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ABSTRACT
In many application domains, graphs are utilized to model
entities and their relationships, and graph mining is impor-
tant to detect patterns within these relationships. While the
majority of recent data mining techniques deal with static
graphs that do not change over time, recent years have wit-
nessed the advent of an increasing number of time series
of graphs. In this paper, we define a novel framework to
perform frequent subgraph discovery in dynamic networks.
In particular, we are considering dynamic graphs with edge
insertions and edge deletions over time. Existing subgraph
mining algorithms can be easily integrated into our frame-
work to make them handle dynamic graphs. Finally, an
extensive experimental evaluation on a large real-world case
study confirms the practical feasibility of our approach.

1. INTRODUCTION
Graphs are the universal data structure to model entities

and their relationships. All common data structures, vec-
tors, strings and time series, can be represented as graphs.
Consequently, it is not surprising that the amount of graph-
structured data is ever increasing in a wide range of applica-
tion domains ranging from bioinformatics and medicine to
large database management, culminating in web log analy-
sis. Hence efficient graph mining algorithms are of utmost
importance for increasing our understanding of the informa-
tion represented by these large datasets of graphs. One cen-
tral question in graph mining is finding frequent subgraphs
within these datasets.
The majority of recent subgraph mining approaches have
focused on characterizing the topology of static networks.
But to model real-world systems, often a temporal compo-
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nent has to be taken into account, as interactions between
objects here usually occur for a certain period of time only.
Therefore, a realistic model has to consider that edges will
be inserted and/or deleted over time. The resulting data
structure is called a dynamic graph.
These dynamicn graphs occur in many real-world applica-
tions. In Biology, a wide-spread approach is to model inter-
acting proteins as networks, where each vertex corresponds
to a protein and two vertices are connected by an edge if
the corresponding proteins can bind. In addition, further
technologies allow biologists to measure the distribution of
protein interactions at different time points. Hence, asso-
ciating a time series for each protein provides interesting
insights into the dynamically changing system. In social
networks like Facebook, people contact each other at spe-
cific time points and form various complex relationships.
Our new approach for frequent subgraph discovery performs
data mining on such dynamic graphs in an on-top fashion,
i.e. we search a set of frequent static subgraphs for frequent
dynamic patterns. Existing subgraph mining algorithms on
static graphs can be easily integrated into our framework to
make them handle dynamic graphs. The search for dynamic
patterns is based on the idea of suffix trees.
The remainder of the paper is organized as follows: Sec-
tion 2 gives a brief survey of the large previous work on
mining static networks and summerizes recent papers that
address data mining on dynamic graphs. Essential defini-
tions from classic and dynamic graph theory are provided
in Section 3. Our efficient algorithmic solution for finding
frequent subgraphs in dynamic graphs is presented in Sec-
tion 4. Section 5 provides an extensive experimental eval-
uation of our algorithm on large real-world biological data.
Finally, Section 6 summarizes the paper and lists promising
directions of future research.

155



2. RELATED WORK
Here we review the previous work on finding patterns in

graph data and focus on three problems. First, frequent
subgraphs across a dataset of graphs. Second, frequent sub-
graphs within one single large graph. Third, frequent sub-
graphs in dynamic graph data.

Graph Dataset Mining. The graph dataset mining ap-
proaches can be broadly divided into two classes, apriori-
based and pattern-growth based. AGM (Apriori-based Graph
Mining) [10] determines subgraphs S in a dataset D of la-
beled graphs that occur in at least t percentage of all graphs
(also called transactions) in D. AGM uses a canonical rep-
resentation of subgraphs in order to reduces runtime costs
for subgraph isomorphism checking. Similar to AGM, FSG
(Frequent SubGraph Discovery) [12] uses a canonical label-
ing based on the adjacency matrix. Canonical labeling, and
candidate generation and evaluation are sped up in FSG us-
ing graph invariants and the Transaction ID principle, which
stores the ID of transactions a subgraph appeared in. This
speed-up is paid for by reducing the class of subgraphs dis-
covered to connected subgraphs, i.e. subgraphs where a path
exists between all pairs of nodes.
The most well known member of the class of pattern-growth
algorithms, gSpan (graph-based Substructure pattern min-
ing) [22], discovers frequent substructures efficiently without
candidate generation. Tree representations of graphs are
encoded using a Depth First Search (DFS) code, amongst
which a minimum DFS code is chosen according to some
lexicographic order. Pre-order DFS-tree search is then con-
ducted to find the complete set of frequent subgraphs in a set
of graphs. gSpan is efficient, both w.r.t. runtime and mem-
ory requirements, making it one of the best state-of-the-art
algorithms for graph dataset mining.

Large Graph Mining. Unlike graph dataset mining,
large graph mining intends to find subgraphs that have at
least t embeddings in one large graph. Note that any large
graph mining algorithm can be applied to the graph dataset
mining problem as well, simply by concatenation of all single
graphs from a dataset into one large graph. Of course, sub-
graphs that include nodes from distinct single graphs must
be pruned during pattern search then. The reverse, applying
graph dataset mining algorithms to large graphs, is not di-
rectly possible. GREW [14] and SUBDUE [5] are greedy
heuristic approaches for frequent graph mining that deal
speed for completeness of the solution. GREW iteratively
joins frequent pairs of nodes into one supernode and deter-
mines disjoint embeddings of connected subgraphs by a max-
imal independent set algorithm. Similarly, vSIGRAM and
hSIGRAM [13] find subgraphs that are frequently embed-
ded within a large sparse graph, using “horizontal” breadth-
first search and “vertical” depth-first search, respectively.
They employ efficient algorithms for candidate generation
and candidate evaluation that exploit the sparseness of the
graph. SUBDUE tries to minimize the minimum descrip-
tion length (MDL) of a graph by compressing frequent sub-
graphs. Frequent subgraphs are replaced by one single node
and the MDL of the remaining graph is then determined.
Those subgraphs whose compression minimizes the MDL are
considered frequent patterns in the input graph. The can-
didate graphs are generated starting from single nodes to
subgraphs with several nodes, using a computationally con-
strained beam search. While most of the techniques men-
tioned before, often use some sort of heuristic search strategy

that repeatedly compresses the graph to find frequent sub-
graphs, methods based on sampling subgraphs to estimate
their frequency are predominant in application domains, like
bioinformatics [11, 19]. Another strategy is to exhaustively
enumerate all subgraphs. This has the advantage that one
can then compute exact rather than approximate frequen-
cies, but for large graphs, it is only feasible for subgraphs
with a limited number k of nodes, typically k ∈ {3, 4}.

Dynamic Graph Mining. While the evolution of graphs
over time has been addressed before, the corresponding stud-
ies predominantly dealt with topics such as densification
and shrinking diameters of real-world graphs over time [16].
Only a few papers [3, 6, 15] define terminology for min-
ing dynamic networks, but to the best of our knowledge no
paper presents an efficient algorithm for detecting frequent
subgraphs within dynamic graphs so far.

3. FORMAL BACKGROUND
Now we provide the essential definitions from classic and

dynamic graph theory necessary to follow our argumenta-
tion.

3.1 Classic Graph Theory
A labeled graph G is a set of vertices V , in which pairs

of vertices can be linked by edges E, and in which both ver-
tices and edges may bear labels L. A graph Gs = (Vs, Es)
is a subgraph of G if VS ⊆ V and ES ⊆ E, denoted by
GS ⊆ G.
The graph isomorphism problem is the question whether
there exists a bijection f between the nodes of two graphs
G1(V1, E1) and G2(V2, E2) such that (v1a , v1b) ∈ E1 if and
only if (v2a , v2b) ∈ E2 where v2a = f(v1a) and v2b = f(v1b).
If G1 is isomorphic to G2, we refer to (v1a , v1b) and (v2a , v2b)
as corresponding edges in the remainder of this paper. It
is unclear whether this problem is in NP or in P, and all
attempts to classify it have failed so far.
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the
subgraph isomorphism problem consists in finding a
subgraph of G1 that is isomorphic to G2. This problem
is known to be NPcomplete [7].
If a graph G1 is a subgraph of graph G and isomorphic to
another graph G3, then G1 is often referred to as an em-
bedding of G3 in G. G1 is also a frequent subgraph
if it contains at least t embeddings of G3, where t is an
user-defined frequency threshold parameter. In application
domains like bioinformatics, motif is often used as synonym
for frequent subgraph.

3.2 Dynamic Graph Theory
Now we give formal definitions for the class of graphs we

want to study, namely dynamic graphs.

Definition 1 (Time Series of Graphs). Given a se-
quence Gts of n graphs {G1, . . . , Gn} with Gi = (Vi, Ei) for
1 ≤ i ≤ n. We define Gts to be a time series of graphs
if V1 = Vi for all 1 ≤ i ≤ n. Gi is the i-th state of Gts and
Ai is the adjacency matrix of the i-th state. In time step i,
labels li are assigned to nodes and edges.

Note that li is not necessary the same for all 1 ≤ i ≤ n.
This means that an edge (or even a node) might change
its label in consecutive time steps of the time series. Such
a time series of graphs can be transformed into a dynamic
graph as follows:
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Figure 1: Transformation of a time series of graphs into a dynamic graph. The three graphs on the left
represent a time series of graphs with edge insertions and edge deletions over time. The graph on the right
is a dynamic graph that summarizes all information represented by the time series.

Definition 2 (Dynamic Graph). Given a time series
of graphs Gts with n states. Then the dynamic graph
DG(Gts) of Gts is defined as DG(Gts) = (VDG, EDG, `),
where VDG = Vi for all 1 ≤ i ≤ n and EDG = ∪ni=1Ei.
The mapping ` : EDG → L ∪ ε maps each edge e in EDG
to a string `(e) of length n, referred to as the edge exis-
tence string of e. Let us denote the i-th character of `(e)
as `(e(i)). `(e(i)) = ε if e does not exist in state i of Gts. If
e does exist in state i of Gts, then `(e(i)) = li(e).

An example for such an transformation is depicted in Fig-
ure 1. Note that the union of all edges of the time series is
the set of edges of the dynamic graph; therefore it is also
referred to as the union- or summary graph.
To extend frequent subgraph discovery to dynamic networks,
we have to define two types of frequent subgraphs:

Definition 3 (Static Frequent Subgraph). A sub-
graph GSts that has more than t embeddings in a dynamic
graph DG(Gts) is called a static frequent subgraph.

In other terms, static frequent subgraphs in a dynamic
graph are subgraphs that are topologically frequent in the
summary graph. Hence, edge existence strings play no role
when looking for static frequent subgraphs. The static fre-
quent subgraphs in a dynamic graph are defined in exactly
the same manner as frequent subgraphs on one single net-
work.
A dynamic pattern D is a static frequent subgraph S such
that in more than u embeddings of S, edge insertions, dele-
tions and label changes occur in the same temporal order. As
we want to study cases where these insertions and deletions
happen in a subsection of the complete time series only, we
now have to make use of the existence strings of the edges.

Definition 4 (Common Substring). For two strings
s1 and s2 of length |s1| and |s2|, sub(s1, i, j) = sub(s2, i, j)
means that the substrings from the i-th to the j-th character
in s1 and s2 are identical, where 1 ≤ i ≤ j ≤ min(|s1|, |s2|).
This identical substring is called a common substring of
s1 and s2.

Definition 5 (Common Dynamic Pattern). Let S be
a static frequent subgraph in dynamic graph DG, and let
S1 = (VS1 , ES1) and S2 = (VS2 , ES2) be two embeddings of
S in DG. As S1 and S2 are isomorphic, there must be a
bijection f between their set of edges ES1 and ES2 . Then S1

and S2 share a common dynamic pattern from position i
to j if for all pairs of edges (e1, e2) from ES1 × ES2 where
e2 = f(e1) the following equality holds: sub(`(e1), i, j) =

sub(`(e2), i, j), i.e. the existence strings of corresponding
edges are identical from position i to position j.

If enough embeddings of the same static frequent sub-
graph share the same common dynamic pattern, then this
static frequent subgraph contains a dynamic frequent sub-
graph.

Definition 6 (Dynamic Frequent Subgraph). Let S
be a static frequent subgraph with t embeddings {S1, . . . , St}
in a dynamic graph DG. Let u be a user-defined frequency
threshold. If at least u embeddings of S share the same com-
mon dynamic pattern, then the topology of S and the com-
mon dynamic pattern represent a dynamic frequent sub-
graph.

For instance, in our real-world case study (cf. Section 5),
a dynamic frequent subgraph describes a set of groups of
proteins that show similar patterns of co-expression during
a certain interval of a time series.

4. EFFICIENT DYNAMIC FREQUENT
SUBGRAPH DISCOVERY

After defining frequent subgraphs in dynamic networks,
we now present an efficient algorithmic solution on how to
compute them. Our framework is based on the idea of suffix
trees. Dynamic frequent subgraph discovery can be per-
formed in an on-top fashion in two steps. First we employ
one of the state-of-the-art algorithms for finding frequent
subgraphs in the union graph of a time series of graphs (cf.
Section 2). Second we search the resulting static frequent
subgraphs for frequent dynamic patterns. Figure 2 visualizes
an example for frequent subgraph discovery in a dynamic
network.

Matrix Representation of Embeddings. To discover
dynamic patterns we process the results of a static frequent
subgraph mining algorithm (see Figure 2(a)). Key to our ef-
ficient scheme is to represent each embedding of a frequent
static subgraph by the set of existence strings of its edges.
Hence, for each of the s embeddings of a static frequent sub-
graph S with ` edges, we obtain a set of ` existence strings.
We represent these sets of strings for one embedding Si of
S as an ` × n matrix, M(Si), where each row corresponds
to one edge, and each column to one time point in the time
series (see Figure 2(b)).

Canonical Edge Order. To compare the matricesM(S1)
and M(S2) of two different embeddings S1 and S2 of the
same subgraph S efficiently, we have to define a canonical
ordering of edges for all embeddings of S. gSpan [22] orders
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edge ε c ε
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(b) Matrix representation.

edge ε a c
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edge c c ε
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edge a ε b
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time point 1 2 3
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(d) Dynamic
pattern.

Figure 2: Two embeddings (2(a)) of the same static frequent subgraph and their common dynamic pattern
depicted as dynamic graph (2(d)). The two embeddings are shown with their matrix and string representation
each (2(b)). In time step 2 and 3, edge insertions and deletions occur simultaneously in both embeddings.
This is the common substring (2(c)) that refers to the dynamic pattern.

the edges in each embedding of a frequent subgraph accord-
ing to a Depth First Search on the vertices. In this manner,
we can sort the rows of all matrices representing embed-
dings of the same subgraph such that corresponding edges
are represented by the same row in each of these matrices.

String Representation of Embeddings. Using this
canonical form of the matrices dynamic frequent subgraph
discovery is equivalent to detecting identical blocks of columns.
Therefore we transform each matrix into a string representa-
tion by treating each column in the matrix as one character
which is just the concatenation of all entries in this column.
We obtain s strings, each describing one embedding, which
have a common substring if the embeddings show identical
dynamic behaviour over a certain period of time (see Fig-
ure 2(c)).

Frequent Common Substring Discovery. A classic
result from the field of string algorithms [9] helps us to dis-
cover these common substrings extremely efficiently: detect-
ing all longest substrings in a set of s strings is possible in
linear runtime, i.e. in time proportional to reading all strings
exactly once by employing a suffix tree to store all substrings
from a set of strings. A simple breadth-first search in the
tree then provides all frequent common substrings. Obvi-
ously, each of these frequent common substrings corresponds
to one dynamic pattern (see Figure 2(d)).
To guarantee that all embeddings of a dynamic pattern start
at the same time point of the time series, we include a time
stamp into our matrix representation of each embedding, by
adding an extra row to the matrix, which numbers the time
steps from 1 to n, where n is the number of time steps in
the time series. We then include these time stamps into
the string representation of our matrix. Our framework is
summarized in Algorithm 1.

Algorithm 1 Dynamic frequent subgraph discovery

Input: All embeddings of one static frequent subgraph S
for each embedding Si of S do

1) Order the edges of Si according to canonical labeling
2) Store their existence strings in this order as a matrix
3) Translate each column of the matrix M(Si) into one
character
4) Concatenate these characters into one string

end for
Perform frequent substring discovery on all the resulting
strings

Output: Dynamic patterns within embeddings of S

5. EXPERIMENTS
In this section, we confirm the practical feasibility of our

framework for finding frequent subgraphs in dynamic net-
works on the basis of a large case study on real-world bio-
logical data.

5.1 Dynamic Network Construction
We create a dynamic network by integrating protein-protein-

interaction (PPI) data from yeast and a time series of yeast
gene expression levels. We obtain the yeast PPI network
data from the database DIP (Database of Interacting Pro-
teins) [21, released on January 6, 2008], containing all pairs
of interacting proteins identified in the yeast organism S.
cerevisiae. This dataset consists of 4,923 proteins, which are
the original set of nodes in our dynamic graph and 18,324
interactions representing edges between the nodes.
In order to assign labels to all nodes of the network, we are
mapping the proteins to their corresponding protein-coding
open reading frames (ORFs), via information provided by
the SGD (Saccharomyces Genome Database) [8] from DIP.
Finally, we determine the ‘molecular function’ associated
with this ORF in the Gene Ontology (GO) hierarchy at
depth two [2]. As GO terms are organized in directed acyclic
graphs, and each term can be traced to different depths, it
can occur that multiple GO annotations can be assigned to
one single ORF at a given depth. As current methods for
frequent subgraph mining and enumeration require a unique
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label, we retaine all ORFs with a non-ambiguous GO label-
ing at depth two. The 12 remaining GO functional classes
are then used as node labels for the remaining proteins.
Next we use a cell cycle time series of yeast gene expres-
sion levels by [4], available from the ExpressDB collection
of yeast RNA Expression Datasets [1]. The dataset consists
of 6,601 time series of 17 measurements for 6,259 ORFs, of
which 6,045 ORFs can be mapped to one unique time se-
ries. 3,607 ORFS are both present in our GO-labeled yeast
PPI network and in the gene expression datatset. The cor-
responding proteins are the final set of nodes in our dynamic
graph, other nodes and their adjacent edges from the origi-
nal graph were skipped. The final network comprises 3,607
nodes, 12 different classes of node labels, 7,395 edges per
time step, and 17 time steps.

Edge Existence Strings. Each edge in our dynamic net-
work is assigned an edge existence string (cf. Definition 2)
of length 17 according to the following rules: We distinguish
three basic categories of gene expression levels for each gene
g at each time point i. We refer to its expression level at
time point i as g(i). Categories are assigned by comparing
the median expression level of g across the time series with
the z − scoremedian of g(i):

z − scoremedian(g(i)) =

g(i)−medianj∈{1,..,n}g(j)√
1
n

∑
(g(k)−medianj∈{1,..,n}g(j))2

(1)

We use a median-based z − score rather than a mean-
based as we want to detect unusually high and unusually
low gene expression levels during the yeast cell cycle. In
contrast to the z − scoremean a z − scoremedian is more
robust w.r.t. these extremes and better suited for detecting
them, as validated in initial experiments (not shown here).

• High: g(i) is significantly higher than the median ex-
pression level of g
(z − scoremedian(g(i)) ≥ 2).

• Medium: g(i) does not significantly differ from the
median expression level of g
(-2 < z − scoremedian(g(i)) < 2).

• Low: g(i) is significantly lower than the median ex-
pression level of g
(z − scoremedian(g(i)) ≤ -2).

For each edge e in our dynamic graph, we compare the
expression profiles of its adjacent genes g1 and g2 to generate
the edge existence string according to the following rules:

• `(e(i)) = ’H’ if g1(i) and g2(i) both show a high gene
expression level.

• `(e(i)) = ’M’ if g1(i) and g2(i) both show a medium
gene expression level.

• `(e(i)) = ’L’ if g1(i) and g2(i) both show a low gene
expression level.

• `(e(i)) = ’N’ if g1(i) and g2(i) show different gene ex-
pression levels.

In this manner, we generate edge existence strings from
the alphabet Σ = {H,L,M,N} for pairs of interacting genes
in the yeast PPI network.

5.2 Enumerating all Static Frequent Subgraphs
In order to compute exact frequencies for static frequent

sugraphs, we exhaustively enumerate all frequent subgraphs
of our dynamic network. This step is performed using the
FANMOD tool which implements the algorithm by [19]. As
our dynamic network is a large graph, we have to limit our-
selves to subgraphs of size 3 and 4 as previous studies [20],
but this allows us to guarantee that we are not missing out
on dynamic frequent subgraphs.

5.3 Significance of Dynamic Patterns
To assess the significance of a static frequent subgraph

with frequency t, we use p-values for each static frequent
subgraph according to [19]. The p-value represents the prob-
ability of this static frequent subgraph occurring at least t
times in a random graph with identical degree distribution.
We only retain those static frequent subgraphs whose p-value
is below the significance level of α = 0.025. We also assess
the significance of the common dynamic string pattern σ
of a dynamic frequent subgraph D which occurs in u out
of t embeddings of the static frequent subgraph S in terms
of a p-value. For this purpose, we compute the probabil-
ity p of σ to occur in an embedding of S by chance. Let
M = M(i, j)l′×n′ be the matrix representation of σ, where
each row corresponds to one edge (existence string) and each
column to one time step. We then define the probability of
σ occurring by chance as

pσ =

l′∏
i=1

n′∏
j=1

pi(M(i, j)) (2)

where pi is the background probability of the character
represented by M(i, j) occurring in the i-th edge of S. In
other terms, the random model assumes that the existence
strings of the embeddings of S were randomly generated.
Under this model, the probability of σ appearing u times
(denoted |σ| = u) in the t embeddings of S then follows a
binomial distribution:

P (|σ| = u) =

(
t

u

)
puσ(1− pσ)t−u, (3)

and the p-value of the common dynamic pattern σ can be
computed straightforwardly:

p-value(|σ| = u) = P (|σ| ≥ u) (4)

We deem common dynamic patterns significant, if their
p-value is below 0.025. Dynamic frequent subgraphs are
considered significant if their associated static frequent sub-
graph is significant and if its common dynamic pattern is
significant as well. We only retained those dynamic frequent
subgraphs that occur in at least 50% of the embeddings of
the corresponding static frequent subgraph.

5.4 Evolutionary Conservation Rate:
A Quality Criterion for Dynamic Frequent
Subgraphs

Following previous biological analysis [18], we deem dy-
namic frequent subgraphs the more conserved, the more pro-
teins that participate in embeddings of this subgraph have
identifiable orthologs in other organisms. We analyse the
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k = 3 k = 4

Static Dynamic Static only Static Dynamic Static only

# frequent subgraphs 367 515 3,293 2,111
# proteins 2,302 1,787 515 2,403 1,770 633
# conserved proteins 577 477 100 591 470 121
conservation rate 0.2507 0.2669 0.1942 0.2459 0.2655 0.1912

Table 1: Evaluation w.r.t. conservation rate of frequent subgraphs with three and four nodes.

conservation rate of yeast proteins by searching for orthologs
in each of five other higher eukaryotic organisms for which
information is available in the InParanoid database [17]: 644
of the 3,607 proteins in our dynamic network turned out to
be conserved across all five species. Hence the probability of
observing a conserved protein by uniform random sampling
from the PPI network is 0.1785, of observing a set of three
conserved proteins is 0.0057, and of observing a set of four
conserved proteins is 0.0010.

5.5 Conservation Rate among Static and
Dynamic Frequent Subgraphs

Our static frequent subgraph discovery results in 367 sub-
graphs with three nodes and within these 515 dynamic pat-
terns that were both frequent and significant. We find 2,302
proteins to be members of at least one static frequent sub-
graph, out of which 577 are conserved across species (conser-
vation rate 0.2507). Hence the rate of conservation among
proteins that are part of static frequent subgraphs is signif-
icantly higher than among proteins that are sampled ran-
domly from our dynamic network (Binomial distribution
B(t = 2, 302; p = 0.1785); p-value < 0.0001). 1,787 pro-
teins are members of at least one dynamic frequent sub-
graph, including 477 conserved proteins (conservation rate
0.2669). Hence the rate of conservation among proteins that
are part of dynamic patterns is significantly higher than
among proteins that are sampled randomly from our dy-
namic network (Binomial distribution B(t = 1, 787; p =
0.1785); p-value < 0.0001). 515 proteins are members of
at least one static frequent subgraph, but of none of the
dynamic patterns (100 of these are conserved, conservation
rate 0.1942). While the rates of conservation among pro-
teins from static and dynamic frequent subgraphs are not
significantly different (two-sample t-test for unequal vari-
ances, p = 0.2392), we observed that proteins that partic-
ipate in static and dynamic frequent subgraphs are signif-
icantly stronger conserved than those that are members of
static, but not of dynamic static subgraphs (two-sample t-
test for unequal variances, p = 0.004).

We discover 3,293 static frequent subgraphs of size k = 4.
Within these subgraphs we find 2,111 dynamic patterns that
were both frequent and significant. 2,403 proteins are mem-
bers of at least one static frequent subgraph, out of which
591 are conserved (conservation rate 0.2459). Consistent
with our results on frequent subgraphs with three nodes the
rate of conservation among proteins that are part of static
frequent subgraphs is significantly higher than among pro-
teins that are sampled randomly from our dynamic network
(Binomial distribution B(t = 2, 403; p = 0.1785); p-value <
0.0001). 1,770 proteins are members of at least one dynamic
pattern, including 470 conserved proteins (conservation rate

0.2655). Analogously to the frequent subgraphs with three
nodes the rate of conservation among proteins that are part
of dynamic patterns is significantly higher than among pro-
teins that are sampled randomly from our dynamic network
(Binomial distribution B(t = 1, 770; p = 0.1785); p-value <
0.0001). 633 proteins are members of at least one static fre-
quent subgraph, but of none of the dynamic patterns (121
of these are conserved, conservation rate 0.1912). While
the rates of conservation among proteins from static and
dynamic frequent subgraphs with four nodes are not signif-
icantly different (two-sample t-test for unequal variances,
p = 0.1525), we observed that proteins that participate
in static and dynamic frequent subgraphs are significantly
stronger conserved than those that are members of static,
but not of dynamic ones (two-sample t-test for unequal vari-
ances, p = 0.001). Therefore the significance of the conser-
vation rate of frequent subgraphs with four nodes is even
higher than for subgraphs with three nodes. Table 1 sum-
marizes the results of these experiments.

5.6 Conservation of Dynamic Frequent
Subgraphs across GO Classes

We also check whether proteins that are part of static
and dynamic frequent subgraphs show different levels of
conservation depending on their molecular function as de-
fined by GO. As can be seen from Figure 3, conservation
rates vary widely among different functional classes, both
for background conservation rate, and among dynamic and
static frequent subgraphs. The figure shows the conserva-
tion rates for proteins that are participating in frequent sub-
graphs with three and four nodes w.r.t. 12 different classes
of protein functions. For each function the general conser-
vation rate of proteins among this class is depicted. The
second, third and fourth bars of the histogram stand for the
conservation rate of proteins involved in static frequent sub-
graphs, in dynamic patterns (therefore also in static frequent
subgraphs) and the conservation rate of proteins that play
a role in static frequent subgraphs only. It can be seen that
frequent subgraphs with three and four nodes both show dif-
ferences in their conservation rate dependig on the protein
functions. For example, proteins with structural molecule
activity or proteins regulating transcription participating
only in static frequent subgraphs are highly conserved in
subgraphs with three nodes only. Proteins that have met-
allochaperone activity or regulate translation or chaperones
are not conserved, neither in static nor in dynamic patterns.
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Figure 3: Evaluation w.r.t. protein function of frequent subgraphs with three and four nodes.

5.7 Selected Frequent Subgraphs
The most frequent and significant (p < 0.0001) subgraph

with three nodes in our dynamic network has 4,060 embed-
dings and is depicted in Figure 4(a). Two proteins share the
same biological function catalytic activity, whereas the third
is a transporter protein. This is not surprising as transporter
proteins catalyze the transfer of a substance from one side of
a membrane to the other. Within these 4,060 embeddings we
detect 1,728 dynamic patterns comprising two time points.
Figure 4(b) shows a significant (p < 0.0001) static frequent
subgraph with three embeddings, but in two of them we
detect a dynamic pattern that has identical behaviour of co-
expression over a period of 16 out of 17 time points. The
corresponding interacting proteins are organized under bind-
ing, enzyme regulator activity and motor activity term of
GO, respectively. This static frequent subgraph has quite
few embeddings, but includes the longest dynamic pattern
within static frequent subgraphs of size 3.

The most frequent subgraph of size 4 has 18,056 embed-
dings (cf. Figure 4(c)). Two proteins show catalysis prop-
erties whereas the other two are binding proteins. 8,511 out
of these embeddings have dynamic patterns comprising two
time points. In Figure 4(d) the most significant (p < 0.0001)
frequent subgraph has three embeddings, whereof two have
a dynamic pattern over a time period of 15 time steps. This
indicates that this subgraph shows identical temporal be-
haviour over almost the whole time course. In the first time
step both the binding protein and the transportation protein
show very low expression levels.

6. CONCLUSION
In this paper, we have presented a framework for frequent

dynamic subgraph discovery in dynamic graphs. We have
shown how to efficiently compute these patterns using suffix
trees. Furthermore, we have described how to combine fre-
quent subgraph mining algorithms with our dynamic frame-
work and we have applied our framework on a large real-
world case study to handle dynamic graphs. Dynamic graph
mining is a technique that can be used in many fields of ap-
plications. Finding dynamic patterns in PPI maps promises
to reveal interesting insights into biological processes. Simi-
larly, dynamics in social networks could contain interesting
patterns, which could be discovered by dynamic graph min-
ing. Furthermore, telecommunication logs could be exam-
ined to try to uncover special dynamic patterns. We intend
to explore these applications in future research.
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