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Abstract. The similarity join has become an important database primitive for supporting sim-
ilarity searches and data mining. A similarity join combines two sets of complex objects such
that the result contains all pairs of similar objects. Two types of the similarity join are well-
known, the distance range join, in which the user defines a distance threshold for the join, and
the closest pair query or k-distance join, which retrieves the k most similar pairs. In this pa-
per, we propose an important, third similarity join operation called the k-nearest neighbour join,
which combines each point of one point set with its k nearest neighbours in the other set. We
discover that many standard algorithms of Knowledge Discovery in Databases (KDD) such as
k-means and k-medoid clustering, nearest neighbour classification, data cleansing, postprocess-
ing of sampling-based data mining, etc. can be implemented on top of the k-nn join operation
to achieve performance improvements without affecting the quality of the result of these algo-
rithms. We propose a new algorithm to compute the k-nearest neighbour join using the multipage
index (MuX), a specialised index structure for the similarity join. To reduce both CPU and I/O
costs, we develop optimal loading and processing strategies.

Keywords: Data mining; Knowledge discovery in databases (KDD); Similarity join; Nearest
neighbour; Multimedia database; High-dimensional indexing

1. Introduction

Knowledge Discovery in Databases (KDD) is the non-trivial process of identify-
ing valid, novel, potentially useful, and ultimately understandable patterns in data
(Fayyad et al. 1996). The KDD process (Brachmann and Anand 1996) is an interac-
tive and iterative process, involving numerous steps, including preprocessing of the
data (data cleansing) and postprocessing (evaluation of the results). The core step
of the KDD process is data mining, i.e. finding patterns of interest, such as clus-
ters, outliers, classification rules or trees, association rules, and regressions. KDD
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Fig. 1. Difference between similarity join operations.

algorithms in multidimensional databases are often based on similarity queries that
are performed for a large number of objects. Recently, it has been recognised that
many similarity search (Agrawal et al. 1995) and data mining (Böhm et al. 2000)
algorithms can be based on top of a single join query instead of many similarity
queries. Thus, a large number of single similarity queries is replaced by a single run
of a similarity join. The most well-known form of the similarity join is the distance
range join R ��ε S, which is defined for two finite sets of vectors, R = {r1, . . . , rn}
and S = {s1, . . . , sm}, as the set of all pairs from R × S having a distance of no
more than ε:

R ��ε S := {(ri, s j) ∈ R × S| ‖ ri − s j ‖≤ ε} .

For example, in (Böhm et al. 2000), it has been shown that density-based cluster-
ing algorithms such as DBSCAN (Sander et al. 1998) or the hierarchical cluster
analysis method OPTICS (Ankerst et al. 1999) can be accelerated by high factors
of typically one or two orders of magnitude by the range distance join. Due to its
importance, a large number of algorithms to compute the range distance join of two
sets have been proposed (e.g. Shim et al. 1997; Koudas and Sevcik 1997; Böhm et
al. 2001).

Another important similarity join operation which has been recently proposed is
the incremental distance join (Hjaltason and Samet 1998). This join operation orders
the pairs from R × S by increasing distance and returns them to the user either on
a give-me-more basis, or based on a user-specified cardinality of k best pairs (which
corresponds to a k-closest pair operation in computational geometry (cf. Preparata
and Shamos 1985)). This operation can be successfully applied to implement data
analysis tasks such as noise-robust catalogue matching and noise-robust duplicate
detection (Böhm 2001).

In this paper, we investigate a third kind of similarity join, the k-nearest neighbour
similarity join, or k-nn join for short. This operation is motivated by the observation
that many data analysis and data mining algorithms are based on k-nearest neighbour
queries which are issued separately for a large set of query points R = {r1, . . . , rn}
against another large set of data points S = {s1, . . . , sm}. In contrast to the incre-
mental distance join and the k-distance join, which choose the best pairs from the
complete pool of pairs R × S, the k-nn join combines each of the points of R with
its k nearest neighbours in S. The differences between the three kinds of similarity
join operations are depicted in Fig. 1.

Applications of the k-nn join include but are not limited to the following list:
k-nearest neighbour classification, k-means clustering, sample assessment and
sample postprocessing, missing value imputation, k-distance diagrams, etc. We dis-
cuss how k-means clustering, nearest neighbour classification, and various other algo-
rithms can be transformed such that they operate exclusively on top of the k-nearest
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neighbour join. This transformation typically leads to performance gains of up to
a factor of 8.5.

Our list of applications covers all stages of the KDD process. In the preprocessing
step, data cleansing algorithms are typically based on k-nearest neighbour queries for
each of the points with NULL values against the set of complete vectors. The missing
values can be computed e.g. as the weighted means of the values of the k nearest
neighbours. A k-distance diagram can be used to determine suitable parameters for
data mining. Additionally, in the core step, i.e. data mining, many algorithms such
as clustering and classification are based on k-nn queries. As such algorithms are
often time consuming and have at least linear, and often n log n or even quadratic,
complexity they typically run on a sample set rather than the complete data set.
The k-nn queries are used to assess the quality of the sample set (preprocessing).
After the run of the data mining algorithm, it is necessary to relate the result to the
complete set of database points (Breunig et al. 2001). The typical method for doing
that is again a k-nn query for each of the database points with respect to the set
of classified sample points. In all these algorithms, it is possible to replace a large
number of k-nn queries which are originally issued separately by a single run of
a k-nn join. Therefore, the k-nn join gives powerful support for all stages of the
KDD process.

The remainder of this paper, which is an extended version of (Böhm and Krebs
2002), is organised as follows: In Sect. 2, we give a classification of the well-known
similarity join operations and review related work. In Sect. 3, we define the new op-
eration, the k-nearest neighbour join. Section 4 is dedicated to applications of the
k-nn join. We show that typical data mining methods can be easily implemented on
top of the join. In Sect. 5, we develop an algorithm for the k-nn join which applies
suitable loading and processing strategies on top of the multipage index (Böhm and
Kriegel 2001), an index structure which is particularly suited to high-dimensional
similarity joins, in order to reduce both CPU and I/O costs and efficiently compute
the k-nn join. The experimental evaluation of our approach is presented in Sect. 6,
and Sect. 7 concludes the paper.

2. Related Work

In the relational data model, a join means combining the tuples of two relations
R and S into pairs if a join predicate is fulfilled. In multidimensional databases,
R and S contain points (feature vectors) rather than ordinary tuples. In a similarity
join, the join predicate is similarity, e.g. the Euclidean distance between two feature
vectors.

2.1. Distance-Range-Based Similarity Join

The most prominent and most evaluated similarity join operation is the distance range
join. Therefore, the notions similarity join and distance range join are often used
interchangeably. Unless otherwise specified, when speaking of the similarity join,
often the distance range join is meant by default. For clarity in this paper, we will
not follow this convention and always use the more specific notions. As depicted in
Fig. 1a, the distance range join R ��ε S of two multidimensional or metric sets R
and S is the set of pairs for which the distance between the objects does not exceed
the given parameter ε:
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Fig. 2. mindist for the similarity join on R-trees.

Definition 1. Distance Range Join (ε-Join)
The distance range join R ��ε S of two finite multidimensional or metric sets R and
S is the set

R ��ε S := {(ri, s j) ∈ R × S :‖ ri − s j ‖≤ ε} .

The distance range join can also be expressed in a SQL-like fashion:

SELECT ∗ FROM R, S WHERE ‖ R.obj − S.obj ‖≤ ε .

In both cases, ‖ · ‖ denotes the distance metric which is assigned to the multi-
media objects. For multidimensional vector spaces, ‖ · ‖ usually corresponds to the
Euclidean distance. The distance range join can be applied in density-based cluster-
ing algorithms, which often define the local data density as the number of objects in
the ε-neighbourhood of some data object. This essentially corresponds to a self-join
using the distance range paradigm.

As for plain range queries in multimedia databases, a general problem of distance
range joins from the user’s point of view is that it is difficult to control the result
cardinality of this operation. If ε is chosen too small, no pairs are reported in the
result set (or in the case of a self join: each point is only combined with itself).
In contrast, if ε is chosen too large, each point of R is combined with every point
in S, which leads to a quadratic result size and thus to a time complexity of any join
algorithm which is at least quadratic; more exactly o (|R|·|S|). The range of possible
ε-values for which the result set is non-trivial and the result set size is sensible is
often quite narrow, which is a consequence of the curse of dimensionality. Provided
that the parameter ε is chosen in a suitable range and is also adapted to an increasing
number of objects such that the result set size remains approximately constant, the
typical complexity of advanced join algorithms is better than quadratic.

Most related work on join processing using multidimensional index structures
is based on the spatial join. We adapt the relevant algorithms to allow distance-
based predicates for multidimensional point databases instead of the intersection of
polygons. The most common technique is the R-tree Spatial Join (RSJ) (Brinkhoff
et al. 1993), which processes R-tree-like index structures built on both relations R
and S. RSJ is based on the lower bounding property, which means that the distance
between two points is never smaller than the distance (the so-called mindist (see
Fig. 2)) between the regions of the two pages in which the points are stored. The
RSJ algorithm traverses the indexes of R and S synchronously. When a pair of
directory pages (PR, PS) is under consideration, the algorithm forms all pairs of the
child pages of PR and PS having distances of at most ε. For these pairs of child
pages, the algorithm is called recursively, i.e. the corresponding indexes are traversed
in a depth-first order. Various optimizations of RSJ have been proposed, such as
the BFRJ algorithm (Huang et al. 1997), which traverses the indexes according to
a breadth-first strategy.
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Recently, index-based similarity join methods have been analysed from a theor-
etical point of view. Böhm and Kriegel (2001) proposed a cost model based on the
concept of the Minkowski sum (Berchtold et al. 1997) which can be used for opti-
mizations such as page size optimisation. The analysis reveals a serious optimisation
conflict between CPU and I/O time. While the CPU requires fine-grained partitioning
with page capacities of only a few points per page, large block sizes of up to 1 MB
are necessary for efficient I/O operations. Optimising for CPU deteriorates the I/O
performance and vice versa. The consequence is that an index architecture is neces-
sary which allows a separate optimisation of CPU and I/O operations. Therefore, the
authors proposed the Multipage Index (MuX), a complex index structure with large
pages (optimised for I/O) which accommodate a secondary search structure (opti-
mised for maximum CPU efficiency). It was shown that the resulting index yields
an I/O performance which is similar to the I/O-optimised R-tree similarity join and
a CPU performance which is close to the CPU-optimised R-tree similarity join.

If no multidimensional index is available, it is possible to construct the index
on the fly before starting the join algorithm. Several techniques for bulk-loading
multidimensional index structures have been proposed (Kamel and Faloutsos 1994;
van den Bercken et al. 1997). The seeded tree method (Lo and Ravishankar 1994)
joins two point sets provided that only one is supported by an R-tree. The partitioning
of this R-tree is used for a fast construction of the second index on the fly. The
spatial hash-join (Lo and Ravishankar 1994; Patel and DeWitt 1996) decomposes
the set R into a number of partitions which is determined according to given system
parameters.

A join algorithm particularly suited to similarity self joins is the ε-kdB-tree (Shim
et al. 1997). The basic idea is to partition the data set perpendicularly to one selected
dimension into stripes of width ε to restrict the join to pairs of subsequent stripes.
To speed up the CPU operations, for each stripe a main memory data structure,
the ε-kdB-tree is constructed, which also partitions the data set according to the
other dimensions until a defined node capacity is reached. For each dimension, the
data set is partitioned at most once into stripes of width ε. Finally, a tree-matching
algorithm is applied which is restricted to neighbouring stripes. Koudas and Sevcik
have proposed the Size Separation Spatial Join (Koudas and Sevcik 1997) and the
Multidimensional Spatial Join (Koudas and Sevcik 1998), which make use of space-
filling curves to order the points in a multidimensional space. An approach which
explicitly deals with massive data sets and thereby avoids the scalability problems
of existing similarity join techniques is the Epsilon Grid Order (EGO) (Böhm et al.
2001). It is based on a particular sort order of the data points which is obtained by
laying an equidistant grid with cell length ε over the data space and then compares
the grid cells lexicographically.

2.2. Closest Pair Queries

It is possible to overcome the problems of controlling the selectivity by replacing
the range-query-based join predicate using conditions which specify the selectivity.
In contrast to range queries which potentially retrieve the whole database, the se-
lectivity of a (k-)closest pair query is (up to tie situations) clearly defined. This
operation retrieves the k pairs of R × S having minimum distance (see Fig. 1b).
Closest pair queries do not only play an important role in the database research but
also have a long history in computational geometry (Preparata and Shamos 1985).
In the database context, the operation was introduced by Hjaltason and Samet (Hjal-
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tason and Samet 1998) using the term (k-)distance join. The (k-)closest pair query
can be formally defined as follows:

Definition 2. (k-)Closest Pair Query R ��
k-CP

S
R ��

k-CP
S is the smallest subset of R × S that contains at least k pairs of points and

for which the following condition holds:

∀(r, s) ∈ R ��
k-CP

S,∀(r ′, s′) ∈ R × S\R ��
k-CP

S :‖ r − s ‖<‖ r ′ − s′ ‖ . (1)

This definition directly corresponds to the definition of (k-)nearest neighbour queries,
where the single data object o is replaced by the pair (r, s). Here, tie situations are
broken by enlargement of the result set. It is also possible to change Definition 2
such that the tie is broken non-deterministically by a random selection. Hjaltason and
Samet (1998) defined the closest pair query (non-deterministically) by the following
SQL statement:

SELECT ∗ FROM R, S

ORDER BY ‖ R.obj − S.obj ‖
STOP AFTER k

We give two more remarks regarding self joins. Obviously, the closest pairs of the
selfjoin R ��

k-CP
R are the n pairs (ri , ri), which trivially have the distance 0 (for any

distance metric), where n = |R| is the cardinality of R. Usually, these trivial pairs
are not needed, and, therefore, they should be avoided in the WHERE clause. Like
the distance range self join, the closest pair self join is symmetric (unless nondeter-
minism applies). Applications of closest pair queries (particularly self joins) include
similarity queries like

• find all stock quota in a database that are similar to each other
• find music scores which are similar to each other
• noise-robust duplicate elimination in multimedia applications
• match two collections of arbitrary multimedia objects

Hjaltason and Samet (1998) also defined the distance semijoin which performs a GROUP
BY operation on the result of the distance join. All join operations, k-distance join, incre-
mental distance join, and distance semijoin, are evaluated using a pqueue data structure
in which node-pairs are ordered by increasing distance.

The most interesting challenge in algorithms for the distance join is the strategy
for accessing pages and forming page pairs. Analogously to the various strategies
for single nearest neighbour queries such as those of Roussopoulos et al. (1995)
and Hjaltason and Samet (1995), Corral et al. (2000) proposed 5 different strategies
including recursive algorithms and an algorithm based on a pqueue. Shin et al. (2000)
proposed a plane sweep algorithm for the node expansion for the above-mentioned
pqueue algorithm. In the same paper, Shim et al. also proposed the adaptive multi-
stage algorithm, which employs aggressive pruning and compensation methods based
on statistical estimates of the expected distance values.

3. The k-nn Join

The range distance join has the disadvantage of a result set cardinality which is
difficult to control. This problem has been overcome by the closest pair query, in
which the result set size (up to the rare tie effects) is given by the query parameter k.
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However, there are only a few applications which require the consideration of the k
best pairs of two sets. Much more prevalent are applications such as classification
or clustering in which each point of one set must be combined with its k closest
partners in the other set, which is exactly the operation that corresponds to our new
k-nearest neighbour similarity join (see Fig. 1c). Formally, we define the k-nn join
as follows:

Definition 3. k-nn Join R ��|
k-nn

S
R ��|

k-nn
S is the smallest subset of R × S that contains for each point of R at least

k points of S and for which the following condition holds:

∀(r, s) ∈ R ��|
k-nn

S,∀(r, s′) ∈ R × S\R ��|
k-nn

S : ‖ r − s ‖<‖ r − s′ ‖ . (2)

In contrast to the closest pair query, here it is guaranteed that each point of R appears
in the result set exactly k times. Points of S may appear once, more than once (if
a point is among the k-nearest neighbours of several points in R), or not at all (if
a point does not belong to the k-nearest neighbours of any point in R). Our k-nn
join can be expressed in an extended SQL notation:

SELECT * FROM R,
( SELECT * FROM S

ORDER BY ‖ R.obj − S.obj ‖
STOP AFTER k ) .

The closest pair query applies the principle of the nearest neighbour search (finding
k best things) on the basis of the pairs. Conceptually, first, all pairs are formed, and
then, the best k are selected. In contrast, the k-nn join applies this principle on a
“per point of the first set” basis. For each of the points of R, the k best join partners
are searched. This is an essential difference of concepts.

Again, tie situations can be broken deterministically by enlarging the result set
as in this definition or by random selection. For the self join, we have again the
situation that each point is combined with itself, which can be avoided using the
WHERE clause. Unlike the ε-join and the k-closest pair query, the k-nn self join
is not symmetric as the nearest neighbour relation is not symmetric. Equivalently,
the join R ��|

k-nn
S, which retrieves the k nearest neighbours for each point of R, is

essentially different from S ��|
k-nn

R, which retrieves the nearest neighbours of each
S-point. This is symbolised in our symbolic notation, which uses an asymmetric
symbol for the k-nn join in contrast to the other similarity join operations.

4. Applications

4.1. k-Means and k-Medoid Clustering

The k-means method (cf. Han and Kamber 2000) is the most important and most
widespread approach to clustering. For k-means clustering the number k of clusters
to be searched must be previously known. The method determines k cluster centres
such that each database point can be assigned to one of the centres to minimise the
overall distance of the database points to their associated centre points.

The basic algorithm for k-means clustering works as follows: In the initialisa-
tion, k database points are randomly selected as tentative cluster centres. Then, each
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Fig. 3. k-means clustering.

database point is associated with its closest centre point and, thus, a tentative clus-
ter is formed. Next, the cluster centres are redetermined as the mean point of all
points of the centre, simply by forming the vector sum of all points of a (tentative)
cluster. The two steps of (1) point association and (2) cluster centre redetermination
are repeated until convergence (no more considerable change). It has been shown
that (under several restrictions) the algorithm always converges. The cluster centres
which are generated in step (2) are artificial points rather than database points. This
is often not desired, and, therefore, the k-medoid algorithm always selects a database
point as a cluster centre.

The k-means algorithm is visualised in Fig. 3 using k = 3. In Fig. 3a, k = 3
points (white symbols ) are randomly selected as initial cluster centres. Then,
in Fig. 3b, the remaining data points are assigned to the closest centre, which is
depicted by the corresponding symbols ( ). The cluster centres are redetermined
(moving arrows). The same two operations are repeated in Fig. 3c. If the points are
finally assigned to their closest centre, no assignment changes, and, therefore, the
algorithm terminates, clearly having separated the three visible clusters. In contrast to
density-based approaches, k-means only separates compact clusters, and the number
of actual clusters must be previously known.

It has not yet been recognised in the data mining community that the point as-
sociation step which is performed in each iteration of the algorithm corresponds to
a (k = 1) nearest neighbour join between the set of centre points (on the right side)
and the set of database points (on the left side of the join symbol) because each
database point is associated with its nearest neighbour among the centre points:

database-point-set ��|
1-NN

center-point-set .

During the iteration over the cursor of the join, it is also possible to keep track
of changes and to redetermine the cluster center for the next iteration. The corres-
ponding pseudocode is depicted in the following:

repeat
change := false ;
foreach (dp,cp) ∈ database-point-set ��|

1-NN
centre-point-set do

if dp.centre 	= cp.id then change := true ;
dp.centre := cp.id ;
cp.newsum := cp.newsum + dp.point ;
cp.count := cp.count + 1 ;

foreach cp ∈ centre-point-set do
cp.point := cp.newsum / cp.count ;

until ¬ change ;
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Fig. 4. k-nearest neighbour classification.

4.2. k-Nearest Neighbour Classification

Another very important data mining task is classification. Classification is somewhat
similar to clustering (which is often called unsupervised classification). In classifi-
cation, a part of the database objects is assigned to class labels (for our example of
astronomy databases we have different classes of stars, galaxies, planets, etc.). For
classification, a set of objects without class label (newly detected objects) is also
given. The task is to determine the class labels for each of the unclassified objects
by taking the properties of the classified objects into account. A widespread approach
is to build up tree-like structures from the classified objects where the nodes corres-
pond to ranges of attribute values and the leaves indicate the class labels (called
classification trees (cf. Han and Kamber 2000)). Another important approach is
k-nearest neighbour classification (Hattori and Torii 1993). Here, for each unclassi-
fied object, a k-nearest neighbour query on the set of classified objects is evaluated
(k is a parameter of the algorithm). The object is, e.g., assigned to the class label
of the majority of the resulting objects of the query. This principle is visualised in
Fig. 4. As, for each unclassified object, a k-nn-query on the set of classified objects
is evaluated, this corresponds again to a k-nearest neighbour join:

unclassified-point-set ��|
k-nn

classified-point-set .

4.3. Sampling-Based Data Mining

Data mining methods which are based on sampling often require a k-nearest neighbour
join between the set of sample points and the complete set of original database points.
Such a join is necessary, for instance, to assess the quality of a sample. The k-nearest
neighbour join can give hints on whether the sample rate is too small. Another appli-
cation is the transfer of the data mining result onto the original data set after the actual
run of the data mining algorithm (Breunig et al. 2001). For instance, if a clustering al-
gorithm has detected a set of clusters in the sample set, it is often necessary to asso-
ciate each of the database points to the cluster to which it belongs. This can be done
by a k-nn join with k = 1 between the point set and the set of sample points:

sample-set ��|
k-nn

point-set .

The same is possible after sample based classification, trend detection, etc.

4.4. k-Distance Diagrams

The most important limitation of the DBSCAN algorithm is the difficult determin-
ation of the query radius ε. Sander et al. (1998) proposed a method called the k-
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Fig. 5. k-distance diagram.

distance diagram to determine a suitable radius ε. For this purpose, a number of
objects (typically 5–20 percent of the database) is randomly selected. For these ob-
jects, a k-nearest neighbour query is evaluated, where k corresponds to the parameter
MIN_PTS which will be used during the run of DBSCAN. The resulting distances
between the query points and the k-th nearest neighbour of each are then sorted and
depicted in a diagram (see Fig. 5). Vertical gaps in that plot indicate distances that
clearly separate different clusters, because there exist larger k-nearest neighbour dis-
tances (inter-cluster distances, noise points) and smaller ones (intra-cluster distance).
As for each sample point, a k-nearest neighbour query is evaluated on the original
point set; this corresponds to a k-nn join between the sample set and the original
set:

sample-set ��|
k-nn

point-set .

If the complete data set is taken instead of the sample, we have a k-nn self join:

point-set ��|
k-nn

point-set .

5. Fast Index Scans for the k-nn Join

In this section we develop an algorithm for the k-nn join which applies suitable
loading and processing strategies on top of a multidimensional index structure, the
multipage index (Böhm and Kriegel 2001), to efficiently compute the k-nn join.
We have shown for the distance range join that it is necessary to optimise index
parameters such as the page capacity separately for CPU and I/O performance. We
have proposed a new index architecture (Multipage Index, MuX), depicted in Fig. 6,
which allows such a separate optimisation. The index consists of large pages which
are optimised for I/O efficiency. These pages accommodate a secondary R-tree like
a main memory search structure with a page directory (storing pairs of MBR and
a corresponding pointer) and data buckets, which are containers for the actual data
points. The capacity of the accommodated buckets is much smaller than the capacity
of the hosting page. It is optimised for CPU performance. We have shown that the
distance range join on the Multipage Index has an I/O performance similar to an R-
tree that is purely I/O optimised and has a CPU performance like an R-tree that is
purely CPU optimised. Although this issue is up to future work, we assume that the
k-nn join also clearly benefits from the separate optimisation (because optimisation
trade-offs are very similar).
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Fig. 6. Index architecture of the multipage index.

Fig. 7. The fast index scan for single range queries (l.) and for single nearest neighbour queries (r.).

In the following description, we assume for simplicity that the hosting pages of
our Multipage Index only consist of one directory level and one data level. If there
are more directory levels, these levels are processed in a breadth first approach ac-
cording to some simple strategy, because most costs arise in the data level. Therefore,
our strategies focus on the last level.

5.1. The Fast Index Scan

In our previous work (Berchtold et al. 2000), we already investigated fast index scans,
however not in the context of a join operation but in the context of single similarity
queries (range queries and nearest neighbour queries) which are evaluated on top of
an R-tree-like index structure, our IQ tree. The idea is to chain I/O operations for
subsequent pages on disk. This is relatively simple for range queries: If the index
is traversed breadth-first, then the complete set of required pages at the next level
is exactly known in advance. Therefore, pages which have adjacent positions on the
disk can be immediately grouped together into a single I/O request (see Fig. 7, left
side). But pages which are not direct neighbours but are only close together can also
be read without disk head movement. So the only task is to sort the page requests by
(ascending) disk addresses before actually performing them. For nearest neighbour
queries the trade-off is more complex: These are usually evaluated by the HS algo-
rithm (Hjaltason and Samet 1995), which has been proven to be optimal w.r.t. the
number of accessed pages. Although the algorithm loses its optimality by I/O chain-
ing of page requests, it pays off to chain pages together which have a low probability
of being pruned before their actual request is due. We have proposed a stochastic
model to estimate the probability of a page being required for a given nearest neigh-
bour query. Based on this model we can estimate the cost for various chained and
unchained I/O requests and thus optimise the I/O operations (see Fig. 7, right side).

Taking a closer look at the trade-off which is exploited in our optimisation: If we
apply no I/O chaining or overcautious I/O chaining, then the number of processed



The k-Nearest Neighbour Join: Turbo Charging the KDD Process 739

pages is optimal or close to optimal but due to heavy disk head movements these
accesses are very expensive. If considerable parts of the data set are needed to answer
the query, the index can be outperformed by the sequential scan. In contrast, if too
many pages are chained together, many pages are processed unnecessarily before
the nearest neighbour is found. If only a few pages are needed to answer a query,
I/O chaining should be carefully applied, and the index should be traversed in the
classical way of the HS algorithm. Our probability estimation grasps this rule of
thumb with many gradations between the two extremes.

5.2. Optimisation Goals of the Nearest Neighbour Join

In brief, the trade-off of the nearest neighbour search is between (1) getting the
nearest neighbour early and (2) limiting the cost for the single I/O operations. In
this section, we will describe a similar trade-off in the k-nearest neighbour join. One
important goal of the algorithm is to get a good approximation of the nearest neigh-
bour (i.e. a point which is not necessarily the nearest neighbour but a point which
is not much worse than the nearest neighbour) for each of these active queries as
early as possible. With a good conservative approximation of the nearest neighbour
distance, we can even abstain from our probabilistic model of the previous para-
graph and handle nearest neighbour queries further on, as in range queries. Only a
few pages are processed too much.

In contrast to single similarity queries, the seek cost does not play an important
role in our join algorithm because our special index structure, MuX, is optimised for
disk I/O. Our second aspect, however, is the CPU performance, which is negligible
for single similarity queries but not for join queries. From the CPU point of view, it
is not a good strategy to load a page and immediately process it (i.e. join it with all
pages which are already in the main memory, which is usually done for join queries
with a range query predicate). Instead, the page should be paired only with those
pages for which one of the following conditions holds:

• It is probable that this pair leads to a considerable reduction of some nearest
neighbour distance

• It is improbable that the corresponding mate page will receive any improvements
of its nearest neighbour distance in future

While the first condition seems to be obvious, the second condition is also important
because it ensures that unavoidable workloads are done before other workloads which
are avoidable. The cache is primarily loaded with those pages for which it is most
unclear whether or not they will be needed in the future.

5.3. Basic algorithm

For the k-nn join R ��|
k-nn

S, we denote the data set R for each point of which the
nearest neighbours are searched as the outer point set. Consequently, S is the inner
point set. As in Böhm and Kriegel (2001) we process the hosting pages of R and
S in two nested loops (obviously, this is not a nested loop join). Each hosting page
of the outer set R is accessed exactly once. The principle of the nearest neighbour
join is illustrated in Fig. 8. A hosting page PR1 of the outer set with 4 accommo-
dated buckets is depicted in the middle. For each point stored in this page, a data
structure for the k nearest neighbours is allocated. Candidate points are maintained
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Fig. 8. k-nn join on the multipage index (here k = 1).

in these data structures until they are either discarded and replaced by new (better)
candidate points or until they are confirmed to be the actual nearest neighbours of
the corresponding point. When a candidate is confirmed, it is guaranteed that the
database cannot contain any closer points, and the pair can be written to the out-
put. The distance of the last (i.e. k-th or worst) candidate point of each R-point
is the pruning distance: Points, accommodated buckets, and hosting pages beyond
that pruning distance need not be considered. The pruning distance of a bucket is
the maximum pruning distance of all points stored in this bucket, i.e. all S-buckets
which have a distance from a given R-bucket that exceeds the pruning distance of
the R-bucket can be safely neglected as join-partners of that R-bucket. Similarly, the
pruning distance of a page is the maximum pruning distance of all accommodated
buckets.

In contrast to conventional join methods, we reserve only one cache page for
the outer set R, which is read exactly once. The remaining cache pages are used
for the inner set S. For other join predicates (e.g. relational predicates or a distance
range predicate), a strategy which caches more pages of the outer set is beneficial for
I/O processing (the inner set is scanned fewer times) while the CPU performance is
not affected by the caching strategy. For the k-nn join predicate, the cache strategy
affects both I/O and CPU performance. It is important that, for each considered point
of R, good candidates (i.e. near neighbours, not necessarily the nearest neighbours)
are found as early as possible. This is more likely when reserving more cache for
the inner set S. The basic algorithm for the k-nn join is given below:

1 foreach PR of R do
2 cand : PQUEUE [|PR|, k] of point := {⊥,⊥, . . . ,⊥} ;
3 foreach PS of S do PS.done := false ;
4 while ∃i such that cand [i] is not confirmed do
5 while ∃ empty cache frame ∧
6 ∃ PS with (¬PS.done ∧¬ IsPruned(PS)) do
7 apply loading strategy if more than 1 PS exist
8 load PS to cache ;
9 PS.done := true ;
10 apply processing strategy to select a bucket pair ;
11 process bucket pair ;
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A short explanation: Line 1 iterates over all hosting pages PR of the outer point
set R, which are accessed in an arbitrary order. For each point in PR, an array for the
k nearest neighbours (and the corresponding candidates) is allocated and initialised
with empty pointers in line 2. In this array, the algorithm stores candidates which
may be replaced by other candidates until the candidates are confirmed. A candidate
is confirmed if no unprocessed hosting page or accommodated bucket exists which
is closer to the corresponding R-point than the candidate. Consequently, the loop
4 iterates until all candidates are confirmed. In lines 5–9, empty cache pages are
filled with hosting pages from S whenever this is possible. This happens at the
beginning of processing and whenever pages are discarded because they are either
processed or pruned for all R-points. The decision of which hosting page to load
next is implemented in the so-called loading strategy which is described in Sect. 5.4.
Note that the actual page access can also be done asynchronously in a multithreaded
environment. After that, we have the accommodated buckets of one hosting R-page
and of several hosting S-pages in the main memory. In lines 10–11, one pair of
such buckets is chosen and processed. For choosing, our algorithm applies a so-
called processing strategy which is described in Sect. 5.5. During processing, the
algorithm tests whether points of the current S-bucket are closer to any point of the
current R-bucket than the corresponding candidates are. If so, the candidate array is
updated (not depicted in our algorithm) and the pruning distances are also changed.
Therefore, the current R-bucket can safely prune some of the S-buckets that formerly
were considered join partners.

5.4. Loading Strategy

In conventional similarity searches, in which the nearest neighbour is searched only
for one query point, it can be proven that the optimal strategy is to access the pages in
the order of increasing distance from the query point (Berchtold et al. 1997). For our
k-nn join, we are simultaneously processing nearest neighbour queries for all points
stored in a hosting page. To exclude as many hosting pages and accommodated buck-
ets of S from being join partners of one of these simultaneous queries, it is necessary
to decrease all pruning distances as early as possible. The problem we are addressing
now is which page should be accessed next in lines 5–9 to achieve this goal.

Obviously, if we consider the complete set of points in the current hosting page
PR to assess the quality of an unloaded hosting page PS, the effort for the opti-
misation of the loading strategy would be too high. Therefore, we do not use the
complete set of points but rather the accommodated buckets: the pruning distances
of the accommodated buckets have to decrease as fast as possible.

In order for a page PS to be good, this page must have the power of considerably
improving the pruning distance of at least one of the buckets BR of the current page
PR. Basically, there can be two obstacles that can prevent a pair of such a page PS
and a bucket BR from having a high improvement power: (1) the distance (mindist)
between this page–bucket pair is large, and (2) the bucket BR already has a small
pruning distance. Condition (1) corresponds to the well-known strategy of accessing
pages in the order of increasing distance to the query point. Condition (2), however,
tends to avoid the same bucket BR being repeatedly processed before another bucket
BR’ has reached a reasonable pruning distance (having such buckets BR in the system
causes much avoidable effort).

Therefore, the quality Q(PS) of a hosting page PS of the inner set S is not only
measured in terms of the distance to the current buckets but the distances are also
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Fig. 9. Structure of a fractionated pqueue.

related to the current pruning distance of the buckets:

Q(PS) = max
BR∈PR

{
prunedist(BR)

mindist(PS, BR)

}
. (3)

Our loading strategy applied in line 7 is to access the hosting pages PS in the order
of decreasing quality Q(PS), i.e. we always access the unprocessed page with the
highest quality.

5.5. Processing Strategy

The processing strategy is applied in line 10. It addresses the question of the order
in which the accommodated buckets of R and S that have been loaded into the cache
should be processed (joined by an in-memory join algorithm). The typical situation
found at line 10 is that we have the accommodated buckets of one hosting page of
R and the accommodated buckets of several hosting pages of S in the cache. Our
algorithm has to select a pair of such buckets (BR,BS) which has a high quality, i.e.
a high potential of improving the pruning distance of BR. Similarly to the quality
Q(PS) of a page developed in Sect. 5.4, the quality Q(BR,BS) of a bucket pair rewards
a small distance and punishes a small pruning distance:

Q(BR,BS) = prunedist(BR)

mindist(BS, BR)
. (4)

We process the bucket pairs in order of decreasing quality. Note that we do not have
to redetermine the quality of every bucket pair each time our algorithm runs into
line 10, which would be prohibitively costly. To avoid this problem, we organise our
current bucket pairs in a tailor-made data structure, a fractionated pqueue (half sorted
tree). By fractionated we mean a pqueue of pqueues, as depicted in Fig. 9. Note that
this tailor-cut structure efficiently allows us (1) to determine the pair with maximum
quality, (2) to insert a new pair, and in particular (3) to update the prunedist of BRi ,
which affects the quality of a large number of pairs.

Processing bucket pairs with a high quality is highly important at an early stage
of processing until all R-buckets have a sufficient pruning distance. Later, the im-
provement power of the pairs does not differ very much and a new aspect comes
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into operation: The pairs should be processed such that one of the hosting S-pages
in the cache can be replaced as soon as possible by a new page. Therefore, our pro-
cessing strategy switches into a new mode if the last c (given parameter) processing
steps did not lead to a considerable improvement of any pruning distance. The new
mode is to select one hosting S-page PS in the cache and to process all pairs for
which one of the buckets BS accommodated by PS appears. We select that hosting
page PS with the fewest active pairs (i.e. the hosting page that causes least effort).

6. Experimental Evaluation

6.1. Join Algorithm and Strategies

We implemented the k-nearest neighbour join algorithm, as described in the previous
section, based on the original source code of the Multipage Index Join (Böhm and
Kriegel 2001) and performed an experimental evaluation using artificial and real data
sets of varying size and dimension. We compared the performance of our technique
with the nested block loop join (which basically is a sequential scan optimised for the
k-nn case) and the k-nn algorithm by Hjaltason and Samet (1995) as a conventional
non-join technique.

All our experiments were carried out under Windows NT4.0 SP6 on Fujitsu-
Siemens Celsius 400 machines equipped with Pentium III 700 MHz processors and at
least 128 MB of main memory. The installed disk device was a Seagate ST310212A
with a sustained transfer rate of about 9 MB/s and an average read access time of
8.9 ms with an average latency time of 5.6 ms.

We used synthetic as well as real data. The synthetic data sets consisted of 4,
6, and 8 dimensions and contained from 10 000 to 160 000 uniformly distributed
points in the unit hypercube. Our real-world data sets were a CAD database with
16-dimensional feature vectors extracted from CAD parts and a 9-dimensional set of
weather data. We allowed about 20% of the database size as cache resp. buffer for
both techniques and included the index creation time for our k-nn join and the HS
algorithm, while the nested block loop join (nblj) does not need any preconstructed
index.

The Euclidean distance was used to determine the k-nearest neighbour distance.
In order to show the effects of varying the neighbouring parameter k, we include
Fig. 10 with varying k (from 4-nn to 10-nn), while all other charts show results
for the case of 4 nearest neighbours. In Fig. 10, we can see that, except for the
nested block loop join, all techniques perform better for a smaller number of nearest
neighbours and the HS algorithm starts to perform worse than the nblj if more than
4 nearest neighbours are requested. This is a well-known fact for high-dimensional
data, as the pruning power of the directory pages deteriotates quickly with increasing
dimension and parameter k. This is also true, but far less dramatic, for the k-nn join
because of the use of much smaller buckets, which still preserves pruning power
for higher dimensions and parameters k. The size of the database used for these
experiments was 80 000 points.

The three charts in Fig. 11 show the results (from left to right) for the HS algo-
rithm, our k-nn join, and the nblj for the 8-dimensional uniform data set for varying
size of the database. The total elapsed time consists of the CPU time and the I/O
time. We can observe that the HS algorithm (despite using large block sizes for
optimisation) is clearly I/O bound while the nested block loop join is clearly CPU
bound. Our k-nn join has a somewhat higher CPU cost than the HS algorithm, but
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Fig. 10. Varying k for the 8-dimensional uniform data.

Fig. 11. Total time, CPU time, and I/O time for HS, k-nn join, and nblj for varying size of the database.

significantly less than the nblj, while it produces almost as little I/O as the nblj and
as a result clearly outperforms both the HS algorithm and the nblj. This balance be-
tween the CPU and I/O costs follows the idea of MuX in optimising the CPU and
I/O costs independently. For our artificial data, the speed-up factor of the k-nn join
over the HS algorithm is 37.5 for the small point set (10 000 points) and 9.8 for the
large point set (160 000 points), while compared with the nblj, the speed-up factor
increases from 7.1 to 19.4. We can also see that the simple but optimised nested
block loop join outperforms the HS algorithm for smaller database sizes because of
its high I/O cost.

One interesting effect is that our MuX algorithm for k-nn joins is able to prune
more and more bucket pairs with increasing size of the database; i.e. the percentage
of bucket pairs that can be excluded during processing increases with increasing
database size. We can see this effect in Fig. 12. Obviously, the k-nn join scales
much better with increasing size of the database than the other two techniques.

Figure 13 shows the results for the 9-dimensional weather data. The maximum
speed-up of the k-nn join compared with the HS algorithm is 28 and the maximum
speed-up compared with the nested block loop join is 17. For small database sizes,
the nested block loop join outperforms the HS algorithm, which might be due to the
cache/buffer and I/O configuration used. Again, as with the artificial data, the k-nn
join clearly outperforms the other techniques and scales well with the size of the
database.

Figure 14 shows the results for the 16-dimensional CAD data. Even for the high
dimensions of the data space and the poor clustering property of the CAD data
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Fig. 12. Pruning of bucket pairs for the k-nn join.

Fig. 13. Results for the 9-dimensional weather data.

Fig. 14. Results for the 16-dimensional CAD data.
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Fig. 15. Classification: 5-D SEQUOIA, 1000 classif. obj.

set, the k-nn join still reaches a speed-up factor of 1.3 for the 80 000-point set (with
increasing tendency for growing database sizes) compared with the nested block loop
join (which basically is a sequential scan optimised for the k-nn case). The speed-up
factor of the k-nn join over the HS algorithm is greater than 3.

6.2. Integration into KDD Methods

We implemented a k-means clustering algorithm and a k-nearest neighbour classifi-
cation algorithm in both versions traditionally with single similarity queries (nearest
neighbour queries) as well as on top of our new database primitive, the similarity
join. The competitive technique, the evaluation on top of single similarity queries,
was also supported by the same index structure which is traversed using a variation
of the nearest neighbour algorithm by Hjaltason and Samet (1995), which has been
shown by Berchtold et al. (1997) to yield an optimal number of page accesses.

We allowed about 20% of the database size as cache or buffer for both techniques
and included the index creation time for our k-nn join and the HS algorithm. We
used large data sets from various application domains, in particular:

• 5-dimensional feature vectors from earth observation. These data sets were gen-
erated from the well known SEQUOIA benchmark

• 9-dimensional feature vectors from a meteorology application as in Sect. 6.1
• 16-dimensional feature vectors from a similarity search system for CAD parts as

in Sect. 6.1
• 20-dimensional data from astronomy observations
• 64-dimensional feature vectors from a colour image database (colour histograms)

In our first set of experiments, we tested the k-nearest neighbour classification method
in which we varied the number of training objects (see Fig. 15) as well as the number
of objects which have to be classified (see Fig. 16). The superiority of our new
method becomes immediately clear from both experiments. The improvement factor
over the simple k-nn approach is high over all measured scales. It even improves
for an increasing number of training objects or classified objects, respectively, and
reaches a final factor of 9.1 in Fig. 15 (factor 2.0 in Fig. 16).

Figure 17 varies over our various data sets and shows that the improvement factor
also grows with increasing data space dimension. Our new database primitive out-
performs the well-known approach by factors starting with 1.8 for the 5-dimensional
space up to 3.2 for the 64-dimensional space.



The k-Nearest Neighbour Join: Turbo Charging the KDD Process 747

Fig. 16. Classification: 64-D image, 100 000 training.

Fig. 17. Classification: 100 000 train. 100 classif.

Fig. 18. Classification: 5-D SEQUOIA, 100 000 objects.

In our last experiment, depicted in Fig. 18, we tested the k-nearest neighbour
clustering method. In the depicted experiment, we varied the number of clusters to
be searched. Again, the improvement factor grows from 1.4 for the smallest number
of clusters to 5.1 for the largest number of clusters.
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7. Conclusions

In this paper, we have proposed an algorithm to efficiently compute the k-nearest
neighbour join, a new kind of similarity join. In contrast to other types of similarity
joins such as the distance range join, the k-distance join (k-closest pair query), and
the incremental distance join, our new k-nn join combines each point of a point set
R with its k nearest neighbours in another point set S. We have seen that the k-nn
join can be a powerful database primitive that allows the efficient implementation
of numerous methods of knowledge discovery and data mining such as classifica-
tion, clustering, data cleansing, and postprocessing. Our algorithm for the efficient
computation of the k-nn join uses the Multipage Index (MuX), a specialised index
structure for similarity join processing and applies matching loading and processing
strategies in order to reduce both CPU and I/O costs. Our experimental evaluation
demonstrates high performance gains compared with conventional methods.
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