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ABSTRACT
How can we automatically spot all outstanding observations
in a data set? This question arises in a large variety of
applications, e.g. in economy, biology and medicine. Exist-
ing approaches to outlier detection suffer from one or more
of the following drawbacks: The results of many methods
strongly depend on suitable parameter settings being very
difficult to estimate without background knowledge on the
data, e.g. the minimum cluster size or the number of de-
sired outliers. Many methods implicitly assume Gaussian
or uniformly distributed data, and/or their result is diffi-
cult to interpret. To cope with these problems, we pro-
pose CoCo, a technique for parameter-free outlier detection.
The basic idea of our technique relates outlier detection to
data compression: Outliers are objects which can not be
effectively compressed given the data set. To avoid the as-
sumption of a certain data distribution, CoCo relies on a
very general data model combining the Exponential Power
Distribution with Independent Components. We define an
intuitive outlier factor based on the principle of the Mini-
mum Description Length together with an novel algorithm
for outlier detection. An extensive experimental evaluation
on synthetic and real world data demonstrates the benefits
of our technique. Availability: The source code of CoCo
and the data sets used in the experiments are available at:
http://www.dbs.ifi.lmu.de/Forschung/KDD/Boehm/CoCo.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining

General Terms
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1. INTRODUCTION
Automatic outlier detection in large data sets is often

equally or even more important than the detection of regu-
larities. In various application fields like economy, biology,
or medicine, the detection of extraordinary observations is
of great interest. For example, the identification of crimi-
nal activities, such as credit card fraud, is crucial in elec-
tronic commerce applications [9]. In biology, an automatic
detection of outstanding measurements or noise is critical
for high-throughput data generated with e.g. mass spec-
trometry or gene expression analysis. The wide range of
application fields also includes entertainment, sports, e.g.
performance analysis of athletes, and many more.

Today, many data mining publications are in the field of
clustering or outlier detection. The first field searches for
regularities in a data set whereby the second identifies irreg-
ular data. Closer inspection of both fields reveals a strong
relationship, whereby one goes barely without the other: On
one hand, most clustering algorithms are confronted with
outliers which deteriorate the cluster quality and/or desta-
bilize the algorithm. Thus, the outliers need to be removed
beforehand. On the other hand, outlier detection algorithms
require a definition of the underlying cluster structure al-
though clusters are not explicitly identified. Only if the
cluster structure (of the regular data) is known, outliers can
be identified without any doubt. Following the definition of
Hawkins [5]:

An outlier is an observation that deviates so much
from other observations as to arouse suspicion
that it was generated by a different mechanism.

To formalize this definition, the ordinary and potentially
clustered points as well as the outliers need to be differen-
tiated with respect to a well-defined distinction criterion.
In existing outlier detection approaches, the distinction cri-
terion is quantified by a metric distance function and pa-
rameter settings. The results are only meaningful if the
distance function is well-characterized with respect to the
object similarity and suitable parameter settings. However,
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ambmc

aaaaaa...bbbbbbbb.....c

for i=0 to 2m do
  if i < m
    print(a)
  else
    print(b)
  end 

c

16008 bits

352 bits

Figure 1: Data compression: The principle of MDL
is to detect regularities in the data and compress
accordingly.

these premises assume a prior characterization of the data
set.

To cope with the problems of defining a distinct crite-
rion and parametrization, we present CoCo, a parameter-
free outlier detection method based on the ideas of data
compression and coding costs. CoCo is able to identify the
outliers in a data set based on a flexible definition of the reg-
ular data. The regular data is flexibly defined by a very gen-
eral Probability Density Function (PDF), in our case a mix-
ture model of the Exponential Power Distribution (EPD).
The EPD is a family of distribution functions which con-
tains the Gaussian distribution, the uniform distribution,
the Laplacian distribution, and a great variety of other dis-
tribution functions. Compared to previous outlier detection
approaches, the EPD is not restricted to either uniform or
Gaussian distribution functions. We demonstrate with our
experiments (cf. Section 4) that the EPD is powerful enough
to model the regular data in a variety of applications.

CoCo considers a point P as outlier, unless it fits nicely
in any of the distribution functions to be estimated of the
points in the neighborhood of P , independent of the neigh-
borhood size. To measure the quality of the fit of P we
adopt the idea of data compression: If a point fits well into
a distribution function, it can be compressed efficiently. To
connect the data compression efficiency of P with the de-
gree of P being an outlier, Figure 1 illustrates an intuitive
example: Suppose, we want to transfer data via a commu-
nication channel. The sender wants to transfer the string
ambmc to the receiver. A naive way would be to trans-
fer each single character requiring in total 16,008 bits for
m = 1, 000 and 8 bits per character. To minimize the com-
munication costs, a smart sender exploits regularities in the
data. A little program could generate the first part of the
string by printing 1,000 times the character a followed by
1,000 times b. An efficient coding in an arbitrary language
requires e.g. 344 bits. The sender additionally transfers c
as single character (8 bits) instead of adding a print state-
ment to the little program (which would require 64 bits).
Thus, 352 bits are required to transfer the string in total.
This clever compression reduces the communication cost to
2.15%. In the example, object c is an outlier generated by
a different mechanism than the other objects. The regular
objects can be strongly compressed by formulating the un-
derlying mechanism with a model (here, the little program)
and require only a transfer of 344/2, 000 = 0.17 bits, each.

Compared to the transfer of 8 bits for object c, the increase
in coding costs can deposit c as an outlier. Unlike the char-
acter strings in the simple example, the object P is a point,
i.e. a d-dimensional vector of continuous values. Inferred
from the idea of Huffman coding, we can apply the data
compression idea by assigning few bits to frequent values
and many bits to rare values of the coordinates of P . Fre-
quent and rare values can be clearly distinguished using the
above mentioned EPD. This principle is generally called the
Minimum Description Length (MDL).

CoCo effectively applies the MDL principle to parameter-
free outlier detection. No a-priori information about the
data set is required, like the number of clusters and outliers,
the cluster size, a distance metric, or the cluster density.
Furthermore, we define a CoCo outlier factor with the con-
cept of coding costs of an object, given the entire data set.
With the outlier factor we can clearly separate the cluster
points from the outliers.

The paper is organized as follows: In the next section,
we briefly survey the related work. In Section 3 we intro-
duce CoCo by elaborating a flexible model for continuous
data relying on two major building blocks: The Independent
Component Analysis (ICA) and the EPD. Furthermore, we
define our CoCo outlier factor. Section 4 provides an ex-
tensive experimental evaluation and Section 5 concludes the
paper.

2. RELATED WORK
The most established approaches to outlier detection in

databases can be classified into the two categories of distance-
and density-based approaches. Additionally, a brief survey
of the application of the information-theoretic MDL prin-
ciple in data mining is given. For an extended survey on
anomaly detection please refer to [4].

2.1 Distance-based Outlier Detection
Distance-based outlier detection is among the earliest ap-

proaches and has been proposed and further elaborated by
E.M. Knorr and R.T. Ng [10, 11, 12]. An object o of a
database DB is a distance-based outlier if at least a frac-
tion β of the objects in DB have a distance greater than
a previously specified distance d. This basic approach pro-
vides binary flagging of points as outliers or non-outliers.
An extension [12] proposes algorithms to support semantic
interpretation of distance-based outliers. However, without
knowledge of the data distribution, it is difficult to specify
suitable values for the parameters β and d. In addition, a
fixed distance threshold d identifies only global outliers.

2.2 Density-based Outlier Detection
Density-based outlier detection introduces an outlier no-

tion derived from density-based clustering and, therefore,
detects not only global but also local outliers. A point is
flagged as an outlier if it does not fit well into the objects
neighborhood density.

The local outlier factor LOF [3] formalizes this idea by
considering the MinPts nearest neighbors of an object as
its neighborhood. The LOF of an object is defined by the
ratio of its MinPts-nearest neighbor distance and the mean
MinPts-nearest neighbor distance in its neighborhood. How-
ever, the global parameter MinPts strongly affects the out-
lier detection result: Arbitrary high or low values of MinPts
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either regard small cluster points as outliers or do not detect
outliers, respectively.

LOCI [14] is a density-based multi-granularity outlier fac-
tor. Similar to LOF, points are regarded as outliers if the
object density in their local neighborhood significantly de-
viates from the average object density in the local neighbor-
hood. The local neighborhood is specified by two parame-
ters, which are called counting and sampling neighborhood.
The counting neighborhood specifies some volume of the fea-
ture space which is used to estimate the local object den-
sity. The sampling neighborhood is larger than the count-
ing neighborhood and contains all points which are used to
compute the average object density in the neighborhood.
LOCI differs from LOF by this decoupling of counting and
sampling neighborhoods. It can be demonstrated that with-
out this decoupling, density estimation leads to incorrect
results in some specific cases. In addition, the decoupling
allows for efficient algorithms for approximate computation
of LOCI. However, the decoupling requires the specification
of additional parameters. Together with the outlier factor,
the LOCI approach proposes a visualization, the so-called
LOCI plot which displays the LOCI of a point w.r.t. in-
creasing sizes of the local neighborhood and, thereby, allows
e.g. to identify micro-clusters. However, LOCI as well as
LOF apply the Euclidean distance as a global metric dis-
tance function. In addition, the LOCI approach proposes to
flag points as outliers which deviate in their local object den-
sity more than three times of the standard deviation of the
overall object density of the sampling neighborhood. This
flagging assumes a Gaussian distribution of the object den-
sities.

2.3 Minimum Description Length in Data
Mining

Information-theoretic concepts, especially the MDL prin-
ciple and related ideas have been recently successfully ap-
plied to clustering [1, 2, 15], and are also established in the
areas of regression [17], rule mining [19], classification [8],
and anomaly detection [7]. The MDL principle relates learn-
ing and data compression, as already illustrated in Figure
1. Learning regularities from data allows to compress the
data more efficiently. For model selection in clustering and
classification, MDL allows to compare different candidate
models achieving a natural balance between goodness of fit
and model complexity. To the best of our knowledge, the
MDL principle has not been applied to the problem of outlier
detection so far.

Regarding the problem specification, clustering is most
related to outlier detection. However, outliers are regarded
as a problem for clustering, since they can severely affect
the result of most algorithms. A parameter-free extension
of K-Means clustering is X-Means [15]. However, the X-
Means algorithm is restricted to spherical Gaussian clusters
and very sensitive to outliers. RIC [1] has been designed as a
post-processing step to improve an initial clustering of an ar-
bitrary conventional clustering algorithm. After filtering the
initial clusters from noise, for each cluster a model is deter-
mined. This model comprises a rotation matrix determined
by PCA and a PDF assigned to each coordinate selected
from a set of predefined PDFs. The recently proposed al-
gorithm OCI [2] introduces a very general clustering notion
based on the EPD and ICA. Also related are approaches to
MDL-based de-noising of signals [16, 18]. However, these

approaches are especially designed for time series and their
goal is to reconstruct the signal as accurate as possible.

3. COCO - CODING COST OUTLIER DE-
TECTION

With CoCo, we introduce an entirely parameter-free out-
lier detection method based on coding costs. Following
Hawkins [5], we adapt the outlier definition to the MDL
principle for data compression. A data point is considered
as outlier, if its compression rate is unusually high. As refer-
ence to define a high compression rate, we consult a compres-
sion rate of a cluster point. This approach nicely avoids the
definition of a distance metric which would require thresh-
olding of an undefined and unknown neighborhood.

Data sets may be rotated or distorted with respect to
the Cartesian coordinate system. The ICA enables us to
process data sets which are not aligned to the orthogonal
axes. However, the idea of an ordinary point needs to be
clearly defined. In contrast to currently available outlier
detection methods, we expect real life data to underly not
only Gaussian distributions. Besides, we want to include
several other distributions. A generalization of the Gaussian
PDF is the EPD. The EPD includes, among others, the
uniform, and the Laplacian PDF. By utilizing an EPD, any
a-priori information on the type of distribution is required.
Therefore, we do not create a bias towards Gaussian data
models. Combining ICA with EPD as the description of a
regular subset of the data set, we cover many real-world data
sets without taking explicit care of cluster density, shape,
and orientation.

Entirely automatic, CoCo detects outliers having high
coding costs with respect to the ordinary points which can
be effectively compressed. We implemented a bottom-up
approach to identify all irregular data points while choosing
the best compression model of ordinary points.

For each data point o, we initiate a set of nearest neigh-
bors. Without prior knowledge of the underlying cluster
shape, we extract a substantial number of nearest neighbors
nno based on their Euclidean distance to o. We reliably
center and whiten the set of nearest neighbors with ICA,
icanno , and fit an EPD, epdnno . Iteratively, we expand the
nearest neighbor set with those remaining data points to be
best compressed based on the current epdnno . After each
update of the set of nearest neighbors nno, we simply ad-
just the icanno and epdnno since it is an expensive opera-
tion to estimate it anew. For each epdnno estimate, we can
calculate the coding costs costo as compression rate of the
object o under the given cluster description epdnno . If the
data is fully explored for each object o, we extract the most
suitable EPD cluster model by selecting the minimum com-
pression rate of any object included in cost minnno . The
outlier factor for the data object costo(j) is determined by
its corresponding compression excess to cost minnno(j).

The following defines the principles of ICA, EPD, data
compression, and their link to the parameter-free outlier de-
tection with CoCo.

3.1 Independent Component Analysis
It was observed that mixtures of signals get best de-mixed

when searching for non-Gaussianity. A mixture of several
signals originated from any distribution type is always more
Gaussian than the originals. The entropy of a Gaussian dis-
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Algorithm 1 CoCo

Input: Database D

OF := {} // Outlier Factors
for data object o ∈ D do
costo := {}
cost minnno := {}
nno := initial set of Nearest Neighbors
not nno := D\nno

icanno := ICA(nno)
nno,ica := transform(nno; icanno)
epdnno := estimate EPD(nno,ica)
while not nno 6= {} do
costo := costo∪ coding cost(oica; epdnno)
cost minnno := cost minnno ∪

min(coding cost(nno,ica; epdnno))

not nno,ica := transform(not nno; icanno)
costnot nno,ica := coding cost(not nno,ica; epdnno)

nno := nno∪{not nno,ica with lowest costnot nno,ica}
not nno := D\nno

update icanno

nno,ica := transform(nno; icanno)
update epdnno

end while
j := min(cost minnno)// index best compressed cluster
OF := OF ∪ (costo(j)− cost minnno(j))

end for

XMeans(OF ) to obtain outlier & cluster points

tribution is maximal, whereby, all other distributions have
a lower entropy. However, the coding costs, measured by
the entropy, need to be minimized in order to guarantee a
maximal compression efficiency. Thus, we apply the ICA
to maximize non-Gaussianity as a measure of statistical in-
dependence. Its algorithm favors the directions in the data
which are not similar to the Gaussian distribution.

We assume that most data sets in experimental data usu-
ally do not follow equally dense distributions. They are
rather distorted data sets with respect to the Cartesian co-
ordinate system. The ICA first transforms the data into a
so-called white space. Whitening involves de-correlation and
normalization of the data to unit variance which enables us
to implicitly handle unequally dense clusters.

The Principal Component Analysis (PCA) identifies the
directions of maximal variance ~y given a set of coordinates
~x ∈ C in a d-dimensional space. First, the data get centered
~c = ~x− ~m around the empirical mean

~m =
1

|C|
X
~x∈C

~x

of the data set C. Second, the centered data ~c need to be
normalized to unit variance in all directions. The eigenvalue
decomposition of the covariance matrix Σ is Σ := V × Λ ×
V T , where V and Λ are orthogonal matrices containing the
eigenvectors and eigenvalues of Σ, respectively. Finally, the

PCA transform of ~x is determined by

~y :=
√

Λ
−1
× V T × ~c.

Note, that Λ = diag(λ1, . . . , λd) and
√

Λ
−1

=

diag(
p

1/λ1, . . . ,
p

1/λd) are both diagonal matrices.
For optimal projection of the data we need to determine

the directions of minimal entropy (generated with ICA)
rather than the one of maximal variance (created by PCA).
After transforming the data to white space, the FastICA al-
gorithm [6] determines a weighting matrix W containing the
independent components. Regarding the original space, the
independent components are not orthonormal in contrast
to the principal components. The iterative optimization of
W expects the input data to be whitened. The fix point
iteration optimizes W = (~w1, . . . , ~wd), whereby the weight
vectors are updated with the following rule:

~wi := E{~y × g( ~wi
T × ~y)} − E{g′( ~wiT × ~y)} × ~wi

We use tanh(s) for the non-linear contrast function g(s).

Note that g′(s) = dg(s)
ds

is the derivative of g(s) and E{. . .}
is the expected value. W is updated until convergence and
then orthonormalized. The overall projection of the origi-
nal data into the white space of independent components
is achieved by the de-mixing matrix M−1. With M =
V ×

√
Λ×W we denote

M−1 = WT 1√
Λ
V T .

W and V are orthonormal matrices, thus the determinant
is simply det(M−1) =

Q
1≤i≤d

p
1/λi. Recall that the rota-

tion performed in the white space is expressed by W , and
whitening is achieved by multiplying the coordinate vector
by the scaled Eigenvector matrix.

After the independent components are determined, we can
simply project the data ~x into the independent component
space with

~z = M−1 × (~x− ~m).

3.2 Exponential Power Distribution
The EPD is a generalization of the Gaussian distribution

in such a way, that it also includes the Laplacian and the
uniform distribution, depending on the parameter setting.
Its PDF has three different parameters. Beside the location
parameter µ, and the scale parameter σ, a shape parameter
p is introduced [13]. For a random variable X, the EPD is

-4 -2 0 2 4

0.
0

0.
2

0.
4

EPD with different shapes

p= 1
p= 2
p    ∞

Figure 2: Different shapes of the Exponential Power
Distribution for different choices of parameter p.
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EPD Gaussian

Figure 3: Data set approximated with an EPD and
a Gaussian distribution.

defined as:

fEPD(x;µ, σ, p) =
exp(− |x−µ|

p

pσp )

2σp
1
p Γ(1 + 1

p
)

Note that Γ(s) =
R∞

0
ts−1 exp(−t)dt is the gamma function

as an extension of the factorial operator for real numbers.
The shape parameter p determines kurtosis, or the sharp-

ness of the distribution. For p > 2, the EPD is platykur-
tic, with p → ∞ mimicking a uniform distribution. For
p = 2, the EPD corresponds to a Gaussian distribution. If
2 < p < 0, the EPD is leptokurtic, including a Laplacian
distribution for p = 1 (Fig. 2).

3.3 EPD after ICA
After projection of the coordinates into the white space

and ICA, the data ~z is de-correlated and independent. This
allows us to describe each coordinate independently by an
own EPD. Typically, a multi-dimensional data space con-
tains d different PDF representations fEPD(zi;µi, σi, pi)
with 1 ≤ i ≤ d. All d distributions are combined in a
mixing matrix M , where the data points ~x correspond to
~x = M × ~z + ~m, with ~m being the shifting vector and M
determined by PCA, as described above. M allows the in-
dependent components vectors to be not orthogonal. The
EPD in a d-dimensional space (after ICA) is defined for a
point ~x as

fEPD(x;M−1, ~m, µ, σ, p) =

Q
1≤i≤d fEPD(zi;µi, σi, pi)

| det(M−1)|

Figure 3 illustrates the effect of the approximation of a data
set with an EPD after ICA. While the approximation of the
same data with a Gaussian distribution is rather inappro-
priate.

3.4 EPD Approximation
The estimation of the three parameters is a non-trivial

problem. Although, µi = 0 and σi = 1 are defined for
p=2 (Gaussian distribution) after ICA, µi and σi are no
longer identical to the empirical mean and standard devi-
ation, respectively. All three parameters µi, σi and pi can
be optimized by estimating the maximum likelihood, given
a data set C. Only a simultaneous approximation of all pa-
rameters ensures that the derivatives of the likelihood of the
EPD vanish with respect to µi, σi and pi.

Assuming µi and pi to be given, the parameter σi can be
simply calculated with the derivative of the likelihood func-

tion with respect to σi of the EPD
P
~z∈C fEPD(~zi;µi, σi, pi):

dfEPD(C;µi, σi, pi)

dσi
= −|C|

σi
+

P
~z∈C |zi − µi|

pi

σpi+1
i

= 0.

⇒ σi =

 
1

|C|
X
~z∈C

|zi − µi|
1

pi

!
The parameters µi and pi need to be optimized explicitly.

We use a nested bisection search as optimization technique
to find pi and µi in their parameter space. The direction to
browse through the space is determined by the derivatives
of the log-likelihood function with respect to µi

dfEPD(C;µi, σi, pi)

dµi
= − 1

σpi

X
~z∈C

|zi − µi|1pi−1sign(zi − µi)

and pi

dfEPD(C;µi, σi, pi)

dpi
= −|C|

p2
i

„
log pi + Ψ(1 +

1

pi
)− 1

«
+

P
~z∈C s

pi
i + p log σi

P
~z∈C s

pi
i − p

P
~z∈C(spi

i − log si)

p2
iσ
pi
i

,

with si = |zi − µi|. Ψ(s) = d ln Γ(s)
ds

is the digamma func-
tion being the logarithmic derivative of the gamma function.
The EPD is estimated by this maximum likelihood approach
until convergence of pi.

3.5 Coding Cost with MDL
After we estimated an exact representation fEPD(x;M−1,

~m, µ, σ, p) of the data ~x with ICA and EPD, we need a re-
liable approach to judge the accuracy of the fit. We create
the link of the concept of PDFs to the principle of data com-
pression with the help of the MDL. Based on the Huffman
coding, a number of bits are assigned to each object with
the inverse logarithm of the probability of the object. This
negative log-likelihood represents the coding costs cPDF of
an object ~x , given any PDF, and is defined as:

cPDF (~x) = log2

„
1

fPDF (~x)

«
= − log2(fPDF (~x)).

In order to represent the coding cost in the number of bits,
the logarithm is typically used to a basis of 2. With CoCo,
we underly an EPD as PDF. Thus, the relative coding cost
of a data point ~x under a given EPD after ICA is:

cEPD(~x) = log2

`
|det(M−1)|

´
−
X

1≤i≤d

log2 (fEPD(~z;µi, σi, pi)) .

We can neglect to determine the absolute coding costs de-
pending on different PDFs and the coding of the PDF pa-
rameters. It is absolute crucial to determine statistically
independent major directions with ICA to guarantee opti-
mal data compression. Figure 4 clearly demonstrates that
ICA transforms the data in such a way that it removes re-
dundancy in the data with respect to the axes for best com-
pression.

3.6 CoCo Outlier Factor and Detection
Putting everything together, for each set of coordinates ~x

from the nearest neighbors nno generated with CoCo, we de-
termine the rotation and the cluster description with EPD
epdnno . For each estimate epdnno , the data compression
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ICA

Figure 4: ICA creates redundancy in the data by centering and whitening.

rate is calculated with cEPD(~o), ~o being the whitened co-
ordinates of object o. We determine the efficiency to com-
press the data points nno, with an epdnno estimate, with
any object p ∈ nno having minimal coding cost: We gather
information of compression rates for each set of nno with
increasing size. Ideally we need to know the optimal neigh-
borhood cluster size of o to determine the perfect compres-
sion of o regarding C. Practically, we only have information
for each epdnno estimate throughout the data set. With
it comes the information of any object (p) exhibiting the
minimal coding cost in nno. The best compression rate
(min(cost minnno), throughout all generated nno sets) rep-
resents the best epdnno estimate for any nno. In order to
obtain the factor of o being an outlier, the CoCo outlier fac-
tor is the absolute compression rate increase with respect to
a minimal p.

The structure of a data set is usually unknown. We screen
C coming from o iteratively by adding a set of neighbors;
its size growing exponentially with respect to the size of C.
To guarantee a stable estimate of EPD we initiate nno with
a set of 20 neighbors. This screening approach of CoCo is
however quadratic in the number of points n. In addition,
the runtime is cubic in the dimensionality d due to PCA and
EPD estimation.

After all CoCo outlier factors are obtained, we expect all
outliers to exhibit unusually high costs in comparison to
the ordinary, perhaps clustered points. The cluster points
can be compressed very effectively and show outlier factors
around 0. Flagging of outliers is difficult, since it involves

to define a suitable threshold, which is a non-trivial task for
an unknown data set. Instead, we simply apply an X-Means
algorithm to determine the set of clustering points being
the cluster closest to 0. Theoretically, we can establish an
outlier order by simply organize the other CoCo outlier fac-
tor groups in ascending order. In practice, X-Means usually
finds two clusters, one containing the clustering points, the
other determining all outliers.

CoCo combines ICA with EPD as cluster description to
determine outliers entirely parameter-free with the principle
of data compression. No a priori knowledge of the number
of outliers or the underlying cluster shape or density is re-
quired.

4. EVALUATION
In the following we evaluate our outlier factor CoCo in

comparison to LOF [3] and LOCI [14] using one synthetic
data set as well as NBA data. We implemented CoCo and
LOF in Java and obtained the implementation of LOCI from
the authors. The synthetic data set was created to exemplify
the strength of CoCo.

4.1 Synthetic Data
We detected the outliers of a synthetic data set with our

novel algorithm CoCo and compared them with outliers de-
tected by LOF and LOCI. Figure 5 provides the results of
CoCo, LOF, and LOCI for the synthetic data set. The syn-
thetic data set consists of four clusters C1-4 containing 184
(C1), 154 (C2), 52 (C3), and 50 (C4) data points. Each

20
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Figure 5: Outlier detection results from CoCo (left), LOF (middle, MinPts = 50 selecting only the top 26
outliers), and LOCI (right, α = 0.5 and rmin = 10) for a synthetic data set consisting of four clusters (C1-4)
and 26 outliers. Detected outliers are highlighted with red crosses.
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cluster has different cluster properties and a non-orthogonal
major orientation. Cluster C3 underlies a Gaussian PDF.
All together 26 noise points were added to the data set.

CoCo correctly detects all 26 outlier points highlighted
with red crosses (Fig. 5, left). All belong to one group of
outliers, beside the group of cluster points shown in black.
Note, that CoCo requires no input parameter in order to
identify all noise points. It can handle different types of
cluster shapes and orientations without expecting an explicit
description of their distributions.

LOF was applied to identify the outliers based on aMinPts
neighborhood of 50 determined by the size of the smallest
cluster in the set (Fig. 5, middle). We obtain the top 26
outliers (highlighted with red crosses) since we know how
many outliers are present in the data set. There are 24 out
of the 26 noise points assigned correctly. Two noise points
next to cluster C2 (circled in blue as No. 3) are not detected,
leading to two falsely identified cluster points as outlier (cir-
cled in blue as No.1&2). Note, that we collected the top
26 data points ranked by the LOF score. Setting the pa-
rameter MinPts to a value smaller or equal than 10, LOF
identifies more cluster points as outliers while leaving many
true outliers undetected (data not shown). A MinPts value
of 20 to 50 leads to the result shown in Figure 5. If we have
no a priori information about the number of outliers, it is
only possible to determine an arbitrary number of outliers.
In addition, an approximate cluster size needs to be known
in advance to set MinPts, in order to get a meaningful out-
put. These assumptions make it difficult to apply LOF to
real world data.

LOCI was applied to our synthetic data set with α = 0.5
and rmin = 10 (Fig. 5, right) and could identify 43 outlier
points based on the suggested outlier flagging criteria. All
together 17 true outliers were missed, while two points from
within cluster C3 and 27 points from cluster C4 were labeled
as outliers. Different parameter settings of rmin may detect
more true outliers, but at the same time label more cluster
points as outliers. Obviously, LOCI is not able to deal with
clusters showing low density, like C4. In Figure 7, we have
a closer look at the LOCI plot of an outlier point (circled in
blue as No. 1 in Figure 5, right) and a cluster point (No.
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Figure 7: LOCI plot for two points detected as out-
liers. (1) True outlier. (2) Falsely labeled cluster
point.

2). The LOCI plots look very similar even though they are
supposed to emphasize the difference between a cluster point
and an outlier. We have to note, that although we applied
the algorithm with the suggested parameter settings, the
result was difficult to interpret even after correspondence
with the authors.

4.2 CoCo Outlier Factor Visualization
To emphasize the difference and strength of the CoCo out-

lier factor in comparison to the LOF score, we introduce a
visualization of the “outlierness” (Fig. 6). A scatter plot of
the data in x-y directions is combined with a bar representa-
tion of the outlier factors in the z-dimension. We can clearly
show that the utilization of data compression is able to sep-
arate the outliers from the cluster points in comparison to
the outlier factor of LOF. For the majority of the cluster
points the CoCo coding costs are close to 0.0 which can be
seen by the short, dark blue bars. Outliers are either light
blue or even red indicating their extraordinariness, ranging
from 6.4 up to 24.2. Due to the large range between clus-
ter points and outliers it is possible to clearly differentiate
them using CoCo. In contrast, LOF produces values rang-
ing from 0.8 up to 2.3 which makes it almost impossible to
clearly differentiate cluster points from outliers explicitly.

The visualization of the outlier-factors of LOF demon-
strates, that the cluster structure is based on Euclidean dis-

LOF ScoreCoCo Outlier Factor

LOF
Colormap

0        max

Figure 6: Visualization of the CoCo Outlier Factor and the LOF Score for the synthetic data set.
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Figure 8: Outlier identification with CoCo for the NBA data set. Top-10 outlier are highlighted with red
crosses and marked with player names.

tances: the outlier factors continuously increases circular
from the cluster centers to the cluster margins. In contrast
to LOF, the CoCo outlier factors are equally low through-
out the entire cluster except for the cluster edge points. It
is based on the flexible cluster structure description using
ICA and EPD.

4.3 Experimental Data
After extensive evaluation of CoCo on synthetic data sets,

we want to apply our novel parameter-free outlier detection
method to experimental data. We used the NBA data avail-
able at the NBA website http://www.nba.com. In the Sea-
son 2007/08, 450 players are described with four attributes:
the number of games played (GP), the number of points
(PPG), the rebounds (RPG), and assists (APG) per game.
CoCo was applied to this NBA data detecting 105 outliers.
Figure 8 displays scatter plots of the data. For simplicity
reasons, we highlight only the top 10 outliers in red as listed
in Table 1. Obviously, the data distribution is non-Gaussian.

The top 10 outliers identified by CoCo, include outstand-
ing players like Stephon Marbury with a coding cost of 19.6
being 12 times higher than the average coding costs. Mar-
bury is an outstanding player with respect to all attributes.
He played only 24 games out of 82 and was still able to
achieve 13.9 points and additionally assisted in 4.7 points,
resulting in being involved in 18.6 points per game. Jamaal
Tinsley, has played 39 games in this season but was still
able to assist in 8.4 game points. He was involved in 20.3
points and played more games than Marbury. Gilbert Are-

nas exhibits a rare combination of playing 13 games while
achieving 19.4 points per game. Jason Kidd is outstanding
in the number of rebounds having played in 80 out of 82
games. Elton Brand has played only few games but still
was able to achieve an outstanding number of points. As
evident from Figure 8, outstanding players such as Kidd or
Brand are best characterized with the most general model
with only one component.

To put the CoCo outlier detection method into a context,
we applied LOF and LOCI to the NBA data set, as well.
Table 2 displays the top 10 outliers identified by LOF. High-
lighted in bold are all players that were identified as top 10
outlier of CoCo, like Marbury, Arenas, or Brand. Except for
one, all players from the top 10 outlier of CoCo are at least
under the top 20 of LOF. However, the outstanding player
Kidd was missed by LOF ranked at the 50th position with
a LOF score of 1.16. In addition, as observed for synthetic
data, the result of LOF strongly depends on its parameteri-
zation. Only seven players are reproducibly detected as top
10 for a MinPts = 40 (players are marked with an asterix).
All five players which were found to be under the top 10 of
CoCo were also included in the intersect of MinPts = 40
and MinPts = 50 which strikes that they are strongly out-
standing. The top 10 outliers found by LOCI are shown in
Table 3. The intersect between LOCI and CoCo is again
highlighted in bold.
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CoCo o.f. Name GP PPG RPG APG

19.6 Stephon Marbury 24 13.9 2.5 4.7
17.9 Jamaal Tinsley 39 11.9 3.6 8.4
16.1 Gilbert Arenas 13 19.4 3.9 5.1
15.4 Andrew Bynum 35 13.1 10.2 1.7
13.6 Elton Brand 8 17.6 8 2
12.9 Ronald Muray 73 9.1 4.5 1.3
12.8 Jason Kidd 80 10.8 7.5 10.1
12.5 Chris Kaman 56 15.7 12.7 1.9
12.3 Ramon Sessions 17 8.1 3.4 7.5
12.0 Randy Foye 39 13.1 3.3 4.2

Table 1: Top 10 outliers identified with CoCo on
NBA data. (o.f. = outlier factor).

LOF Name GP PPG RPG APG

1.43 Elton Brand* 8 17.6 8 2
1.32 Steve Francis 10 5.5 2.3 3
1.31 Kasib Powell 11 7.6 4 1.6
1.28 Gilbert Arenas* 13 19.4 3.9 5.1
1.28 Chris Webber* 9 3.9 3.6 2
1.27 Stephon Marbury* 24 13.9 2.5 4.7
1.26 Dwyane Wade* 51 24.6 4.2 6.9
1.25 LeBron James 75 30 7.9 7.2
1.24 Andrew Bynum* 35 13.1 10.2 1.7
1.24 Chris Kaman* 56 15.7 12.7 1.9

Table 2: Top 10 outliers identified by LOF with
MinPts = 50 on NBA data sorted by outlier-factor.
Players also among the top 10 of CoCo are marked
in bold. The asterix indicates players which are also
among the top 10 using MinPts = 40. Note that all
players found to be under the top 10 of CoCo and
LOF MinPts = 50 are also found using MinPts = 40.

5. CONCLUSION
In this paper, we proposed CoCo, a parameter-free outlier

detection. The perspective of data compression in outlier de-
tection allows to define a notion of outliers, which is intuitive
to interpret and requires no parameter settings. Our exper-
iments demonstrate that CoCo is not restricted to Gaussian
data but applicable to a wide range of data distributions.

In future work, we will further elaborate techniques to fa-
cilitate the interpretation of cost-based outliers. In addition,
we will focus on online algorithms for cost-based outlier de-
tection in data streams, since online monitoring is essential
in many applications involving outlier detection.

Name GP PPG RPG APG

LeBron James 75 30 7.9 7.2
Kobe Bryant 82 28.3 6.3 5.4
Dwyane Wade 51 24.6 4.2 6.9
Chris Kaman 56 15.7 12.7 1.9
Elton Brand 8 17.6 8 2
Andrew Bynum 35 13.1 10.2 1.7
Jamaal Tinsley 39 11.9 3.6 8.4
Mike Bibby 48 13.9 3.3 6
Jermaine O’Neal 42 13.6 6.7 2.2
Udonis Haslem 49 12 9 1.4

Table 3: Top 10 outliers identified by LOCI on NBA
data. Players also among the top 10 of CoCo are
marked in bold.
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