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ABSTRACT
How can we efficiently find a clustering, i.e. a concise de-
scription of the cluster structure, of a given data set which
contains an unknown number of clusters of different shape
and distribution and is contaminated by noise? Most exist-
ing clustering methods are restricted to the Gaussian cluster
model and are very sensitive to noise. If the cluster content
follows a non-Gaussian distribution and/or the data set con-
tains a few outliers belonging to no cluster, then the com-
puted data distribution does not match well the true data
distribution, or an unnaturally high number of clusters is
required to represent the true data distribution of the data
set. In this paper we propose OCI (Outlier-robust Cluster-
ing using Independent Components), a clustering method
which overcomes these problems by (1) applying the expo-
nential power distribution (EPD) as cluster model which is
a generalization of Gaussian, uniform, Laplacian and many
other distribution functions, (2) applying the Independent
Component Analysis (ICA) for both determining the main
directions inside a cluster as well as finding split planes in a
top-down clustering approach, and (3) defining an efficient
and effective filter for outliers, based on EPD and ICA. Our
method is parameter-free and as a top-down clustering ap-
proach very efficient. An extensive experimental evaluation
shows both the accuracy of the obtained clustering result as
well as the efficiency of our method.
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1. INTRODUCTION
Clustering is an unsupervised learning task that has at-

tracted considerable attention during the past decades. Clus-
tering means to group together objects such that the intra-
group similarity is maximized and the between-group simi-
larity is minimized. Multiple books, surveys, and research
papers ([10, 18, 3, 6, 17], to name just a few) underline the
impact of this research area to the whole research commu-
nity. In addition, clustering has also been very successfully
established in various application areas such as customer
segmentation, molecular biology, medical imaging etc.

Recently, the work on clustering has focused on the scala-
bility of the algorithms to large data sets [18], to find clusters
of an arbitrary shape (in contrast to a focus on Gaussian
clusters in early work) [15], to find clusters in which the
grouped objects share complex attribute dependencies [6,
1, 17], and clustering methods that are particularly insen-
sitive to outliers [10]. Moreover, recent work has also been
addressing the questions, how to select difficult parameter
settings such as the number of clusters to be searched, e.g.
[11], or to do this setting fully automatically, or to com-
pletely avoid such parameters. And, finally, modern clus-
tering methods give an informative and concise description
of the cluster content, e.g. in terms of a multivariate prob-
ability distribution function (PDF).

For the description of the cluster content, in most con-
ventional approaches such as K-Means and EM-clustering
[8] but also more recent approaches such as G-Means [12] or
X-Means [16], a Gaussian model is used which corresponds
to the well-known PDF of the normal distribution:

fGauss[�μ,Σ](�x) =
1√

2π · det(Σ)
e(− 1

2 (�x−�μ)T·Σ−1·(�x−�μ)).

Unfortunately, this cluster model is not flexible and power-
ful enough to handle many real life data sets which do not
follow a Gaussian distribution. However, many of the build-
ing blocks of current clustering methods rely on the (often
implicit and tacid) assumption of a Gaussian distribution.
To find the main directions into which a cluster is extended
is typically done by PCA (principal component analysis), by
maximizing the variance of the data set. It has been shown,
however, that the directions of main variance are sufficient
and actually meaningful only for Gaussian data [13].

To find directions which are not only de-correlated but
give also statistically completely independent projection vec-
tors in which one is able to find more sophisticated proba-
bility distributions (such as uniform distributions, Laplacian
distributions but also multi-modal distributions, i.e. direc-
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tions of possible split axes), we need the Independent Com-
ponent Analysis (ICA). The center point of the PDF de-
scribing a cluster content is typically selected as the em-
pirical mean (center of gravity) of the associated points
(�m = 1/|C| ·∑�x∈C �x). This is also useful for Gaussian data
only. It is well-known that for data following a Laplacian
distribution the median should be selected, and for the uni-
form distribution, the mean between the maximum and min-
imum element (not the mean of all elements) should be used.
There are many more implicit and tacit Gaussianity assump-
tions in current clustering methods. For instance, when a
point is associated to that cluster representative which is
closest (according to Euclidean or Mahalonobis distance),
we implicitly have assumed that the data distribution of the
clusters is Gaussian.

Another assumption of many previous clustering algo-
rithms is that every objects indeed belongs to one of the
clusters, and that real outlier objects which do not fit well
to any of the clusters do not exist. We will show in this
paper that every applied estimation method of cluster rep-
resentatives, main directions, and the associated probability
density functions is very sensitive with respect to these out-
liers, particularly if the outliers are very few (because then
they are not combined into a cluster) and if they are far
away from the actual clusters (because then they have a
large influence on statistical measures of the data like the
mean). Therefore, it is necessary to carefully handle outliers
in a clustering algorithm.

In this paper, we propose OCI (Outlier-robust Clus-
tering using ICA), a novel, efficient, scalable, and fully
automatic clustering method beyond the Gaussianity as-
sumption. OCI is based on the Independent Component
Analysis (ICA), and uses this method in two of its building
blocks, (1) to identify suitable directions for splitting a clus-
ter into two sub-clusters in a top-down clustering approach
and (2) to identify the major directions inside a cluster which
can successfully be described by more powerful distribution
functions than the Gaussian distribution.

For the purpose of describing the cluster content, we use
the family of Exponential Power Distributions (EPD). This
is a generalization of many distribution functions and con-
tains, as special cases, even the uniform, Gaussian, and
Laplacian distribution but also an infinite number of platikur-
tic (sub-Gaussian) and leptokurtic (super-Gaussian) distri-
butions. The EPD has a shape parameter which controls
the Gaussianity (kurtosis) of the distribution. All parame-
ters of an EPD can be efficiently estimated using Maximum
Likelihood Estimation (MLE).

In addition, we propose an efficient but powerful method
to filter out outliers of the data set which is closely integrated
into our process of ICA and MLE. An outlier is hereby de-
fined as an object that does not fit well into any of the distri-
bution functions associated with the clusters. Our method
iteratively applies outlier filtering and redetermining of the
PDF in order to ensure that the PDF is in the least possible
way influenced from the outliers and vice versa. The major
contributions of our approach can be summarized as follows:

• Based on a very general cluster notion supported by
EPD and ICA, our algorithm is applicable on a wide
variety of data distributions including e.g. Gaussian,
Laplacian, uniform.

• We propose an efficient and effective de-noising tech-
nique, which makes our algorithm even applicable to
data containing a high percentage of noise.

• Our algorithm is theoretically funded on the idea to
minimize the entropy of the resulting clustering.

• Besides ICA, OCI employs strategies derived from the
Minimum Description Length principle to fully auto-
matically find a clustering with low entropy.

The paper is organized as follows: In the next section, we
briefly survey related work. In Section 3 we elaborate the
OCI algorithm starting with introducing a flexible powerful
cluster model supported by ICA and EPD. In Section 4 we
derive effective and efficient algorithms for filtering outliers.
In Section 5 we elaborate how we can put it all together
ending up with an efficient fully automatic top-down cluster-
ing algorithm. Section 6 provides an extensive experimental
evaluation and Section 7 concludes the paper.

2. RELATED WORK
During the last decades a large variety of clustering algo-

rithms have been proposed, e.g. BIRCH [18], CLIQUE [2],
ORCLUS [1], DBSCAN [10] and X-Means [16]. However,
they all suffer from one or more of the following drawbacks:
The cluster model is restricted to Gaussian, or the result of
the algorithm is strongly affected by single outliers, or the
algorithm is highly sensitive to parameter settings, and/or
the algorithm provides no model summarizing the charac-
teristics of the data. This section provides a brief summary
on related approaches intended to overcome at least one of
the mentioned drawbacks.

Clustering with Probability Density Functions. The
idea of describing the cluster structure of a data set by a mix-
ture model of probability density functions goes back to the
widespread EM clustering algorithm [8]. Starting with an
arbitrary initialization, the algorithm iteratively optimizes
a mixture model of k Gaussian distributions until no further
significant improvement of the log-likelihood of the data can
be achieved, which is controlled by a threshold for conver-
gence. Usually, a very fast convergence is observed. The
resulting Gaussian mixture model provides valuable infor-
mation for the interpretation and utilization of the result.
However, the algorithm can get stuck in a local maximum
of the log-likelihood. Moreover, the quality of the cluster-
ing result strongly depends on an appropriate choice of the
number of clusters k, which is a non-trivial task in most ap-
plications. Even with a suitable choice of k the algorithm is
very sensitive w.r.t. noise and outliers.

Density-based Clustering. For clustering data sets
containing a large percentage of noise points, the DBSCAN
algorithm [10] is much more suitable than EM. DBSCAN
relies on a density-based clustering notion which is very ro-
bust w.r.t. outliers. Areas of high object density which are
surrounded by areas of lower object density are regarded
as clusters. A density threshold for clustering is defined by
two parameters: ε specifying a volume and MinPts spec-
ifying a minimum number of objects. An object is called
core object if at least MinPts objects are within a distance
of ε. Two objects are called density connected if they are
linked by a chain of core objects. Starting with an arbitrary
core object, a cluster can be detected by collecting all den-
sity connected objects. As an extension of DBSCAN, the
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OPTICS algorithm [3] derives the clusterings w.r.t. vari-
ous density thresholds without affecting the overall runtime
complexity which is quadratic in the number of objects. As a
result, the so-called reachability plot illustrates the hierarchi-
cal cluster structure of the data set. Density-based cluster-
ing algorithms detect arbitrarily shaped clusters of arbitrary
data distribution. However, no model is provided which is
often essential for the utilization of the clustering result.
The other problem is again the appropriate parametriza-
tion. The result of DBSCAN strongly depends on the den-
sity threshold. Also for OPTICS, if a non-hierarchical flat
clustering is desired, it is often difficult to decide at which
density threshold the clusters should be extracted from the
reachability plot.

Parameter-free Clustering. Some approaches prelim-
inarily focus on avoiding crucial parameter settings in clus-
tering. For model-based clustering, such as EM and K-
Means there exists a trade-off between the complexity of
the model and its quality for data description and interpre-
tation. A maximal complex model perfectly captures the
data distribution but provides no novel insight since it is
equally complex as the data itself. On the other hand, a
model of too low complexity may miss important trends in
the data. The user specifies the model complexity by pa-
rameter settings, most importantly by selecting the number
of clusters k. Most approaches to parameter-free cluster-
ing, e.g. X-Means [16], G-Means [12] and RIC [5] employ
information-theoretic criteria to achieve a balance between
the complexity of the model and its quality for interpreta-
tion. However, these approaches rely on a relatively sim-
ple cluster notion. As an extension of K-Means, X-Means
is restricted to spherical Gaussian clusters. G-Means can
additionally detect clusters exhibiting linear attribute cor-
relations, but is still restricted to Gaussian distributed data.
Both, X-Means and G-Means are very sensitive w.r.t. out-
liers due to the underlying K-Means algorithm. RIC has
been designed as a postprocessing step to improve an initial
clustering of an arbitrary conventional clustering algorithm.
After filtering the initial clusters from noise points, for each
cluster a model is determined. This model comprises a rota-
tion matrix determined by PCA and a PDF assigned to each
coordinate selected from a set of predefined PDFs. Clusters
with similar characteristics are finally merged. RIC achieves
to improve an imperfect initial clustering by partially cor-
recting the consequences of the limitations of the initial clus-
tering algorithm and bad parameter settings. However, the
final result strongly depends on the quality of the initial
clustering and the cluster model is limited to linear attribute
correlations and a predefined set of PDFs.

Correlation Clustering. Correlation clustering algo-
rithms such as 4C [6] have been designed to detect clusters
exhibiting linear attribute dependencies. The 4C algorithm
relies on the density-based cluster notion of DBSCAN. Cor-
relation clusters are defined as dense areas of the data space
exhibiting linear attribute correlations. CURLER [17] de-
tects non-linear correlation clusters with a two-step proce-
dure: First a large set of so-called microclusters are com-
puted using the EM-algorithm. Microclusters with similar
characteristics, e.g. similar orientation are merged in the
second step. CURLER and 4C provide no model of the
data.

3. CLUSTER MODEL

3.1 What Is a Good Cluster?
The goal of this section is to develop a cluster notion, rep-

resentation and description method, which is powerful, and
can handle both Gaussian and non-Gaussian clusters. This
cluster description should provide a good summarization of
the cluster content in terms of a probability distribution
function. In addition to the goal of providing a good sum-
marization, the cluster representation has to facilitate the
process of separating clusters from each other and to iden-
tify (and filter out) outlier objects which have wrongly been
assigned to a cluster.

The traditional way to represent clusters in clustering
methods such as EM clustering or K-Means is the use of
Gaussian distribution functions, the density function of which
is defined as follows:

fGauss[�μ,Σ](�x) =
1√

2π · det(Σ)
e(− 1

2 (�x−�μ)T·Σ−1·(�x−�μ)).

Here, �x represents a point object from a d-dimensional vec-
tor space, �μ is the center of the cluster and Σ is a covariance
matrix which can also be restricted to diagonal matrices (i.e.
axis-parallel Gaussian clustering of some EM clustering vari-
ants) or the identity matrix I, the implicit model of K-Means
clustering. But the more general model of Gaussian clusters
is to allow attribute dependencies, which are modelled in a
(non-diagonal) matrix Σ, resulting in Gaussian curves which
are not axis-parallel. Given a set of points, Σ corresponds to
the covariance matrix of the objects belonging to the cluster,
and the main directions can be determined by the Principal
Component Analysis (PCA), the Eigenvalue decomposition
of Σ.

However, for many clusters in real-life data sets, the Gaus-
sian model is not a sufficient description and representation
of the cluster content. Some or all of the coordinates of the
cluster may follow a non-Gaussian distribution, for instance
the uniform distribution, or the Laplacian distribution. Or
a coordinate is a mixture which has been created by a lin-
ear combination (e.g. weighted sum) of some distribution
functions.

3.2 The Exponential Power Distribution
A large class of distribution functions including prominent

functions such as Gaussian, Laplacian, and uniform, but
also an infinite number of further distribution functions is
the exponential power distribution (EPD). In the uni-variate
case, the density function of the EPD is defined using three
parameters, the location parameter μ, the scale parameter
σ, and the shape parameter p [14]:

fEPD[μ,σ,p](x) =
1

2σp1/pΓ(1 + 1/p)
e
(− |x−μ|p

pσp )
,

where Γ(s) is the gamma function Γ(s) =
∫∞
0

ts−1 · e−tdt
which is the extension of the factorial operator for real num-
bers (i.e. Γ(s) = (s − 1)! for s ∈ N). The shape parame-
ter p determines the shape of the distribution function and
corresponds to a Gaussian distribution for p = 2, a Lapla-
cian distribution for p = 1 and a uniform distribution for
p → ∞. In general, p determines the kurtosis of the distri-
bution function: With p > 2, the EPD is platykurtic (more
flat than a Gaussian distribution) and for 0 < p < 2 it is
leptokurtic. Instead of directly providing the parameter p
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Figure 1: PDF as Gaussian (l.) and EPD (r.).

which is the exponent applied to the data objects, some-
times alternatively a parameter β = 2/p−1 is defined. This
representation of the shape parameter is somewhat more
intuitive from an application viewpoint because the Gaus-
sian distribution forms the zero line (β = 0) and leptokurtic
distributions have β > 0 (with the Laplacian distribution
β = 1) and platykurtic distributions have β < 0 (e.g. the
uniform distribution with β = −1). Distributions beyond
the Laplacian distribution (β > 1, the so-called fractional
distributions) are also possible and meaningful. We will re-
fer in our experiments to the β-representation of the shape
parameter.

For the multivariate case, it is typically assumed that
there are d different distribution functions fEPD[μi,σi,pi](zi),
with 1 ≤ i ≤ d all following an exponential power distribu-
tion, which are combined by a mixing matrix M , i.e. the
observed vectors �x correspond to �x = M · �z + �m where zi

follows the distribution fEPD[μi,σi,pi]. The vector �m is a
shift vector, as we will see in the next section. For Gaussian
distributions, it can be shown that it is sufficient to assume
an orthonormal matrix for M (which can be determined
by PCA). For leptokurtic and platykurtic distributions, this
simplification is not possible and we have to allow more gen-
eral mixing matrices in which the vectors indicating the so-
called independent components are not orthogonal. Given a
d-dimensional point �x, the value of the probability density
function at the point can be determined as follows:

fEPD[�m,M−1,�μ,�σ,�p](�x) =
1

|det(M−1)| ·
∏

1≤i≤d

fEPD[μi,σi,pi](zi),

where �z = M−1 ·(�x− �m). We will see later (Section 3.5) that
the parameters �m and �μ play a similar role, and can be in-
tegrated into one common parameter vector called �μ to save

redundancy. Likewise, the de-mixing matrix M−1 and the
scale vector �σ can be integrated into one overall de-mixing
and shape matrix M−1. The actual position and shape pa-
rameters of the independent univariate EPD distributions
are then set to the standard values μi = 0 and σi = 1:

fEPD[�μ,M−1,�p](�x) =
1

|det(M−1)| ·
∏

1≤i≤d

fEPD[0,1,pi](zi),

where �z = M−1 · (�x − �μ).
The exponential power distribution in combination with

the mixing matrix M is a much more powerful description

of the content of a cluster compared to the Gaussian cluster
model. Consider for instance the data set in Figure 1 in
which both coordinates are combinations of almost uniform
distributions. Provided that a good estimate of the main
directions and the parameters of the distribution can be de-
termined (cf. Section 3.4), EPD gives an exact and concise
representation of the cluster which can be used e.g. for esti-
mating the number of points which are enclosed in a given
volume. In contrast, the Gaussian model is less accurate,
and we will formalize in the next section the corresponding
notion of accuracy.

3.3 Quality of a PDF and Data Compression
In the last section, we have visually compared two distri-

bution functions and have recognized that for a given sample
data set the representation by an EPD function may be a
more exact representation of the data than the Gaussian
PDF. Now, we have to determine a more formal way to
assess the accuracy of a distribution function. A well estab-
lished tool for this assessment is the principle of the Mini-
mum Description Length (MDL) which links the concept of
PDFs to data compression. Data compression using Huff-
man coding assigns a number of bits to each object which is
the logarithm of the inverse of the probability (the negative
log-likelihood) of the object, i.e. the coding cost of a data
object, Huffman-coded with a given PDF is:

cPDF (�x) = log2(
1

fPDF (�x)
) = − log2(fPDF (�x)).

The basis of the logarithm is typically 2 to represent the
coding cost in number of bits. To get an absolute value of
the number of bits, it is necessary to select a grid resolution
which defines the accuracy with which the points have to be
stored. Since one is only interested in comparing different
PDFs the selection of such a grid is not necessary but we
want to note that these relative costs may also have negative
values.

If there are two candidate PDFs (PDF1 and PDF2) to
represent the data, we can compare the cost for the whole
cluster and conclude that for instance PDF1 is a more exact
representation of the data than PDF2 if∑

�x∈C

cPDF1(�x) <
∑
�x∈C

cPDF2(�x).

In our case of an exponential power distribution defined by
a mixing matrix M and an individual EPD with parameters
(μi, σi, pi) for each dimension i ∈ {1, ..., d} we obtain:

cEPD(�x) = log2(|det(M−1)|)−
∑

1≤i≤d

log2(fEPD[μi,σi,pi](zi)),

where �z = M−1 · (�x − �m).
To really be able to decompress the data again, one also

needs to have the codebook of the data, i.e. the parameters
of the PDF. The number of bits required to represent the
codebook must also be added to the overall cost. Moreover,
for each object we have to assign the information to which
cluster C it belongs (in order to decide which codebook has
been applied). This information can also be Huffman-coded
using log2(n/|C|) bits.

3.4 ICA and MLE of EPD
Given the set of data vectors �x ∈ C belonging to a cluster

C, there remain two problems to find a good cluster rep-
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resentative, i.e. (1) to find the mixing matrix M (or the
de-mixing matrix M−1, respectively) which transforms the
coordinates of �x into independent coordinates �z which can
be represented by an EPD function in an optimal way, and
(2) to determine the parameters [μi, σi, pi] with 1 ≤ i ≤ d
of the EPD. From the theory of independent component
analysis, it follows that the mixing matrix can be found by
determining the directions of minimal entropy (in contrast
to the directions of maximal variance, which are searched by
PCA). To find the directions of minimal entropy, the well-
known fastICA algorithm [13] requires to transform the data
objects into the so-called white space, i.e. the data must be
centered (= �x − �m where �m = 1

|C|
∑

�x∈C �x is the empirical

mean of the data set C) and normalized to have unit vari-
ance in all directions. This may be done from the eigenvalue
decomposition of the covariance matrix (i.e. V ·Λ ·V T := Σ
where V is an orthonormal matrix consisting of the eigen-
vectors and Λ is a diagonal matrix consisting of the eigen-
values of Σ) by setting �y := Λ−1/2 · V T · (�x − �m). Since
Λ is a diagonal matrix (Λ = diag(λ1, ..., λd)), the matrix

Λ−1/2 is the diagonal matrix with the elements Λ−1/2 =
diag(

√
1/λ1, ...,

√
1/λd). The fastICA algorithm then de-

termines a matrix W which contains the independent com-
ponents. This matrix is orthonormal in white space but not
in the original space. FastICA is an iterative method that
finds W = (�w1, ..., �wd) by optimizing the vectors �wi by the
following updating rule:

�wi := E{�y · g(�wT
i · �y)} − E{g′(�wT

i · �y)} · �wi,

where g(s) is a non-linear contrast function (such as tanh(s))
and g′(s) = d

ds
g(s) is its derivative. By E{...}, we denote

the expected value. After each application of the update rule
to �w1, ..., �wd, the matrix W is orthonormalized. This is re-
peated until convergence. The de-mixing matrix M−1 which
describes the overall transformation from the original data
space to the independent components can be determined as

M−1 = WTΛ−1/2 · V T, and M = V · Λ+1/2 · W
and, since V and W are orthonormal matrices, the determi-
nant of M−1 is simply the determinant of Λ−1/2, i.e.

det(M−1) =
∏

1≤i≤d

√
1/λi.

The result of the fastICA algorithm is unambiguous if not
more than one component follows a Gaussian distribution.
If the data is normally distributed in two or more direc-
tions, then the algorithm picks the corresponding compo-
nents more or less randomly among the Gaussian directions.
We would like to note, however, that it can be shown that
the overall multivariate distribution function is independent
from the selection of these components, i.e. if different com-
ponents can be selected, they are different but equivalent
representations of the same PDF.

Let us further note that the FastICA algorithm implicitly
searches for those directions in the data space, in which the
data distribution is as dissimilar to the Gaussian distribu-
tion as possible. The original motivation for this strategy is
that observed signals which are mixtures of original signals
can be best de-mixed when searching for non-Gaussianity,
because when mixing two or more signals which follow an
arbitrary distribution each, then the mixed signal is always
more Gaussian than the original ones (where the central

limit theorem says that an infinite number of mixed signals
is always exactly Gaussian distributed).

But for our purpose of accurately representing the clus-
ter content by a multivariate PDF it is also beneficial to
search for directions which are non-Gaussian, because in
white space the entropy of a Gaussian distribution is max-
imal (i.e. all other distributions have lower entropy). The
entropy is exactly a measure of the coding cost, and, there-
fore, when we identify the directions which are maximally
non-Gaussian then the coding cost is minimized, and the
data set can be compressed with maximal compression effi-
ciency.

After transforming the points by �z = M−1·(�x−�m), the co-
ordinates zi are not only de-correlated but also independent
in a more general way which allows the description of each
coordinate independently by an EPD. But it is also a non-
trivial problem to identify the parameters [μi, σi, pi] of the
EPD distribution function of the de-mixed coordinates. If a
coordinate follows a Gaussian distribution, then pi = 2 and
μi and σi can be chosen as the mean and standard deviation
of the data, respectively. Since the data are in white space
after the application of fastICA (and particularly its pre-
processing steps), we know anyway that μi = 0 and σi = 1.
However, for non-Gaussian data, the location parameter μi

is not in general identical to the empirical mean of the data
set (mi = 1

|C|
∑

�z∈C zi), and the scale parameter σi is not

identical with the empirical standard deviation of the data
set. Instead a maximum likelihood estimation algorithm
must be applied to determine an optimal parameter setting
given the data set C. The three parameters μi, σi and pi

must be simultaneously optimized to ensure that the deriva-
tives of the likelihood

∑
�z∈C fEPD[μi,σi,pi](zi) with respect

to μi, σi, and pi vanish. It can be shown that σi can be
determined directly given μi and pi by using

dfEPD[μi,σi,pi](C)

dσi
= −|C|

σi
+

1

σpi+1
i

∑
�z∈C

|zi − μi|pi = 0

⇒ σi = (
1

|C|
∑
�z∈C

|zi − μi|pi)1/pi ,

but μi and σi must be optimized explicitly, e.g. using New-
ton optimization. We apply a faster and more stable method
which applies a nested bisection search to pi and μi, in each
step determining the derivatives of the likelihood function.
The derivatives of the likelihood function with respect to pi

and μi (but not their root) can be determined analytically:

dfEPD[μi,σi,pi](C)

dμi
= − 1

σp

∑
�z∈C

|zi − μi|pi−1 sign(zi − μi).

dfEPD[μi,σi,pi](C)

dpi
= −|C|

p2
i

(
log(pi) + Ψ(1 +

1

pi
) − 1

)

+
1

p2
i σ

pi

∑
�z∈C

|zi − μi|pi

+
1

piσpi

(
log(σi)

∑
�z∈C

|zi − μi|pi

−
∑
�z∈C

|zi − μi|pi log |zi − μi|
)

.

Here, Ψ(s) = d
ds

ln Γ(s) denotes the digamma function, the
logarithmic derivative of the gamma function.
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Figure 2: Non-robust (l.) and Robust (m.) Estimation of the PDF and MDL-Cost by Outlier Filtering (r.)

3.5 The Overall ICA-EPD Pipeline
Now, we summarize our overall pipeline to obtain a mul-

tivariate PDF which is a mixture of d EPD functions for
a given data set C without addressing the problem of out-
lier filtering (which will be considered in Section 4). Our
pipeline starts with data centering, i.e. determining the em-
pirical mean �m of the data set and subtracting �m from every
data object. Then, we whiten the data by applying PCA
which determines the eigenvector V and eigenvalue matrix
Λ of the covariance matrix Σ. The data objects are pro-
jected orthogonally to the eigenvectors and then divided by
the square root of the eigenvalues which de-correlates the
data objects and creates unit variance (σ2 = 1) not only
of each coordinate but even for every possible linear projec-
tion. Then we apply the fastICA algorithm to determine
those directions (matrix W ) in the white space which can
be optimally compressed under the assumption of Huffman
coding. The data points are projected onto those indepen-
dent components. Finally, we perform a maximum likelihood
estimation of the EPD in each of the obtained coordinates,
each of which gives us the three parameters (μi, σi, pi) of the
EPD.

The location parameter μi and the scale parameter σi

of the EPD play a similar role in the overall pipeline like
the mean �m for centering and the covariance matrix Σ for
whitening. Therefore, it is convenient to combine these in-
formations to get one overall location vector which repre-
sents the actual center of the multivariate PDF and one
de-mixing and shape matrix which performs all necessary
rotations and scalings to transform the data objects into
a space where all scale parameters of EPD are unity. In
this space, we know that the EPD parameters μi = 0 and
σi = 1, (i.e. a kind of standard EPD is applied), and only
the d shape parameters pi need to be additionally stored in
the codebook of the cluster.

The overall location vector �μ can be determined as fol-
lows: In our pipeline, the points have first been centered
by moving them by the shift vector �m. Then, after whiten-
ing and projecting onto the independent components, a new
mean �μ = (μ1, ..., μd)T has been determined in the whitened
projected space. To find the mean in the original space, we
have to undo the projection (by multiplying with the inverse
of WT) and undo whitening of �μ and obtain

�μ = �m + V · Λ+1/2 · W · (μ1, ...μd)T.

Analogously, we obtain the overall de-mixing and shape ma-
trix M−1 by multiplying the diagonal matrix containing

the inverted scale parameters 1/σi to the de-mixing matrix
M−1:

M−1 = diag(1/σ1, ..., 1/σd) · WT · Λ−1/2 · V T.

4. OUTLIER-ROBUST ICA AND EPD
In this section, we show how to make both the Indepen-

dent Component Analysis to estimate the de-mixing matrix
M−1 as well as the maximum likelihood estimation of the
EPD function outlier robust. Outlier robustness is a partic-
ular issue here, because all the methods which are usually
applied to estimate the center and the shape of a distribu-
tion function are very sensitive to outliers. Consider, for
instance, the data set which is schematically given in Figure
2 (the outliers are actually meant to be even more distant
from the actual cluster than depicted). In this case, the
empirical mean of the data set is much (linearly) influenced
by the high distance of the outlier from the core cluster.
The problem becomes even worse when determining the co-
variance matrix, because the influence of an outlier to the
variance is even quadratic, and we obtain an additional er-
ror because the wrongly estimated mean influences the es-
timation of the covariance matrix as well. But this error
is propagated to ICA (requiring the mean and covariance
matrix for whitening and being sensitive to outliers due to
the nonlinear function) and to the MLE of the EPD (which
would try to cover the outlier by its PDF).

To find a good PDF for the data, we first have to fil-
ter out the outliers and then can apply ICA and EPD es-
timation. Some methods for identifying outliers have been
proposed, but in our case, the appropriate definition of an
outlier is that it does not fit well to the PDF defined by the
de-mixing matrix and EPD of the cluster. Therefore, we
obtain a circular dependency between the outlier detection
at the one hand and the PDF estimation at the other hand:
A good outlier filter requires a well estimated PDF and vice
versa. We can escape from this circular dependency by ap-
plying an iterative method which applies outlier filtering and
PDF estimation in an alternating way until convergence. We
propose two different methods: the first performing a loop
which tentatively removes in the first iteration 1 point from
the cluster, then two, and so on. The removed i objects
in iteration number i are always those objects which fitted
worst to the PDF that was determined in iteration number
(i − 1). Finally, the partition with best overall coding cost
of the data is selected. The second, alternative method for
outlier filtering is more related to the K-Means method, and,
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algorithm LoopwiseOutlierFiltering(set of point C)

�μ := (μ1, ..., μd)

M−1 := diag(σ1, ..., σd)

}
to minimally enclose all obj. of C;

�β := (−1, ...,−1) ; (* β = −1 ⇔ uniform distribution *)

currentPdf:=(�μ, M−1, �β);
outlierCost:=cost of an object assuming currentPdf;
bestCost:=+∞;
(�μ, M−1, �β) := mleEpd(fastICA(whiten(center(C))));

currentPdf:=(�μ, M−1, �β);

for i:=0 to |C|
determine cost for every object in C according to currentPdf;
outliers:=those i objects of C having maximum cost;
core:=C \ outliers;
cost:=

∑
�x∈core cost(�x) + i · outlierCost;

if cost < bestCost then
bestCost:=cost;
bestCore:=core;
bestOutliers:=outliers;
bestPdf:=currentPdf;

(�μ, M−1, �β) := mleEpd(fastICA(whiten(center(core))));

currentPdf:=(�μ, M−1, �β);

Figure 3: Loopwise Algorithm for Outlier Filtering.

thus, much faster than loop-wise outlier filtering: It reparti-
tions in each iteration the data set into an arbitrary number
of core and outlier objects, and then updates the PDF which
is associated to the core cluster. This is repeated until con-
vergence.

4.1 Loopwise Outlier Filtering
This algorithm, defined as pseudocode in Figure 3, starts

by estimating a PDF (i.e. performing the workflow: Cen-
tering, whitening, ICA, MLE estimation of the EPD) for
the whole data set C obtained by an initial clustering with-
out assuming that any objects are outliers. Then, the log-
likelihood is determined for each object. The overall log-
likelihood is recorded, and the object having least log-likelihood
(i.e. highest coding cost) is tentatively removed from the
core set of the cluster and moved to the outlier set of the
cluster. Then, this is repeated in a loop of |C| iterations:
In iteration number i we take the core set which has been
identified in iteration number (i−1) and determine the cor-
responding PDF by our basic workflow (centering, whiten-
ing, fastICA, MLE of the d EPD functions). Again, the
log-likelihood is determined for each object (including those
objects which have previously been filtered out as outliers),
and now those i objects with least log-likelihood are ten-
tatively filtered out as outliers for the next iteration. The
overall cost for the partitioning of iteration i is determined
by applying the determined PDF to the (|C| − i) tentative
core objects and a uniform distribution for the i tentative
outlier objects. The uniform distribution is selected such
that it minimally covers the complete set C of core and
outlier objects. In Figure 2 we can see the overall cost de-
termined in each iteration of the loop over varying i. We
can see that the overall cost minimum appears at i = 3.
The PDF of iteration i = 3 and the corresponding partition
in core and outlier objects is selected as the final outlier fil-
tering. The runtime complexity of this algorithm is O(n2),
since n − 1 partitions into core and noise points need to be
examined.

algorithm IterativeRepartitioning(set of point C)

�μ := (μ1, ..., μd)

M−1 := diag(σ1, ..., σd)

}
to minimally enclose all obj. of C;

�β := (−1, ...,−1) ; (* β = −1 ⇔ uniform distribution *)

currentPdf:=(�μ, M−1, �β);
outlierCost:=cost of an object assuming currentPdf;

(�μ, M−1, �β) := mleEpd(fastICA(whiten(center(C))));

currentPdf:=(�μ, M−1, �β);

while not converged
outlier:={};
core:={};
for each �x ∈ C do

if cost(currentPdf, �x) < outlierCost then
core:=core ∪{�x};

else
outlier:=outlier ∪{�x};

cost:=
∑

�x∈core cost(�x) + i · outlierCost;

(�μ, M−1, �β) := mleEpd(fastICA(whiten(center(core))));

currentPdf:=(�μ, M−1, �β);

Figure 4: Iterative Repartitioning for Outlier Fil-
tering.

4.2 Iteratively Repartitioning Outlier Filter
Like the algorithm of Section 4.1 this algorithm starts with

the assumption that all objects are core objects of the cluster
and determines the optimal PDF for this setting. The it-
erative repartitioning algorithm (depicted in Figure 4) then
partitions the data set into a tentative core and outlier set
without predefining any fixed number of this assignment.
Rather we assume that the outliers follow a uniform distri-
bution which is chosen such that it contains the whole set
C in a minimal way. The objects are assigned to the core or
outlier set depending on the log-likelihood (and, thus, de-
pending on the assignment cost). This assignment is used to
determine an optimal PDF in the next iteration. The algo-
rithm repeats the two steps, PDF determination and outlier
assignment until convergence. The final PDF and partition
is the output of the algorithm.

It can be easily shown that the iterative repartitioning
algorithm always converges: The overall coding cost of the
data set is improved in each iteration of the algorithm, be-
cause both steps, reassignment as well as the PDF deter-
mination can only improve the cost from one iteration to
the next. The reassignment can never increase the cost,
because an object changes its assignment if (and only if)
this change improves its cost (and, thus, the overall cost).
The PDF redetermination can also never increase the cost
because both ICA and MLE of EPD maximize the overall
likelihood of the core set (while the likelihood of each outlier
object remains constant). The optimization space (i.e. the
parameters) of the current PDF also contains the PDF of
the last iteration. Therefore, if no better PDF (improving
the cost) exists, then the PDF of the last iteration must be
optimal in the current iteration, and in both cases, no cost
increase occurs. Since in each iteration the cost is never in-
creased, and the cost are bounded below (by the true data
distribution), the convergence is guaranteed. Note that the
fastICA algorithm may sometimes fail to identify the true
cost minimal components due to numerical problems. In this
case, the guarantee of nonincreasing cost cannot be given,
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Figure 5: Comparison of Splitting Directions:
ICA picks directions with lowest entropy providing
’sparse coding’.

and the convergence is not sure. This problem, however,
can easily be cured by explicitly considering the indepen-
dent components of the fastICA algorithm of the previous
iteration again, and only keeping the new result if, indeed,
a cost improvement is achieved. The runtime complexity is
O(n · iter), whereas iter denotes the number of iterations.
We will demonstrate in the experimental section that it-
eratively repartitioning provides a major speedup without
loosing accuracy.

5. TOP-DOWN CLUSTERING ALGORITHM
In this section, we elaborate the OCI algorithm based our

general cluster notion supported by outlier-robust ICA and
EPD. We start with an effective splitting algorithm to de-
rive initial clusters, which are then purified from outliers
using the algorithms introduced in the previous section. To
achieve the final result, we merge clusters with similar char-
acteristics, which is described in detail in Section 5.2.

5.1 Splitting
In this section, we discuss the splitting algorithm. In par-

ticular, we explain how we can use ICA to find appropri-
ate directions for splitting. Our algorithm may look at first
glance similar to conventional top-down splitting algorithms,
such as described in X-Means [16] and G-Means [12]. How-
ever, in contrast to these algorithms, our method is suitable
for non-Gaussian data.

Bisecting K-Means is an attractive building block for a
top-down splitting algorithm because it is very efficient. The
X-Means algorithm based on bisecting K-Means shows good
performance on data sets with spherical Gaussian clusters.
G-Means extends X-Means by splitting in each iteration
the most non-Gaussian cluster (which is determined by the
Anderson-Darling test for Gaussianity), such that also non-
axis parallel Gaussian clusters can be detected. The split is
performed by bisecting K-Means as in X-Means.

algorithm OCI (data set DS)

//Initialization: all objects in one cluster.

C := {Cstart};
for each object �x ∈ DS

�x.clusterID = start;

//Splitting. For details cf. Section 5.1.

while improvement
for each C ∈ C

split(C);

//Outlier Filtering. For details cf. Section 4.

for each C ∈ C
clusters core, outliers:= iterativePartitioning(C);
C = (C \ {C})∪ core ∪ outliers;

//Merging. For details cf. Section 5.2.

while |C| > 1 and improvement
mergeBestPair(C);

end algorithm

subroutine splitCluster(cluster C):improvement

// Choose splitting direction with best cost: 2-Means or IcaSplit.

clusters KM1 and KM2: = 2-Means(C);
clusters ICA1 and ICA2: = IcaSplit(C);
clusters minClusters: = minCost((KM1 ∪ KM2), (ICA1 ∪ ICA2));
if cost(minClusters)< cost(C)

C = (C \ {C})∪ minClusters;
return true;

else return false;

subroutine mergeBestPair(clusters C): improvement

// Find cluster pair with the best (maximal) savedCost).

for all cluster pairs (Ci, Cj) ∈ C × C
mergedCost(Ci,Cj) := cost(Ci ∪ Cj);
savedCost(Ci,Cj):=(cost(Ci)+cost(Cj))-mergedCost(Ci,Cj);

if argmax(Ci,Cj)(savedCost(Ci, Cj)) > 0

merged := Ci ∪ Cj ;
C = (C \ {Ci, Cj})∪ merged ;
return true;

else return false;

Figure 6: OCI Algorithm.

For our more general cluster notion, bisecting K-Means is
not so suitable because it converges towards the direction of
the largest variance. In [9] it has been proven that the so-
lution of bisecting K-Means is equivalent to the eigenvector
with the largest eigenvalue in PCA. For non-Gaussian data,
such as the example in Figure 5(a), the direction of largest
variance may not be a favorable splitting direction. Figure
5(a) depicts a synthetic data set with 600 points composed
of two clusters of 300 points each and a rather uniform data
distribution. A typical result of bisecting K-Means is visu-
alized by the cluster centers and coding the cluster assign-
ments in different colors. The eigenvector with the largest
eigenvalue is drawn with a dashed line and also the orthog-
onal direction to this vector is displayed, which corresponds
to the split direction of bisecting K-Means.

In Figure 5(b), the projection of the data on the split di-
rection chosen by bisecting K-Means and PCA is displayed.
For each object �x the projection Πpca(�x) is computed as fol-
lows: Πpca(�x) = �x · �vmax , where �vmax is the eigenvector
with the strongest eigenvalue. In Figure 5(b) for each of
the 600 objects on the x-axis a bin representing the value
of Πpca(�x) is displayed on the y-axis, where the objects are
ordered w.r.t. their true cluster assignment, i.e. first the
300 objects of cluster on top in Figure 5(a) are displayed
followed by the objects of the bottom cluster. It is evident
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Figure 7: Overview on the Workflow of OCI. The steps splitting, outlier filtering and merging are illustrated
on a synthetic example data set. The Minimum Description Length (MDL) curve is visualized together with
some important intermediate results. For details see Section 5.2.

that the cluster assignment can not be interfered from Fig-
ure 5(b). We propose to employ ICA to guide the top-down
algorithm towards better splits. However, since we have no
measure for the strength of the independent components as
the eigenvalues in PCA, it is a non-trivial question to de-
cide which component should be used as splitting direction.
The combination of ICA with EPD provides an interest-
ing option. ICA is guided towards non-Gaussian directions,
which can be super-Gaussian as well as sub-Gaussian. Our
EPD model allows to exactly specify the degree of super-
and sub-Gaussianity by the shape parameter β. For split-
ting we are only interested to find sub-Gaussian directions,
since good splitting directions are such directions in which
the data is as much separated as possible. Such directions
can be best modelled by uniform distributions. In Figure
5(c) the projection Πica(�x) of the data on the most sub-
Gaussian component is displayed. This projection is defined
by Πica(�x) = �x·M · �wmax, where wmax denotes the most sub-
Gaussian direction, i.e. the direction with the minimal shape
parameter β of the EPD. Obviously, both clusters are well
separated w.r.t. this direction. Also, on real-world data sets
it is often favorable to split along the most sub-Gaussian di-
rection. On the iris data set from the UCI machine learning
repository [4] the projection on the first principal compo-
nent displayed in Figure 5(d) is by far less distinctive than
the most sub-Gaussian component, cf. Figure 5(e). In fact,
the projection Πica perfectly separates the three classes of
the iris data set. The diagram in Figure 5(e) displays the
instances of the classes ”iris setosa”, ”iris viginica” and ”iris
versicolor” in sequential order. The classes are well sepa-
rated in the ICA projection, and it is also obvious that iris
virginica and iris versicolor are the most similar classes.

ICA split is not in all cases the better choice, e.g. ICA
fails if the independent components exhibit a Gaussian dis-
tribution, which is likely for higher dimensional large data

sets during the first few stages of top-down splitting. There-
fore our algorithm selects upon each split the splitting di-
rection maximizing the log-likelihood of the data, which can
be either the splitting direction determined by ICA or the
direction determined by bisecting K-Means.

5.2 Merging
After splitting, we apply the noise filtering methods pro-

posed in Section 4 to separate an initial cluster in two sub-
sets core and outliers which are afterwards considered as
two different clusters. In particular the outlier sets of some
of the original clusters may actually have been generated
by the same data distribution, and, therefore, the cluster-
ing may become less redundant if such clusters are merged
again. Our cluster merging procedure is an iterative process.
At each iteration, the algorithm merges those two clusters
for which the overall cost gain is maximized. To do so, the
cost gain for every pair of clusters is computed by tenta-
tively merging the clusters and reperforming the ICA-EPD
pipeline. This step is repeated until no more cost improve-
ment is achieved. Figure 6 summarizes the complete OCI
algorithm in pseudocode.

Figure 7 provides an overview of the OCI framework in-
volving the steps splitting, outlier-filtering and merging. The
MDL-curve is displayed and each important step is anno-
tated and illustrated on a synthetic data set. Point (a)
represents the situation when the MDL-criterion is evalu-
ated the first time at the beginning of the algorithm. All
points are assumed to be in a single cluster leading to a
MDL value of 16,853. During splitting (three splits in total
are performed on this example) the MDL value is drastically
reduced. Point (b) depicts the result after splitting with a
MDL value of 11,218. After outlier filtering, the MDL value
slightly increases to 11,553 at point (c). This is due to the
fact that the costs for parameter coding have doubled by
introducing three noise clusters. Now, the cost matrix for
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Figure 8: Comparison of OCI to X-Means, EM and RIC on Synthetic Data.

cluster merging is constructed which is visualized in Figure
7(d). It is evident that merging of the noise clusters (de-
noted by n1-n3) results in savings in coding cost, whereas
merging of the core clusters (c1-c3) would lead to an increase
in description length. Thus, the noise clusters are greedily
merged in two steps. The final result with MDL of 10,827
is depicted at point (e).

6. EXPERIMENTS
In this section we provide a comparison among OCI, EM,

RIC and X-Means on synthetic data and on different real-
world data sets available at the UCI machine learning repos-
itory [4]. For X-Means and EM we used the implementa-
tions of the WEKA machine learning package available at
http://www.cs.waikato.ac.nz/ml/weka. For EM the best
number of clusters is obtained by cross-validation, which is
implemented in WEKA as follows. The number of clusters
is initially set to one. Then, the following steps are iter-
ated: (1) The data is randomly split into 10 folds. (2) EM
is performed 10 times on the 10 folds and the log-likelihood
is averaged over all results. (3) If the log-likelihood is in-
creased, the number of clusters is increased by one and the
program continues with step (1). We we used RIC on top
of K-Means with k = 8, as suggested by the authors. For
X-Means and OCI no parameter settings are required. OCI
and RIC have been implemented in Java and experiments
were performed on a Linux workstation with a 2.4 GHz CPU
and 4 GB main memory.

6.1 Effectiveness on Synthetic Data
We start with a synthetic example first introduced in Fig-

ure 7 consisting of 3 non-Gaussian clusters (500 points each)
with non-orthogonal major directions and 50 outliers. The
results of OCI, EM, X-Means and RIC are depicted in Figure
8. OCI correctly identifies the three clusters and succeeds
in filtering out the outliers. The performance of the other
algorithms is heavily affected due to the 3.2% noise, which
is a relatively small amount, and due to the non-Gaussian
major directions of the clusters. From Figure 8 it is evident
that X-Means is not suitable for noisy data sets, since all
noise points are assigned to the clusters. The BIC-criterion
used in X-Means does not favor further splitting to separate
the clusters from noise. The cross-validation of EM sug-
gests 8 clusters in total. With the cross-validation option,
EM can partially deal with outliers, since additional clus-
ters can be created if this increases the log-likelihood of the
data. However, many superfluous clusters are generated by
this strategy, which have no semantic meaning in the con-

text of real applications. In addition, it becomes obvious on
this example that the assumption of Gaussianity leads to in-
correct cluster assignments. The result of RIC shows similar
characteristics. Specially designed for parameter-free clus-
tering of noisy data, RIC can cope better with outliers than
EM, without creating many unnecessary clusters. However,
since the noise filtering algorithm of RIC assumes clusters
with orthogonal major directions which can be detected by
PCA, RIC fails to correctly filter the clusters in this exam-
ple.

Figure 9 provides a detailed view on cluster 1 generated
with β = −0.85 for the x-coordinate and β = 3.8 for the
y-coordinate. OCI is the only method detecting this cluster
correctly with 99.60% precision and 99.20% recall. X-Means
fails to filter the noise, such that the whole Voronoi cell
containing cluster 1 is clustered together, leading to a recall
of 100%, but only 96.7% of precision. EM represents the
core of the cluster as a dense spherical Gaussian, resulting
in a low recall of only 51%. RIC favors the model of a linear
correlation cluster determined by PCA, which also leads to a
reduced recall of 90%. The cluster models of the comparison
methods are not rich enough to correctly capture the data
distribution of non-Gaussian clusters with non-orthogonal
major directions. For this, outlier-robust ICA and a more
general class of distribution functions, like EPD is needed.

Also for cluster 2 depicted in Figure 10, OCI is the only
algorithm which correctly detects the major directions and
the characteristics of the data distribution which is heavy-
tailed in both coordinates with β = 4.5 and 5.5, resulting in
a precision of 99.8% and a recall of 97.20% which is the best
result among the comparison methods. X-Means again fails
to filter the outliers (not depicted), leading to a reduced pre-
cision of 97.45%, RIC and EM lack in recall. RIC achieves a
recall of 77.2% on cluster 2, EM only retrieves 50.8% of the
cluster points. Cluster 3 (not depicted) is more Gaussian in
shape, so that the limitations of RIC and EM do not become
so apparent.

6.2 Outlier-robustness
To compare the two algorithms for outlier filtering pro-

posed in Section 4 we extracted the 500 points of cluster
2 (cf. Figure 10) and added various amounts of outliers.
Figure 11(a) displays a comparison of the loopwise and it-
erative repartitioning outlier filtering in terms of precision
w.r.t. the amount of added outliers ranging from 50 to 600.
Figure 11(b) displays the effect on recall. Both algorithms
demonstrate similar performance with excellent balance of
precision and recall (more than 95% in precision and re-
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Figure 9: Detailed View of Cluster 1.

Cluster 2 OCI EM RIC

Figure 10: Detailed View of Cluster 2.

call in all experiments). However, iterative repartitioning is
much faster than loopwise filtering with a speedup of ap-
proximately 100 on the largest data set, as demonstrated in
Figure 11(c). Therefore, we apply iterative repartitioning in
all experiments. To evaluate the outlier-robustness of the
overall OCI framework, we added various amounts of noise
points to the whole synthetic data set, starting with the
original example with 50 outliers as depicted in Figure 8 up
to 40% of outliers. Figures 11(d)-(e) display precision and
recall of the identification of the points of cluster 1, 2 and 3.
OCI achieved to correctly identify all clusters with precision
and recall above 90% in all experiments. In addition, the
precision of cluster identification stays close to 100% even
for large amounts of outliers.

To cope with the problems caused by outliers in clustering,
we could alternatively apply a state-of-the-art outlier detec-
tion method prior to clustering e.g. with EM or X-Means.
We tried this with LOF [7]. Derived from the principles of
density-based clustering, this local outlier factor is in prin-
ciple suitable to detect outliers w.r.t. clusters of arbitrary
shape and object density. LOF detects outliers by compar-
ing the direct object density in the k-neighborhood of a point
to the indirect object density in the wider neighborhood of
the transitive k-nearest neighbors. As a first drawback, the
parameter k has to be specified by the user. But more im-
portant, the user also has to select a metric distance func-
tion. Moreover, the LOF of each point is continuous value
in the range of [0..1] describing to which extend a point is
an outlier, thus a suitable cut-off has to be selected if, as in
our application, a binary classification into cluster and noise
points is required.

Figure 12 depicts the partitioning into cluster points and
outliers for k = 5 and different cut-off values. As a common
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Figure 11: Outlier-robustness. In all diagrams the
x-axis represents the number of outliers. The y-axis
all diagrams with the exception of diagram (c) rep-
resent precision or recall in %. In diagram (c), the
y-axis corresponds to the runtime in seconds. Di-
agram (a)-(c) present a comparison between loop-
wise and iterative outlier filtering. Diagrams (d)-(f)
evaluate the outlier-robustness of the overall OCI-
framework. For details see Section 6.2.

cut-off we first marked all points having a LOF greater than
two times standard deviation from the mean as outliers, cf.
Figure 12(a). With this cut-off we have only few outliers,
among them, perhaps surprisingly, some points clearly be-
longing to the clusters. To remove more outliers, we lowered
the cut-off to one time standard deviation, cf. Figure 12(b).
Now even more evident, many cluster points are regarded
as outliers, and a considerable amount of outliers is still not
identified. For a cut-off of one time standard deviation be-
low the mean, most of the outliers are correctly removed
as displayed in Figure 12(c). However, most of the cluster
points are also classified as outliers. There exists no cut-off
value which leads to the correct partitioning into cluster and
noise points, due to two reasons: First, the application of
LOF leads to problems on complex data distributions with
various object densities, as in our example. There is no
appropriate global choice of the cut-off value. In contrast,
different cut-off values would be appropriate for different
regions of the data space. Second, Euclidean distance is
no good choice for non-Gaussian data. This effect is most
obvious in Figure 12(c) where the clusters are eroded in a
Gaussian fashion.
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(a) Cluster

(a) Outliers

(b) Cluster

(b) Outliers

(c) Cluster

(c) Outliers

Figure 12: Outlier Detection with LOF. Cluster points and outliers w.r.t. different cut-off values are depicted:
(a) outliers are points having a LOF greater than the mean LOF plus two times standard deviation; (b) mean
plus one time standard deviation; (c) mean minus one time standard deviation. For details see Section 6.2.

6.3 Effectiveness on Real Word Data
Iris Data. The well known iris data set consists of 150

four dimensional data objects which are labelled to three
classes representing different species of the iris plant. As
demonstrated in Section 5.1, the clusters are already well
separated in the projection on the first splitting direction
determined by ICA (cf. Figure 5). The final result of OCI
comprises two clusters where one hosts the objects of the
class ”iris setosa” and the other cluster the objects of classes
”iris versicolor” and ”iris virginica”. The ICA projection in
Figure 5 indicates that in fact a hierarchy of three clusters
could be detected which would perfectly separate the classes.
However, the objects of iris versicolor and iris virginica are
very similar, and thus a third cluster does not pay off in
coding cost. X-Means and RIC obtain the same result as
OCI on iris data. EM also clusters instances of iris versi-
color and iris virginica together, where the cross-validation
suggests five clusters in total.

Wisconsin Data. The Wisconsin data set deriving from
a study on breast cancer consists of 683 instances which are
labelled to the classes malign (152 instances) and benign
(531 instances) (16 instances with missing values have been
removed from the original data set). Each instance is de-
scribed by nine numerical attributes including e.g. clump
thickness, uniformity of cell size and mitoses, which scale
between 1 and 10. OCI detects 13 clusters with high class

cluster-id
1 2 3 4 5 6 7 8 9 10 11 12 13

b 78 46 73 41 65 15 29 25 4 94 8 51 2
m 0 0 0 0 0 0 0 0 0 7 17 1 127

Table 1: Classes to Cluster Evaluation of OCI on
Wisconsin Data.

purity on this data set, cf. Table 1. The clusters 1 to 9
are purely composed of benign instances. Most of these
clusters exhibit non-Gaussian data distributions and rep-
resent different interesting subtypes of benign tumors. By
assigning distribution functions to the coordinates, OCI al-
lows a detailed interpretation of the cluster content, which
is not possible with the comparison methods. For the 78 in-
stances of cluster 1 e.g. a super-Gaussian distribution with
a large beta in all attributes can be observed. The instances
of cluster 1 represent tumors with a clump thickness of 3,
whereas the uniformity of cell size and shape of most in-
stances is rated by the lowest value of 1. Cluster 8, also
super-Gaussian distributed in all attributes, consists of 25
very small tumors with a clump size of 1, which have a
slightly enlarged marginal adhesion, and a slightly elevated
number of bare nuclei (both values 2 for most instances in
this cluster). Cluster 4 comprises objects with sub-Gaussian,
almost uniformly distributed clump sizes ranging from 1 to
6, whereas the remaining attributes exhibit a distinct super-
Gaussian distribution in the range of 1 to 2 which is not
suspicious to cancer. OCI assigns 127 out of 152 instances
of the class malign to cluster 13, which is characterized by a
highly super-Gaussian distribution of the attribute mitosis
which reflects the considerably faster mitosis in cancer tis-
sue, whereas all other attributes exhibit a sub-Gaussian dis-
tribution. OCI performs superior regarding the class purity
of the clustering which can e.g. be assessed by counting the
points assigned to a minority cluster, the so-called minor-
ity count, which is 18 (10 benign, 8 maligne) for OCI. The
result of EM comprises 5 clusters with a minority count of
35. X-Means and RIC perform better with 3 clusters and
a minority count of 32 for X-Means and 6 clusters with a
minority count of 20 for RIC. Let us note, that clusterings
with different numbers of clusters cannot be directly com-
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Figure 13: Histograms of the β-values on Housing data. For clusters 1 to 6, the attributes CRIM, ZN,
INDUS, NOX, DIS, RAD, TAX, PTRATIO, B and LSTAT are depicted.

pared w.r.t. class purity. However, the different types of
benign tumors are best characterized by OCI, because it
provides non-Gaussian cluster models.

Housing Data. The housing data set on characteristics
of Boston suburbs consists of 506 data objects. The bi-
nary valued attribute ”CHAS” and the attribute ”MEDV”
as been left out, resulting in a dimensionality of 11, and
the data has been scaled in the range of [0..1]. OCI de-
tects 6 clusters on this data set which exhibit non-Gaussian
data distributions. Figure 13 displays for each cluster a his-
togram of the β values, where every bin corresponds to one
attribute. As baseline β = 0 is selected, which corresponds
to a Gaussian distribution and the β values are displayed
in the range [0..1]. Features with a super-Gaussian distri-
bution are characterized by a value above the baseline, and
features with a sub-Gaussian distribution by a value below
the baseline, respectively. It is obvious, that most features
in most clusters exhibt distributions which strongly diverge
from Gaussian, and also that the pattern of the β distribu-
tion is unique for most clusters. Figure 14 displays the pro-
jections of some clusters on selected attributes highlighted
in Figure 13. For example Figure 14(a) depicts cluster 1
projected on the attributes NOX (nitric oxides concentra-
tion) and DIS (weighted distances to five Boston employ-
ment centers). In cluster 1, the nitric oxide concentration is
moderately sub-Gaussian distributed and the distance to the
employment centers exhibts a distribution which is heavy-
tailed and therefore best represented by a super-Gaussian
distribution. There is no strong correlation between both
features in this cluster. Figure 14(b) depicts the projec-
tion of the largest cluster 2 comprising 222 objects on the
attributes RAD (index of accessibility to radial highways)
and PTRATIO (pupil-teacher ratio by town). In cluster 2,
the distance to the highways is rather uniformly distributed,
where the pupil-teacher ratio has a rather sharp peak around
0.4, resulting in a non-Gaussian cluster of similar shape as
our synthetic example depicted in Figure 5(a). In Figure
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Figure 14: Non-Gaussian Clusters on Housing Data.

14(c) the projection of cluster 6 on the attributes PTRA-
TIO and LSTAT (lower state of the population, indicator
of whealth) is depicted. This cluster exhibits a sharp peak
at PTRATIO of 0.93 and therefore this coordinate can be
efficiently compressed using a super-Gaussian distribution
with large β, where the lower status is only slightly super-
Gaussian. These examples demonstrate that the housing
data set contains non-Gaussian clusters with a variety of
different data distributions. X-Means detects 4 clusters on
this data set, the result of RIC comprises 5 clusters. EM
with cross-validation also selects 6 clusters like OCI. How-
ever, OCI is the only method providing detailed information
about why objects are clustered together in terms of a rich
vocabulary of distribution functions. The β histograms can
be used as unique profiles of the data distribution facilitat-
ing the interpretation of the result. Let us consider again
cluster 1. From the mean and β histogram e.g. it follows
that we have here a cluster of suburbs with very low crime
rate, no industry and the pupil teacher ratio is about 0.4,
suburbs in cluster 1 can be located at various distance from
the working centers.

6.4 Efficiency
Number of Objects. We evaluated the efficiency of

OCI and the comparison methods on synthetic data with
the same cluster structure as the example displayed in Fig-
ure 8 and various numbers of objects starting from 1,550
(the original example) up to 49,600 objects. The results are
summarized in Figure 15. Among the comparison methods,
X-Means is the fastest algorithm, since no data transforma-
tion like PCA or ICA is performed. However, as demon-
strated in the previous section, X-Means is not suitable for
non-Gaussian data sets with outliers. The EM algorithm
with cross-validation is not scalable to large data sets. The
algorithm needs more than 10 hours to process the largest
data set. Figure 15(ii) provides a close-up of the runtime in
the range of 0 to 3,000 seconds. It becomes evident that the
runtime of EM with cross-validation is not stable, since it
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Figure 15: Scalability w.r.t. the Number of Objects.

197



0

1000

2000

3000

4000

5000

2 4 6 8 10 12 14 16 18 20

dimensionality

ru
nt

im
e 

in
 s

OCI

RIC

X-Means

Figure 16: Scalability w.r.t. the Dimensionality.

depends on the random assignment of objects to the folds.
OCI scales slightly super-linear with the number of objects
and outperforms RIC on data sets larger than approximately
20,000 objects. Providing the most powerful cluster model,
OCI is only outperformed by X-Means in efficiency.

Dimensionality. Figure 16 displays the scalability w.r.t.
the dimensionality d. Experiments have been performed on
a data set with 24,800 objects and varying dimensionality.
Not surprisingly, X-Means is the fastest algorithm, since no
transformation is performed. RIC and OCI exhibit similar
performance which indicates that the PCA is the bottleneck
in higher dimensions, and ICA does not cause much addi-
tional overhead. The runtime curve of RIC exhibits a direct
linear dependency of d, whereas the curve of OCI is not so
smooth. This is due to the fact that OCI selects different
numbers of clusters on the different data sets, whereas RIC
is parameterized with 8 initial clusters in all experiments.
EM is left out in this diagram, since, as mentioned, the run-
time is very unstable due to cross-validation. Clustering the
4 dimensional data set did not terminate in more than one
hour (over 3,600 s). In summary, OCI provides the most
powerful cluster model combined with a very good scalabil-
ity.

7. CONCLUSION
In this paper, we proposed OCI, a novel fully automatic

algorithm for clustering non-Gaussian data with outliers.
There is a wide variety of clustering approaches but most
of them are sensitive to parameter settings and/or heavily
affected by single outliers. Many approaches also explic-
itly or implicitly assume Gaussian data distribution or do
not provide a model of the data which is essential in many
applications, including selectivity estimation, indexing and
classification. OCI has the following desirable properties:

• robust to noise,

• parameter-free,

• uses a flexible model: EPD (Gaussian/uniform/Laplace)
combined with ICA.

In an extensive experimental evaluation we demonstrated
that OCI successfully detected non-Gaussian clusters in syn-
thetic and real-world data sets. The performance of OCI
is stable even in the presence of large amounts of outliers.
In addition, OCI is scalable to be used on top of large
databases.

8. REPEATABILITY ASSESSMENT RESULT
Figures 8-10 (OCI only) and Figure 15 have been verified

by the SIGMOD repeatability committee.
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