code C(s) of a quadrant sequence s = <q0 q1 ... qi ... ql-1> corresponds
to

Lemma 4. Ordering Preservation of the Sequence Code
The less-equal order of sequence codes corresponds to the lexicographical order of
the quadrant sequences:

Proof (Lemma 4)
‘⇒’: Suppose  with s1 = <q0...ql-1> and s2 = <p0...pm-1>. Then, one of the
following predicates must be true according to the definition of the lexicographical
order:
(1) there exists an i ( ) such that qi < pi and qj = pj for all j < i
(2) m > l and qj = pj for all j < l.
In case (1), we know that the i-th term of the sum of C(s1) is at least by 
less than the i-th term in the sum of C(s2). The summands for all j < i are equal. We
have to show that the difference D of the sums of all remaining terms is smaller than
Nelem(g - i) to guarantee . The difference D is maximal if qj = 3 and
pj = 0 for all j > i. In this case, we can determine D as follows:

In case (2), C(s2) > C(s1), because the first i summands are equal, and C(s2) has
additional positive summands which are not available in the sum of C(s1).
‘⇐’: We can rewrite the condition  to

. The proof is then analogue to the ‘⇒’-direction.
❏
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Lemma 5. Minimality of the Sequence Code
There exists no mapping from the set of quadrant sequences to the set of natural
numbers which requires a smaller interval of the natural numbers than C(s).

Proof (Lemma 5)
From lemma 3 it follows that there are  different ele-
ments. C(s) is maximal if s has the form <3g>. In this case, C(s) evaluates to the term

The coding of the empty string C(<>) = 0. Therefore, the Nelem(0) different strings
are mapped exactly to the interval [0, ].

❏

From lemma 5, it also follows that C is a surjective mapping onto the set {0, ...,
}. We note without a formal proof that C is also injective. The quadrant

sequence can be reconstructed from the coding in an efficient way, but this is not neces-
sary for our purposes.

4.  Query Processing

4.1  Insert and Delete
We know from lemma 1 that the quadrant sequence has the length

 or l1 + 1. We can decide this by the following predicate
which tests whether the object is intersected by one or two grid lines (xl denotes the
lower boundary of the object in x direction; the same criterion must be applied for yl):

Once the length l of the quadrant sequence is determined, the corresponding quadrant
sequence s is determined for the lower left corner of the bounding box of the object, as
described in section 2.1. This sequence s is clipped to the length l and coded according
to definition 2. The obtained value is used as a key for storage and management of the
object in a relational index. Our actual algorithm performs the operations of recursive
descent into the quadrants and coding according to definition 2 simultaneously without
explicitly generating the quadrant sequence. The algorithm runs in O(l) time.

4.2  From Window Queries to Interval Sets
For query processing, we can proceed in a recursive way similar to the algorithm pre-
sented in section 2.2. We determine which quadrants are intersected by the query. Those
which are not intersected are ignored. If a quadrant is completely contained in the query
window, all elements having the corresponding quadrant sequence as prefix are com-
pletely contained in the query. Therefore, the interval of the corresponding XZ-values is
generated and marked for a later retrieval from the database. If a quadrant is intersected,
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the corresponding XZ-value is determined and marked (it is handled as a one-value
interval). Then the algorithm is called recursively for all its sub-quadrants. Finally, we
have marked a set of intervals of XZ-values which are to be retrieved from the database.
This set is translated into an SQL statement which is transferred to the DBMS.

Problems arise if the resolution of the basic grid is chosen too fine, because in this
case, typically many elements are partially intersected. In the average case, the number
of generated intervals is in the order O(2g). It is very costly to transfer and compile such
a complex query. To alleviate this problem, one could apply the simple densification
algorithm depicted in figure 5 to the set of intervals. As only small gaps between subse-
quent intervals are closed, it is unlikely that this densification of intervals causes addi-
tional disk accesses in query processing. The densification after the interval generation
optimizes query compilation cost and related cost factors, but does not change the gen-
eral complexity of the interval generation. For this purpose, an algorithm must be de-
vised which generates the intervals directly in a way that closes the gaps. This algorithm
is described in the subsequent section.

4.3  An Efficient Algorithm for the Interval Generation
This algorithm allows the user to specify the number of intervals nint which are generat-
ed. We exploit a general property of XZ-ordering and Z-ordering, which we note here
without a formal proof: Let us consider interval sets which come up if we restrict our
interval generation to a certain length l (0 ≤ l ≤ q) of the corresponding quadrant se-
quences. If l is increased, it is possible that more intervals are generated. The factor by
which the number of intervals in the interval set grows when increasing the length l by
one, is restricted by 4. All intervals of the larger interval set are contained in an interval
of the smaller set. The additional gaps between the intervals in an interval set generated
when l is increased by 1, can only be smaller than all gaps which are visible when l is
decreased by 1. If we would descend the recursion tree of the algorithm in section 2.2 in
a breadth-first fashion and stop if we have found 4 times as many intervals as demanded
(4nint), we know that we can densify this set to a set of nint intervals with the largest
possible gaps between them.

Instead of the breadth-first traversal, we have implemented the following algorithm:
In a first phase, depicted in figure 6, the algorithm performs a depth-first traversal for
determining the number of intervals in each recursion level. The clue is, that the recur-
sive descent is avoided, if the corresponding level has reached a number of 4nint inter-
vals, because we are only interested in the first level having more than 4nint intervals. In
each level, the algorithm measures the number of transitions in the XZ-order, where the
extended elements of the space-filling curve cross the query region. As the algorithm is

Figure 5: The simple algorithm for gap closing. 

FOREACH interval i in list {
WHILE succ (i).lower - i.upper < maxgap {

i.upper := succ (i).upper ;
delete succ (i) ;

} }



in each level called 4nint times maximum, the complexity of the algorithm is bounded by
.

In the second phase, we generate the corresponding interval set by a depth-first tra-
versal which is limited to the recursion depth obtained in phase one. Whenever the
number of intervals becomes greater than nint, the two neighboring intervals with the
smallest gap between them are merged. In a third phase, the upper bounds of the inter-
vals are investigated. It is possible that the upper bounds can be slightly improved (i.e.
decreased) by a deeper descent in the recursion tree. All three phases yield a linear
complexity in g.

5.  Experimental Evaluation
In order to verify our claims that an implementation of spatial index structures does not
only provide advantages from a software engineering point of view but also in terms of
performance, we actually implemented the XZ-Ordering technique on top of ORACLE-
8 and performed a comprehensive experimental evaluation using data from a GIS appli-
cation. Our database contains 324,000 polygons from a map of the European Union. We
also generated smaller data sets from the EU map to investigate the behavior with vary-

O nint g⋅( )

Figure 6: The Algorithm for Determining the Suitable Recursion Level (“Phase 1”). 

VAR num_ch: ARRAY [0..g] OF INTEGER ;

PROCEDURE det_num_changes (element, query: REGION; cur_num_ch: INTEGER;
c_depth: INTEGER; VAR inside: BOOLEAN) {

IF (NOT intersect (element, query) ) {
IF (inside) {

inside := FALSE; INCREMENT (num_ch [c_depth]);
} }
ELSE IF (contains (query, element) ) {

IF (NOT inside) {
inside := TRUE; INCREMENT (num_ch [c_depth] ) ;

} }
ELSE {

IF (NOT inside) {
inside := TRUE; INCREMENT (num_ch [c_depth] ) ;

}
IF (current_depth < g AND c_num_ch + num_ch[c_depth] < nint) {

FOREACH subquadrant {
det_num_changes ( subquadrant, query, c_num_ch + num_ch [c_depth], 

c_depth + 1, inside) ;
} } } }

FUNCTION suitable_level (query:REGION): INTEGER {
INITIALIZE num_ch := {0, 0, ..., 0} ;
det_num_changes (dataspace, query, 0, 0, FALSE) ;
suitable_level := first i where num_ch[i] >= nint ;

}



ing database size. Our application was implemented in Embedded SQL/C (dynamic
SQL level 3) on HP C-160 workstations. The database server and the client application
run on separate machines, connected by a 100MBit Fast Ethernet.

We also had an implementation on top of a file-system based B+-tree which was used
for comparison purposes. The reason for this test was to show that our technique is
implementable on top of a commercial database system and that the additional overhead
induced by the database system is small. In both cases, we varied the database size from
1,000 to 324,000 and executed window queries with a selectivity of 1% (with respect to
the number of polygons in the query result). All experiments presented in this section
were repeated ten times. The presented results are averages over all trials. The number
of page accesses (cf. figure 7, left diagram) is in Oracle only by up to 8% higher than in
the file-based B+-tree implementation. We used a comparable node capacity in both
implementations. A second experiment depicted on the right side of figure 7 shows that
the application of a specific space filling curve has no strong influence on the perfor-
mance of our technique. Using the same settings, we tested various curves including Z-
Ordering (Peano), the Hilbert-curve and Gray-Codes. There was no consequent trend
observable which could suggest the superiority of one of the curves. Therefore, we
decided to perform all subsequent experiments using the Peano-/Morton-curve, because
the implementation is facilitated.

The purpose of the next series of experiments is to show the superiority of our ap-
proach over competitive techniques such as Orenstein’s Z-Ordering. First, we demon-
strate in figure 8 that our technique, in contrast to Z-Ordering, is not subject to a perfor-
mance deterioration when the grid resolution is chosen too high. We constructed several
indexes with varying resolution parameter g for both techniques, XZ-Ordering and Z-
Ordering, where we applied the size-bound decomposition strategy resulting in a redun-
dancy of 4. In this experiment, we stored 81,000 polygons in the database and retrieved
1% of them in window queries. Z-Ordering has a clear minimum at a resolution of g = 8
with a satisfying query performance. When the resolution is slightly increased or de-
creased, the query performance deteriorates. For instance, if g is chosen to 10, the num-
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ber of page accesses is by 80% higher than at the optimum. At the maximum resolution
factor g = 13, the number of page accesses was by a factor more than 6.4 higher than the
optimum. In contrast, our technique shows a different behavior. If the grid resolution
parameter g is too small, the performance is similar to the performance of Z-ordering. A
too coarse grid leads obviously to a bad index selectivity, because many objects are
mapped to the same Z-values or XZ-values, respectively. Both techniques have the same
point of optimum. Beyond this point, XZ-Ordering yields a constant number of page
accesses. Therefore, it is possible to avoid the optimization of this parameter which is
difficult and depends on dynamically changing information such as the fractal dimen-
sion of the stored objects and their number. This trend is maintained and even intensified
if the selectivity of the query is increased, as depicted on the right side of figure 8. Here,
the number of polygons was 324,000 and the resolution was fixed to g = 10.
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In a further series of experiments, we compared our technique with the One-Value-
Approximation (cf. section 2.4) and with the sequential scan of the data set. The remain-
ing test parameters correspond with the previous experiments. Both competitive tech-
niques are clearly outperformed as depicted in figure 9. The One-Value-Approximation
yields up to 90% more page accesses. The sequential scan needs up to 326% as much
processing time as XZ-Ordering.

In a last experiment, we determined the
influence of the query processing algo-
rithm presented in section 4.3. We varied
again the resolution parameter g from 3
to 11 and generated interval sets of 20
intervals according to a window query
with side length 0.03 (the unit square is
the data space). We measured the CPU
time which is required for the generation
of the intervals and of the corresponding
string for the dynamic SQL statement.
We compared our algorithm with the
simple algorithm (cf. section 2.2) ex-
tended by the gap closing algorithm (cf.
figure 5). The results are presented in
figure 10. The simple algorithm has an
exponential complexity with respect to

the resolution, whereas the improved algorithm is linear. For the finest resolution
(g = 11), the improved algorithm is by the factor 286 faster than the simple algorithm.

6.  Conclusion
In this paper, we have proposed XZ-Ordering, a new technique for a one-dimensional
embedding of extended spatial objects such as rectangles or polygons. In contrast to
previous approaches which require the optimization of the resolution parameter in order
to become efficient, our technique is insensitive against a fine resolution of the underly-
ing grid. Therefore, the resolution parameter is only restricted by hardware constants
(the number of bits for an integer value) and can be chosen as fine as possible. This
robustness is achieved by applying three basic concepts. Object decomposition is avoid-
ed by the concept of overlapping elements. A sophisticated order-preserving coding into
the integer domain facilitates the management of the search keys for the DBMS. A new
query processing algorithm is also insensitive to the grid resolution.

The superiority of our approach was shown both, theoretically as well as practically.
We implemented the XZ-Ordering technique on top of the relational database system
ORACLE-8. Our technique outperformed competitive techniques based on space-fill-
ing curves as well as standard query processing techniques.
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