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CHRISTIAN BÖHM Christian.Eoehm@umit.at
University for Health Informatics and Technology Tyrol, Innrain 98, 6020 Innsbruck, Austria

HANS-PETER KRIEGEL kriegel@dbs.informatik.uni-muenchen.de
University of Munich, Institute for Computer Science, Oettingenstr. 67, 80538 München, Germany

THOMAS SEIDL∗ seidl@informatik.uni-konstanz.de
University of Constance, Department of Computer and Information Science, Box D78, 78457 Konstanz, Germany

Abstract. Adaptable similarity queries based on quadratic form distance functions are widely popular in data
mining application domains including multimedia, CAD, molecular biology or medical image databases. Recently
it has been recognized that quantization of feature vectors can substantially improve query processing for Euclidean
distance functions, as demonstrated by the scan-based VA-file and the index structure IQ-tree. In this paper,
we address the problem that determining quadratic form distances between quantized vectors is difficult and
computationally expensive. Our solution provides a variety of new approximation techniques for quantized vectors
which are combined by an extended multistep query processing architecture. In our analysis section, we show
that the filter steps complement each other. Consequently, it is useful to apply our filters in combination. We show
the superiority of our approach over other architectures and over competitive query processing methods. In our
experimental evaluation, the sequential scan is outperformed by a factor of 2.3. Compared to the X-tree on 64
dimensional color histogram data, we measured an improvement factor of 5.7.
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1. Introduction

Similarity search in large databases has gained much attention during the last years. A suc-
cessful approach is provided by feature-based similarity models where appropriate proper-
ties of the objects are mapped to vectors of a usually high-dimensional space. The similarity
of objects is defined in terms of their distance in the feature space. In addition to the
Euclidean distance function which is a very simple but inflexible similarity measure,
quadratic forms often provide more appropriate similarity models. Given a positive definite
so-called similarity matrix A, the distance of two vectors p and q is defined to be

distA(p, q) =
√

(p − q) · A · (p − q)T .

∗Author to whom all correspondence should be addressed.
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As the locus of all points p having a distance distA(p, q) ≤ ε is an ellipsoid centered
around q, the quadratic form-based queries are called ellipsoid queries (Seidl and Kriegel,
1997).

Quadratic form distance functions have been successfully employed for a variety
of similarity models in different domains. Examples include the color histogram model
for color images in IBM’s Query By Image Content (QBIC) system (Faloutsos et al.,
1994; Hafner et al., 1995), histogram and non-histogram distances for images (Smith,
1997), the shape similarity model for 3D surface segments in a biomolecular data-
base (Kriegel et al., 1997; Kriegel and Seidl, 1998), a 2D shape similarity model for
clip arts (Ankerst et al., 1998), a 3D shape histogram model for proteins (Ankerst
et al., 1999), or the relevance feedback query system MindReader (Ishikawa et al.,
1998).

It has been widely recognized that in many application domains, there is not simply one
valid measure for the similarity of objects. Instead, the notion of similarity changes with
the user’s focus of search. This observation has led to the need of user-adaptable similarity
models where the user may adapt the similarity distance function to changing application
requirements or even to personal preferences. As an example, the color histogram approach
was extended to become user-adaptable (Seidl and Kriegel, 1997). The query system of
Ishikawa et al. (1998) based on relevance feedback through multiple examples relies on
iterated modifications of the query matrix thus approaching the ‘hidden’ distance function
in the user’s mind.

For an efficient query evaluation, feature vectors are often managed in a multidimensional
index. Various index structures have been proposed for this purpose (Lin et al., 1994; White
and Jain, 1996; Berchtold et al., 1996; Katayama and Satoh, 1997; Henrich, 1998). Due to
a bunch of problems usually called the ‘curse of dimensionality’, even specialized index
structures deteriorate with increasing dimension of the feature space. Weber et al. (1998)
have shown that in many situations, depending on parameters including the dimension, the
data distribution and the number of objects in the database, indexes often fail to outperform
simpler evaluation methods based on the sequential scan of the set of feature vectors. The
solution proposed by Weber et al. is therefore an improvement of the sequential scan by
quantizing the feature vectors, called VA-file (Weber et al., 1998). The general idea of the
VA-file is to store the features not with the full precision of e.g. 32 bit floating point values
but to use a reduced number of bits. For this purpose an irregular, quantile based grid is laid
over the data space. Following the paradigm of multistep query processing, candidates
produced by this filter step are exactly evaluated by a subsequent refinement step. The gain
of the lossy data compression is a reduced time to load the feature vectors from secondary
storage. Queries using Euclidean distance metric can be accelerated by factors up to 6.0
with this technique, if the search is I/O bound.

While the VA-file is an excellent choice for Euclidean and weighted Euclidean distance
metric, several problems come up when the similarity measure is a quadratic form distance
function. First, the scan based processing of ellipsoid queries is typically CPU bound,
because the determination of the distance function has quadratic time complexity with
respect to the dimension of the feature space. Therefore, a pure acceleration of the I/O time
will hardly improve the answer time. A second problem is that it is generally dificult to
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determine the distance between the query point and the grid approximation of the feature
vector if the distance measure is a general (i.e. not iso-oriented) ellipsoid. The reason is
that the intersection point between the ellipsoid and the approximation cell can only be
determined by expensive numerical methods.

Our solution to these problems is a series of three filter steps with increasing evaluation
cost and decreasing number of produced candidates. These filter steps approximate both, the
query ellipsoid and the grid cells at different levels of accuracy. Our first filter step performs
a new kind of approximation of the query ellipsoid, the approximation by an axis-parallel
ellipsoid. As it corresponds to a weighted euclidean distance calculation, this approximation
can be evaluated very efficiently for vector approximations. Unfortunately, for some query
ellipsoids, the selectivity of this filter step is not as good as desired. The selectivity can
be improved by large factors, however, if the first filter is followed by a novel technique
approximating the grid cells. This technique determines the distance between the query point
and the center of the grid cell, additionally considering a maximum approximation error.
The maximum approximation error represents the maximum (ellipsoid) distance between
the center point of the grid cell and its most distant corner point. This will be our last
filter step. As the determination of the maximum approximation error has quadratic time
complexity, we propose as an intermediate filter step several alternatives for conservative
approximations of the maximum approximation error which can all be determined in linear
time.

The benefits of our technique are not limited to the extension of the VA-file approach.
Our filter steps can always be applied when ellipsoid distances to rectilinear rectangles have
to be efficiently estimated. For instance, the page regions of most index structures are rect-
angular. Therefore, processing of the directory pages of a multidimensional index structure
can be improved by our technique. Recently, the idea of vector approximation of grid cells
was also applied to index based query processing in the so-called IQ-tree (Berchtold et al.,
2000). Our multi-step query processing architecture enables efficient processing of ellipsoid
queries in the IQ-tree. As one concrete example, however, we put our focus in this paper
to processing of adaptable similarity queries by the VA-file. Out of the focus of this paper
is dimensionality reduction (Faloutsos et al., 1994; Seidl and Kriegel, 1997). Reduction
techniques based on the principal components analysis, fourier transformation or similar
methods can be applied to our technique and all competitive techniques as a preprocessing
step.

The rest of this paper is organized as follows: Section 2 (related work) introduces var-
ious techniques for evaluating ellipsoid queries and the vector quantization. In Section 3,
we describe our novel techniques for approximating grid cells by minimum bounding el-
lipsoids in quadratic time and our new linear approximations of the minimum bounding
ellipsoid. Section 4 is dedicated to the filter and refine architecture. We demonstrate in
what situation what filter has particular strengths and how our new filters complement
each other. Thus, it is useful to combine the proposed filters, and each of the filters yields
additional performance gains. The most efficient order of the filter steps is also deter-
mined. Finally, we present the results of our comprehensive experimental evaluation in
Section 5.
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2. Related work

2.1. Ellipsoid query processing using indexes

The method used in QBIC (Faloutsos et al., 1994) to process similarity queries is to map
the quadratic form distance function to the Euclidean distance function. This mapping
is performed by transforming the vectors according to a decomposition of the similarity
matrix (Hafner et al., 1995). Thus, the index depends on the matrix, and the matrix has to
be available before index creation. A solution that provides much more flexibility to the
user has been presented by Seidl and Kriegel (1997). The similarity matrix is not required
for index creation and, thus, becomes a query parameter. The users may now adapt the
similarity distance function to application-specific requirements or personal preferences
just at query time.

Due to the geometric shape of the query range, a quadratic form-based similarity query
is called an ellipsoid query (Seidl and Kriegel, 1997). An efficient algorithm for ellipsoid
query processing based on multidimensional index structures was developed in the context
of approximation-based similarity search for 3D surface segments (Kriegel et al., 1997;
Kriegel and Seidl, 1998) and extended to color histograms (Seidl and Kriegel, 1997). The
method aims at index structures using a hierarchical directory that is organized by rectilinear
bounding boxes. Examples include the R-tree family, X-tree, and Quadtrees among others.
The technique is based on measuring the minimum quadratic form distance of a query point
to the hyperrectangles in the directory.

2.2. Reduction of dimensionality

The extension of the basic ellipsoid query algorithm for 3D surface segments to color
histograms by Seidl and Kriegel (1997) primarily aims at much higher dimensions such
as 256 which is the cardinality of a typical color map. Reduction of dimensionality as a
common technique has been extended to quadratic form distance functions. The algorithm is
proven to produce the greatest distance function in the reduced space that lower bounds the
original similarity distance function and, in consequence, produces the minimum number
of candidates. A 2D shape similarity application (Ankerst et al., 1998) demonstrates that
the technique works well for dimensions up to 1,024.

From an architectural point of view, searching in the reduced data space is a filter step
that precedes the final evaluation of the objects by the original quadratic form in a refine-
ment step. According to the multistep query processing paradigm in general, filter steps
produce candidates and have to guarantee completeness, i.e. they must not produce any
false dismissals in the answer set. In subsequent refinement steps, these candidates are ex-
actly evaluated. In addition to the completeness, the refinement steps have to take care of
the correctness, i.e. no false positive answers. To ensure efficiency, the filter steps should
produce as few candidates as possible. Multistep algorithms that meet these requirements
are available for similarity range queries (Faloutsos et al., 1994) as well as for k-nearest
neighbor queries (Korn et al., 1998; Seidl and Kriegel, 1998).
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2.3. Approximation techniques for ellipsoid queries

The evaluation of ellipsoid queries requires quadratic time in the data and directory nodes of
the index. In order to reduce this effort, approximation techniques for ellipsoid queries have
been developed that have a linear complexity thus supporting linear filter steps (Ankerst
et al., 1998). Conservative approximations of query ellipsoids such as the minimum bound-
ing sphere, the minimum bounding box or the intersection of both guarantee no false dis-
missals for range queries. As a more general concept, equivalent lower-bounding distance
functions were presented that guarantee no false dismissals for (k-)nearest neighbor queries
in addition to similarity range queries.

2.3.1. Sphere approximation. The greatest lower-bounding sphere distance function
dglbs(A) of an ellipsoid with matrix A is a scaled Euclidean distance function defined as
follows. Let A be a similarity matrix, and w2

min be the minimum eigenvalue of the matrix
A, then

dglb(A)(p, q) = wmin · |p − q|.

Lemma 1. The function dglbs(A) is the greatest scaled Euclidean distance function that
lower bounds the ellipsoid distance function dA, i.e. for all p, q ∈ 	d :

dglbs(A)(p, q) ≤ dA(p, q)

Proof: Since the matrix A is positive definite, the diagonalization A = V · W 2 · V T

exists where V · V T = Id and the diagonal matrix W = diag(w2
1, . . . , w

2
d ) consists of the

eigenvalues w2
1, . . . , w

2
d of A which are all positive and, therefore, represent squares. When

considering the minimum w2
min of these eigenvalues, we obtain:

d2
A(p, q) = (p − q) · V · W 2 · V T · (p − q)T

=
d∑

i=1

w2
i · (pV − qV )2

i ≥
d∑

i=1

w2
min · (pV − qV )2

i

= w2
min · (p − q) · V · V T · (p − q)T = d2

glbs(A)(p, q)

In addition to the minimum bounding sphere, also the minimum bounding box approxi-
mation has been generalized to an equivalent distance function.

2.3.2. Box approximation. The greatest lower-bounding box distance function dglbb(A) of
an ellipsoid with matrix A is a weighted maximum distance function. For any similarity
matrix A, the inverse A−1 exists, and we define:

dglbb(A)(p, q) = max

{ |pi − qi |√
(A−1)i i

, i = 1, . . . , d

}
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Figure 1. The tangential point pt shares its box distance with p but is located on a smaller ellipsoid than p. At
pt , the box and ellipsoid distances are equal: dA(pt , q) = dglbb(A)(pt , q).

Lemma 2. The function dglbb(A) is the greatest weighted maximum distance function that
lower bounds the ellipsoid distance function dA, i.e. for all p, q ∈ 	d :

dglbb(A)(p, q) ≤ dA(p, q)

Proof: First, dMBB(A) is well-defined since A−1 exists for every positive definite matrix A,
and all diagonal elements, A−1

i i , are positive. Second, we show that for every p, q ∈ 	d , an
auxiliary point pt exists such that the following formula is true which immediately implies
the proposition (cf. figure 1):

dglbb(A)(p, q) = dA(pt , q) ≤ dA(p, q)

Consider the box on which p is located and the largest ellipsoid enclosed in this box. The
tangential point pt of the box and the ellipsoid shares its box distance with p, dMBB(A)(pt , q)
= dMBB(A)(p, q) whereas the ellipsoid of pt is smaller than the ellipsoid on which p is
located, i.e. dA(pt , q) ≤ dA(p, q). As shown by Ankerst et al. (1998), the box distance and
the ellipsoid distance of pt to q are equal, dMBB(A)(pt , q) = dA(pt , q) and the proposition
holds.

2.4. Vector quantization

The general idea of the VA-file (Weber et al., 1998) is to store the components of the feature
vectors not with full (e.g. 32 bit) precision, but with a reduced precision of e.g. 5–6 bits. For
this purpose, the data space is partitioned by an irregular grid which is determined according
to the quantiles of the components of the feature vectors. Instead of the exact position of
each point in the database, only the ordinal number of the grid cell is stored in the VA-file.
Scanning the reduced VA-file instead of the file containing the full precision data saves
I/O time proportional to the compression rate. If a cell is partially intersected by the query
region, it cannot be decided whether the point is in the result set or not. In this case, an
expensive lookup to the file containing the full precision point data is due. Therefore, this
approach corresponds to the paradigm of multistep query processing where the distance to
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the grid cell is a lower bound of the distance to the point. For Euclidean distance measures,
the distance to a given cell can be determined very efficiently by precomputing the squared
distances between the query point and the quantiles. Therefore, such a distance calculation
can even be slightly cheaper than determining the distance between two points.

Recently, the idea of vector quantization was adopted to index based query processing. In
the IQ tree (Berchtold et al., 2000) a separate regular grid is laid over each page region. Each
data page has two representations: one containing the compressed (quantized) representation
of the data points and the second containing the points in full precision. The optimal precision
for the compressed data page as well as an optimal page schedule using a “fast index scan”
operation are determined according to a cost model (Berchtold et al., 1997; Böhm, 1998).

3. Ellipsoid queries on quantized vectors

Compared to axis-parallel ellipsoids and spheres, it is much more difficult to determine
whether a general ellipsoid intersects a rectangle. The reason for this difference is depicted
in figure 2: For the axis-parallel ellipsoid, the closest point to the center of the ellipsoid
can be easily determined by projecting the center point. In contrast, the general ellipsoid
may intersect the rectangle at its upper right corner although the center of the ellipsoid is
underneath the lower boundary of the rectangle. This is impossible for unskewed ellipsoids
and this property facilitates distance determination for Euclidean and weighted Euclidean
metric.

The exact ellipsoid distance between a point and a rectangle can therefore only be de-
termined by a time consuming numerical method (Seidl and Kriegel, 1997), which is not
suitable as a filter step. An approximation of the exact distance is needed which fulfills the
lower bounding property. Our idea for this filter step is not to approximate the query (which
is done in another filter step) but to approximate the rectangle. Unfortunately, the most
common approximation by minimum bounding spheres suffers from the same problem as
the rectangle itself: It is numerically difficult to determine the ellipsoid distance between
the query point and the sphere. A suitable approximation, however, is an ellipsoid which
has the same shape as the query ellipsoid, i.e. the same extensions and directions of the
principal axes. We will show in the following that this approximation can be determined
with low effort and that it can be used to define a lower bounding of the exact ellipsoid
distance.

Figure 2. Distance determination for axis-parallel and general ellipsoids.
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Figure 3. The minimum bounding ellipsoid (MBE) approximation.

3.1. The minimum bounding ellipsoid approximation (MBE)

We want to determine the minimum ellipsoid enclosing a given rectangle R which is geo-
metrically similar to the query ellipsoid (cf. figure 3). Due to the convexity of an ellipsoid,
the rectangle is contained in the ellipsoid if all of its corners are contained. But we cannot
investigate all 2d corners of the rectangle to determine the minimum bounding ellipsoid.
We need to determine the corner of the rectangle with maximum (ellipsoid) distance from
the center of the rectangle. The following lemma will show that it is the corner which is
closest to the eigenvector corresponding to the largest eigenvalue.

Lemma 3. A rectangle is contained in an ellipsoid with the same center iff the corner
which is closest to the eigenvector corresponding to the largest eigenvalue is contained in
the ellipsoid.

Proof: Let A = V W 2V T with V V T = Id, W 2 = diag(w2
i ) be the diagonalization of A

where Vi denotes the eigenvector corresponding to the eigenvalue w2
i and let c be any of the

corners of a rectangle centered at the origin. To compute the ellipsoid distance of the corner c
to the origin 0, consider the following transformation: c · A · cT = c · V W 2V T · cT = (cV) ·
W 2 · (cV)T = (cVW ) · (cVW )T . These terms are quadratic forms for the matrices A, W 2 and
Id applied to the vectors c, cV and cVW , respectively, i.e. dA(c, 0) = dV W 2V T (cV, 0) = dW 2

(cV, 0) = dId(cVW, 0) = |cVW |.
Due to the orthogonality of V , all the original corner points c and transformed corners

cV have the same Euclidean distance |c| = |cV| to the origin. Only after the iso-oriented
weighting by W , i.e. stretching the axis ei by the weight wi , the lengths |cVW | differ. Let
emax be the axis corresponding to the maximum weight wmax = max{wi }. The maximum
value of |cVW | is obtained for the corner cV that is closest to the axis emax, i.e. the angle
between cV and emax is minimal:

angle(cV, emax) = acos
cV · emax

|cV| · |emax| = acos
c · vmax

|c|
At all, the corner cmax having the maximal distance value dA(cmax, 0) is the corner that is
closest to vmax, i.e. the eigenvector corresponding to the maximal eigenvalue.
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The corner closest to the largest eigenvector can be determined in linear time by consid-
ering the sign of each component of the eigenvector: If the sign is positive, we take the upper
boundary of the rectangle in this dimension, otherwise the lower boundary. If a component
is 0, it makes no difference whether we take the lower or upper boundary because both
corners yield equal distances:

Algorithm A1.

closest (e: vector[d], l: vector[d], u: vector[d]): vector[d] {
for i := 1 to d do

if e[i] >= 0 then closest[i] := (u[i] − l[i])/2;
else closest[i] := (l[i] − u[i])/2;

}

If c is the closest corner determined by Algorithm A1, the distance dMBE is the maximum
ellipsoid distance between the center of the grid cell and an arbitrary point in the cell where
dMBE is given as:

dMBE =
√

c · A · cT

For the distance between an arbitrary point p in the cell with center point pc and the query
point q , the following inequality holds:

dA(p, q) ≥ dA(pc, q) − dMBE

This simply is a consequence of the triangle inequality which is valid for ellipsoid distance
measures.

The computation of dMBE has a quadratic time complexity, because the multiplication of
the matrix and a vector is quadratic. In the next section, we will develop further approxi-
mations which are upper bounds of dMBE. Given a query object and a database object, these
approximations can be evaluated in time linear in the number of dimensions.

3.2. The rhomboidal ellipsoid approximation (RE)

The computation of the approximated distance dA(pc, q)−dMBE is quadratic in the number
of the dimensions. This is already much better than determining the exact distance between
query point and approximation cell which can only be done by expensive numerical methods.
In order to further reduce the computational effort, we develop additional filtering steps
which are evaluated with a linear effort in the number of dimensions. It becomes possible to
avoid the computation of dMBE for each item stored in the VA-file, if we determine dMBE,max

i.e. the ellipsoid approximation of the largest cell stored in the VA-file. Unfortunately, the
sizes of the grid cells vary extremely for real data sets due to the quantile concept. Therefore
dMBE, max is a bad approximation of most of the grid cells. The size of an individual cell
must be considered in a suitable way. In the following, we will present three alternative
ways to consider the cell size.
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Figure 4. The rhomboidal ellipsoid (RE) approximation.

The first way to consider the cell size is based on the sum of the side lengths of the
cell. This sum can obviously be determined in O(d) time. The idea is to determine in a
preprocessing step an ellipsoid which contains all cells having a standardized sum of the
side lengths. If the actual sum of the side lengths of a grid cell is larger or smaller than
this standardized value, the ellipsoid will be scaled accordingly, which is an operation of
constant time complexity.

As depicted in figure 4, the hull of all rectangles having a sum s = ∑d
i=1 si of the exten-

sions si forms a rhomboid with diameter s or “radius” s/2. The corners of the rhomboid
are the unit coordinate vectors, each multiplied with +s/2 and −s/2, respectively. Due to
convexity and symmetry, the minimum bounding ellipsoid of the rhomboid touches at least
two of the corners, which are on opposite sides with respect to the origin.

This observation leads to the following lemma.

Lemma 4. For a similarity matrix A = [ai j ], the minimum bounding ellipsoid over all
cells that have a sum s = ∑d

i=1 si of extensions has a distance value of

dRE(s) = s

2
· max{√aii , i = 1, . . . , d}

Proof: The minimum bounding ellipsoid touches the rhomboid at the corners. Due to
symmetry, we can restrict ourselves to the positive unit vectors scaled by s/2, i.e. ei ·s/2, i =
1, . . . , d The rhombus is touched at the unit vector which has the largest ellipsoid distance
from the center, because all other corners must not be outside of the ellipsoid, and this
distance equals to dRE(s). The ellipsoid distance between the i-th unit vector ei and the origin

0 is dA(ei , 0) =
√

ei · A · eT
i = √

aii , and the maximum over the dimensions i = 1, . . . , d
is the square root of the maximal diagonal element of A, i.e. max{dA(ei , 0)} = max{√aii }.
Scaling by s/2 is commutative with dA and with the maximum operator and, hence, the
proposition holds.

With Lemma 4, we can estimate the maximum distance between a point approximated
by a grid cell and the center of the grid cell. In contrast to the distance dMBE introduced in
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Section 3.1, this bound can be determined in linear time. It is an upper bound of dMBE, as
can be shown in the following way:

Lemma 5. dRE(s) is an upper bound of dMBE.

Proof: Let Rh(s) be the locus of all points p where
∑d

i=1 |pi | ≤ s/2. By Lemma 4, we
know that for each point p ∈ Rh(s) the ellipsoid distance to the origin dA(p, o) is at most
dRE(s). Let C(s) be an arbitrary grid cell centered at the origin having a side sum of s. For
every point q ∈ C(s) we know that

∑d
i=1 |qi | ≤ s/2. It follows that dA(p, o) ≤ dRE(s). As

dMBE is the maximum ellipsoid distance of all points q ∈ C(s), we have

dMBE = max{dA(p, q), q ∈ C(s)} ≤ dRE(s)

Since the rhomboidal ellipsoid approximation is less exact than the minimum bounding
ellipsoid approximation, it is likely to yield a worse filter selectivity (i.e. a higher number
of candidates). However, it can be determined by far faster. We will see in Section 4 that
the determination of the rhomboidal ellipsoid approximation causes almost no extra cost
compared to the MBE approximation, but avoids many expensive evaluations of the MBE
approximation. Therefore, it is intended to apply the combination of these two filters.

3.3. Spherical ellipsoid approximation (SE)

We present an approximation similar to the rhomboidal ellipsoid approximation which
is also an upper bound of dMBE. The spherical ellipsoid approximation, however, uses a
different measure to adapt to varying sizes of the grid cell. The cells are scaled such that
the cells have a uniform diameter with length s. As depicted in figure 5, the hull of all such
cells is a sphere with radius s/2. Like in Section 3.2, we define the minimum bounding
ellipsoid dSE(s) of this sphere to be the basis of our approximation. In the following lemma,
we will show that the square of dSE corresponds to the inverse of the largest eigenvalue of
the similarity matrix A.

Figure 5. The spherical ellipsoid (SE) approximation.
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Lemma 6. Let A be a similarity matrix having w2
max as largest eigenvalue. Then the scaled

Euclidean distance function dSE(A)(p, q) = wmax · |p −q| is an upper bound of the ellipsoid
distance function dA(p, q), i.e. for all p, q ∈ 	d , we have

dA(p, q) ≤ dSE(A)(p, q)

Proof: Since the matrix A is positive definite, the diagonalization A = V W 2V T , V V T =
Id, W 2 = diag(w2

i ) exists where the diagonal matrix W 2 contains the eigenvaluesw2
1, . . . , w

2
d

of A. Focussing on the maximum w2
max of the eigenvalues, we obtain:

d2
A(p, q) = (p − q) · V W 2V T · (p − q)T

=
d∑

i=1

w2
i · (pV − qV )2

i ≤
d∑

i=1

w2
max · (pV − qV )2

i

= w2
max · (p − q) · V · V T · (p − q)T = d2

SE(A)(p, q).

It can be proven in a similar way as in Lemma 5 that the spherical ellipsoid approximation
is an upper bound of the MBE approximation.

3.4. Cubical ellipsoid approximation (CE)

Another alternative to the rhomboidal ellipsoid approximation is the cubical ellipsoid ap-
proximation (cf. figure 6). Here, the size of the cell is defined by the length of the longest
side. The hull of all cells where this measure is normalized to s is a cube with side length
s. The minimum bounding ellipsoid of this cube can be determined in a similar way as
in Section 3.1: We determine the corner of the cube which is closest to the eigenvec-
tor corresponding to the largest eigenvalue of A and, then, determine the ellipsoid dis-
tance between the center of the cube and the closest corner. Technically, the corner is
determined by applying the signum function to each component of the eigenvector. Note

Figure 6. The cubical ellipsoid (CE) approximation.
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that this expensive distance calculation is executed only once in a preprocessing step. In
contrast, the MBE approximation requires the distance calculation once per considered
cell.

3.5. Axis-parallel ellipsoid approximation (MBEA)

In this section, we propose an additional filtering step which now approximates the query
ellipsoid, rather than the grid cells. In the next section, we will show that it is benefi-
cial to approximate both, queries and grid cells in separate filtering steps, because the
two different approximation techniques exclude quite different false hits from process-
ing, and, therefore, the combination of both methods yields a much better selectivity
than either of the methods alone. We again propose an approximation technique which
is particularly well suited for grid based quantization. In the VA-file (as well as in the
IQ-tree and any grid based method), the computation of weighted Euclidean distances
is very simple. Basically, it makes no difference whether to determine a weighted or
an unweightet Euclidean distance. Therefore, we approximate the general query ellip-
soid by the minimum axis-parallel (i.e., iso-oriented) ellipsoid that contains the query
ellipsoid.

The axis-parallel ellipsoid is constructed in two steps. In the first step, the ratio of
the extensions of the ellipsoid is determined which corresponds to the ratio of the side
lengths of the minimum bounding rectangle of the ellipsoid. In the second step, the axis-
parallel ellipsoid is scaled such that it is a minimum bound of the original query ellipsoid.
This is done by scaling both the original and the axis-parallel ellipsoid non-uniformly
such that the axis-parallel ellipsoid becomes a sphere. The matrix corresponding to the
scaled original query ellipsoid is then diagonalized to determine the smallest eigenvalue
wmin. This eigenvalue corresponds to the factor by which the axis-parallel ellipsoid must
be (uniformly) scaled such that it minimally bounds the original query ellipsoid. The
process of constructing the minimum bounding axis-parallel ellipsoid is illustrated in
figure 7.

Lemma 7. Among all axis-parallel ellipsoids our solution is a minimum bounding
approximation of the query ellipsoid.

Proof: Follows immediately from the construction process.

Figure 7. Construction of the minimum axis-parallel ellipsoid for a given general ellipsoid. (a) Original query
ellipsoid, (b) min. bound. rectangle, (c) ratio of side lengths, and (d) scaled axis-parallel ellipsoid.



220 BÖHM, KRIEGEL AND SEIDL

4. Analysis of the filter architecture

In this section, we will develop a filter architecture for adaptable similarity queries which
is adjusted to the VA-file and other grid-based quantization methods, and which optimizes
query processing based on vector quantization. We have proposed two different kinds of ap-
proximation techniques for this purpose in Section 3: The first type is an extension of known
techniques which aim at approximating the query ellipsoid. The examples already reviewed
in Section 2 include the sphere approximation where the query ellipsoid is approximated
by its minimum bounding sphere, and the box approximation which determines the min-
imum bounding rectilinear rectangle of the query ellipsoid. Our new minimum bounding
axis-parallel ellipsoid (MBAE) technique is even more accurate and approximates the query
ellipsoid by an iso-oriented ellipsoid which corresponds to a weighted Euclidean distance
calculation. The second type follows a novel paradigm and aims at approximating the quan-
tization cells of the vectors in the database. As examples for this new techniques, we have
proposed the minimum bounding ellipsoid (MBE) approximation, the rhomboidal ellipsoid
(RE) approximation, the spherical ellipsoid (SE) approximation and the cubical ellipsoid
(CE) approximation in Section 3. In all cases, the shape of the approximations depends on
the similarity matrix A. We are now going to discuss the various approximation techniques
according to their most relevant parameters, computational effort and filter selectivity.

4.1. Basic approximations of the query ellipsoid

The sphere approximation as well as the axis-parallel ellipsoid approximation (MBAE)
of the query ellipsoid requires the determination of the smallest eigenvalue which is done
in a preprocessing step when analyzing the similarity matrix for the query. Although this
operation has a bad time complexity, preprocessing operations are still considered to be neg-
ligible as we generally assume d � N . Once the smallest eigenvalue is determined, we have
only a linear effort O(d) per considered object. As discussed in Section 2, the VA-file allows a
particularly efficient determination of the (weighted) Euclidean distance between the query
point and the approximation cell, because the squared differences between the quantiles
and the query point can also be precomputed outside the main loop iterating over all objects.
Therefore, d additions are the only floating point operations performed per object. To assess
the selectivity of this filter step, refer to figure 8. Here, we distinguish between queries which
are more or less spherical or axis-parallel, respectively. The left side of figure 8 shows an
ellipsoid which is approximated very well. In contrast, the right side presents an ellipsoid

Figure 8. Selectivity of the axis-parallel approximation.
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with a low sphericity and an inclined orientation, respectively. The bounding axis-parallel
ellipsoids (MBAE) are also depicted. Shaded in gray is the volume which represents the
approximation overhead. Objects from this area are candidates produced by the filter step,
however, they are no hits of the similarity query. The smaller the gray overhead volume,
i.e. the more spherical the query ellipsoid and the less inclined it is, the better is the filter
selectivity. Assuming a uniform distribution of points in the data space, we would have a
few percent overhead for the left query ellipsoid, but several hundred percent overhead for
the right query ellipsoid. For less spherical and more inclined ellipsoids, the filter selectivity
is not sufficient.

The box approximation suffers from similar problems with respect to the filter selectivity.
Ankerst et al. (1998) have shown that the selectivity of the box approximation is sometimes
better, sometimes worse than the sphere approximation, but for most queries in the same
order of magnitude as the sphere approximation. From a computational point of view, we
can give a similar statement. The computational complexity of the box approximation is
also O(d) in the main loop. However, the actual processing cost are higher, because the box
approximation requires numerical comparisons which are more expensive than additions on
today’s CPU architectures. This observation is an indicator to prefer the sphere approxima-
tion over the box approximation. Readers interested in a comparison are referred to Ankerst
et al. (1998). In the following, we focus on the axis-parallel ellipsoid approximation which
is superior to both, sphere and box approximation.

4.2. Basic approximations of the quantization cells

The MBE approximation of the grid cells requires the highest CPU time of all considered
filters. To determine whether a grid cell contains a candidate point or not, two ellipsoid
distance computations must be performed: First, the distance between the point and the
center of the cell and second, the distance between the center of the cell and the corner
closest to the “largest” eigenvector have to be computed. To assess the selectivity of this
filter, we transform the problem. For our analysis, we assume that all grid cells have identical
shapes and, therefore, the minimum bounding ellipsoids are all identical. This allows us to
transform the problem in such a way that we add the range of the MBE to the range of the
query, as depicted in figure 9: In the left part, the cell is a candidate if the query ellipsoid
intersects the MBE approximation of the cell. In the right part, we have transformed the query
ellipsoid into a larger ellipsoid, where the range is the sum of the two ranges of the query and
the MBE. The cell is a candidate whenever the center of the cell is contained in the enlarged
ellipsoid. This concept of transformation is called Minkowski sum (Berchtold et al., 1997;

Figure 9. Transformation and selectivity of the MBE approximation.
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Kaul et al., 1991). Again, in the right part of figure 9, the approximation overhead is shaded
in gray. Using this approximation, the overhead heavily depends on the size of the MBE
approximation.

The RE approximation, the SE approximation and the CE approximation of the grid
cells are very similar in both, computation time and selectivity. In contrast to the MBE
approximation, these techniques require only one distance calculation: The distance between
the query point and the center of the grid cell. That means, one application of this filter step
causes about half the expenses compared to one application of the MBE filter, assuming that
all other cost are negligible. For these techniques, we have a similar selectivity assessment
as for the MBE approximation depicted in figure 9. The only difference is that the ellipsoid
approximating the cell is not minimal. Therefore, also the Minkowski sum and the implied
approximation overhead are larger than the MBE overhead in figure 9.

4.3. Computation in the refinement step

Last but not least, we have to consider the cost of the refinement step. The computational
cost is limited to a single ellipsoid distance computation, which is even less expensive
than an application of the MBE filter and comparable to the cost of the RE, SE, CE or
MBAE filter. In contrast to all described filter steps, the refinement step works on the exact
coordinates of the data point and not on the grid approximation. Therefore, the point must
be loaded from background storage which usually causes one costly seek operation on the
disk drive. The refinement step is the most expensive step unless the distance calculation
cost exceed the cost for a random disk access. Table 1 summarizes the hitherto results of
this section.

4.4. Combined approximations

In this section, we show that the combined application of the developed filters is useful
and results in systematic performance advantages compared to the application of a single

Table 1. Cost and selectivity of filter techniques.

Type Technique Evaluation cost Selectivity

Approximation of
query ellipsoid

Sphere approximation O(d) Low unless ellipsoid
is spherical

Box approximation O(d) Low

Axis-parallel ellipsoid (MBAE) 1 · O(d2) Medium, depends
on orientation

Approximation of
quantization cells

Elliptical approximation (MBE) 2 . O(d2) Fair

Rhomboidal ellipsoid (RE) 1 · O(d2) Medium

Spherical ellipsoid (SE) 1 · O(d2) Medium

Cubical ellipsoid (CE) 1 · O(d2) Medium

Exact evaluation Exact distance 1 · O(d2) + 1 I/O Exact
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filter. First we consider the combined application of the MBE filter and the rhomboidal
ellipsoid filter (or one of its alternatives, SE, CE, or MBAE, respectively). We first show
that the combined application of MBE and RE does not cause any considerable extra cost
compared to the application of the MBE filter alone. The application of the MBE filter
requires the distance calculation between the query point and the center of the cell, and
the distance calculation between the cell center and a cell corner. The RE filter requires
the distance calculation between the query point and the center of the cell only. All other
cost are negligible. If we first apply the RE filter and then the MBE filter, the MBE filter
may reuse the distance evaluated by the RE filter. The combined application performs
one distance calculation for all points and a second calculation for those points which are
not excluded by the RE filter. Whether the filter combination is more efficient than the
application of the MBE filter alone depends on the selectivity of the two filters. We know
that the MBE filter is at least as selective as the RE filter. However, if the MBE filter does not
save additional I/O accesses compared to the RE filter, the additional distance calculations
lead to a performance deterioration. Since I/O accesses are usually much more expensive
than distance calculations, the breakeven point can be reached when the MBE filter is only
slightly more selective than the RE filter. Our experimental evaluation will show, that the
selectivity of the MBE filter is significantly better. It is beneficial to apply the RE filter first
and then the MBE filter, because the cost of the RE filter are lower. The same is valid for
SE, CE and MBAE filters (cf. figure 10).

The tree filters RE, SE and CE are all equivalent with respect to cost and selectivity. They
can be combined without causing considerable extra cost, but it is unlikely that this com-
bination yields a much higher selectivities than the single filters. We will restrict ourselves
to select the best among these filters based on our experiments in Section 5.

Next we are going to show that it is beneficial to combine the axis-parallel approximation
and the MBE approximation. In figure 11, we illustrate the distinct selectivities of the two

Figure 10. Combination of RE and MBE filters.

Figure 11. Combination of axis-parallel approximation and MBE filter.
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filters. In contrast to the previously described combination, the filters are not lower bounds of
each other, but access rather different parts of the data space. The area of the main overhead
of the axis-parallel approximation is where the query ellipsoid is narrow (depicted on the
left side of figure 11). The MBE approximation, however, yields most of its overhead at the
largest extensions of the ellipsoid, where the axis-parallel approximation yields no overhead
at all. Therefore, the combined filter yields a dramatically improved selectivity compared
to the axis-parallel approximation as well as compared to the MBE filter, as depicted in the
rightmost illustration in figure 11. As the axis-parallel approximation is by far cheaper than
the MBE filter, it is natural to apply the axis-parallel approximation first.

4.5. Final architecture

We have shown in the previous section that the combination of the axis-parallel approxi-
mation, the MBE approximation and one of the filters RE, SE or CE is beneficial and will
lead to the best performance. For the sequence order of these filters, we consider the cost
of the filter step per evaluated point:

CMBAE � CRE ≈ CSE ≈ CCE � CMBE � Cexact.

Therefore, we apply the axis-parallel approximation as the first filter step. The second
filter step is one of the filters RE, SE or CE. The MBE approximation is the third filter,
which is followed by the refinement step.

5. Experimental evaluation

To evaluate our filter techniques experimentally, we have implemented a VA-file extension
with our four-step query processing architecture. Our implementation in C was tested on a
HP C-160 workstation under the HPUX operating system. Both, vector quantizations and
exact point data were stored on the same disk drive with an average seek time of 8 ms and
a transfer rate of 4 MByte/s for continuous data transfer. The vector approximations were
scanned in large blocks of 1 MByte to minimize the influence of rotational delays or disk
arm repositionings between subsequent I/O requests.

Our reference application is a similarity search system for color images which allows
a user-adaptable specification of the similarity measure based on color histograms (Seidl
and Kriegel, 1997). Our data set contains 112,363 color images, each represented by a 64-
dimensional color histogram. We separated our file into a large data file and a smaller query
file by random selection. On our hardware, an evaluation of an ellipsoid distance calculation
needs 60 µs and a Euclidean distance calculation requires about 0.5 µs. Our implementation
performs ellipsoid range queries. Unless otherwise mentioned our experiments determine
the 2 nearest neighbors of 10 query points.

We generate the similarity matrices A = [ai j ] by the formula ai j = exp(−σ (d(i, j)/dmax)2)
from Hafner et al. (1995) where d(i, j) denotes the cross-similarity of the colors i and j.
Since the adaptable similarity model supports the modification of local similarities, we intro-
duce three additional parameters σr , σg, σb and define d(i, j) = √

σr�r2 + σg�g2 + σb�b2
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Figure 12. Selectivity of axis-parallel approximation, MBE filter and their combination.

in the RGB color space. For our queries, we use five different parameter settings for the
tuple (σ, σr , σg, σb), namely M1 (1, 100, 1, 1), M2 (1, 1, 1, 100), M3 (100, 1, 1, 1), M4

(100, 100, 1, 1, 1) and M5 (1, 1, 1, 1) resulting in ellipsoids with different sphericity and
orientation.

In the previous sections, we have postulated several claims which require an experimental
validation beyond the actual proof of superiority over competitive techniques. The most
important claims to justify our four-step query processing architecture were

• the superiority of the combination of the axis-parallel approximation and the MBE filter
and

• the benefit of the second filter step (RE, SE or CE approximation)

In our first experiment (cf. figure 12), we measure the selectivities of the axis-parallel ap-
proximation and the MBE filter in separate ways as well as in combination. As already
pointed out in Section 4, the quality of the axis-parallel approximation depends on the ori-
entation and sphericity of the query ellipsoid. Our ellipsoid M1 has a bad selectivity (14,473
candidates equivalent to 12.5% of all points). Only ellipsoid M3, which is almost a sphere,
yields a satisfactory selectivity of 3.3 candidates which means an overhead of 1.3 candidates
for two nearest neighbors. The selectivity of the MBE filter, applied separately, is with 457
candidates for ellipsoid M1 by far better than the selectivity of the axis-parallel approxima-
tion, but not satisfactorily. For the queries M3, M4 and M5, the selectivity of the MBE filter is
partly better, partly worse than that of the axis-parallel approximation. The combination of
both filters, however, outperforms the separate applications of the approximations by large
factors (up to 176 compared to the axis-parallel approximation and up to 5.6 compared
to the MBE filter). Only for ellipsoid M3 where the axis-parallel approximation is almost
optimal the combination does not yield further selectivity improvements.

In our second experiment depicted in figure 13, we compare the selectivities of our
three alternatives for the second filter step, RE, SE and CE. The selectivities are for most



226 BÖHM, KRIEGEL AND SEIDL

Figure 13. Selectivity of the alternatives for the second filter step.

queries comparable except for the queries M3 and M4 which are very spherical. Here, the
spherical ellipsoid approximation yields the best performance. As SE is only for query M2

outperformed by the cubical ellipsoid approximation but not by a large factor (1.1), we
decided to discard RE and CE from the second filter step.

For the ellipsoids M1 and M2, the RE filter yields around 12,000 candidates, and thus
a selectivity in the same order of magnitude as the axis-parallel approximation. Now one
may wonder whether the second filter step is useful at all. Moreover, for ellipsoid M5, the
number of candidates of the RE filter is even by a factor of 250 worse than the axis-parallel
approximation. Our next experiment depicted in figure 14, however, shows that the RE filter,

Figure 14. Comparing the architectures (number of candidates in logarithmic scale).
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like the MBE filter, is beneficially combinable with the axis-parallel approximation. As we
have pointed out in Section 4, the RE approximation as an additional filter step is justified
if it yields fewer candidates than the axis-parallel approximation but substantially more
candidates than the MBE filter (otherwise, the MBE filter would be unnecessary). For the
first two ellipsoids every filter step reduces the candidate set approximately to 10%. Note
that the scale in this figure is logarithmic. In ellipsoid M1, for instance, the axis-parallel
approximation reduces the candidate set from 112,000 to 14,473 (12.9%). The second filter
step reduces this set further to 1,458 (10.1% of 14,473) and the third filter step to 82
(5.6% of 1,458). Even for ellipsoid M5, for which the selectivity of the RE filter yielding
13,216 candidates (cf. figure 13) is extremely bad, the combination of the axis-parallel
approximation and the RE filter clearly outperforms the axis-parallel approximation by a
factor 1.2.

The next experiment demonstrates the impact of the various numbers of candidates on the
overall runtime of a query. Therefore, we compare the runtime of our four-step architecture
(axis-parallel + RE + MBE + exact evaluation) with a two-step architecture (axis-parallel
approximation and exact evaluation) and also with two architectures consisting of three
steps: (1) axis-parallel approximation, RE approximation, exact evaluation; (2) axis-parallel
approximation, MBE approximation, exact evaluation. Figure 15 shows the results of our
experiments using ellipsoid M1 in logarithmic scale. In this figure the selectivity is varied
such that the number of retrieved neighbors ranges from 2 to 8. The performance of the
two-step architecture performing axis-parallel approximation upon the VA file is very bad
(119 to 234 seconds of total time). It is clearly outperformed by the three-step and four-step
architectures using our new types of cell approximation in combination with the axis-parallel
approximation. The architecture with the additional rhomboidal ellipsoid filter requires
between 14 and 51 seconds and thus is up to 8.5 times faster. The improvement factor of the
three-step architecture with the MBE filter is even higher, up to 28.3. The constantly best

Figure 15. Total elapsed time for various architectures (logarithmic scale).
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performance shows our four-step architecture: 3.5 to 7.7 seconds total elapsed time with an
improvement factor of 34 over the two-step architecture.

In a last series of experiments we compare our new technique (four-step architecture,
Axis + RE + MBE + exact) with two competitive techniques, the sequential scan and the
X-tree index. Both competitive techniques are allowed to use the sphere approximation as
a filter step. In the left diagram of figure 16 we measure again the total processing time
with varying selectivity. The sequential scan which requires between 8.1 and 10.2 seconds
is outperformed by factors between 1.3 and 2.3, and the X-tree index (17 to 23 sec.) is
outperformed by factors between 3.0 and 4.9. Figure 17 shows the same experiment with

Figure 16. Comparison with competitive techniques (varying selectivity).

Figure 17. Comparison with competitive techniques (varying database size).
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varying database size. With increasing database size, the improvement factor over the X-tree
slightly increases from 4.7 (40,000 points) to 5.0 (112,000 points) while the improvement
over the sequential scan remains constant at 2.3.

6. Conclusions

In this paper, we have proposed a variety of new approximation techniques to cope with the
problem of efficiently processing user adaptable similarity queries on quantized vectors. The
first bunch of four techniques approximate the cells of the quantization grid by ellipsoids with
the same principal axes as the query ellipsoids and enable us to exploit the triangle inequality.
The MBE approximation determines the minimum bounding ellipsoid for each quantized
vector and, hence, requires a quadratic time complexity. In contrast, the approximation
techniques RE, SE and CE require linear time in query processing.

Similar to the existing sphere and box approximations, our new MBAE filter technique
approximates the query, which is a general ellipsoid (corresponding to a quadratic form
distance), by its minimum bounding axis-parallel ellipsoid. Axis-parallel ellipsoids corre-
spond to weighted Euclidean distances which can be evaluated with particular efficiency
on grid based query processing techniques such as the VA-file or the IQ tree.

We propose a multistep query processing architecture with three filter steps consisting of
our new axis-parallel approximation (MBAE), one of our new grid filters (SE, RE, or CE),
and the MBE approximation and show the superiority over architectures with fewer filter
steps and over competitive techniques theoretically as well as experimentally. Our analysis
demonstrates that our filters complement each other. Hence, it is usefule to combine the
filters, and we determine a suitable order of the filter steps. In our experimental evaluation,
the sequential scan is outperformed by a factor of 2.3. Compared to the X-tree on 64
dimensional color histogram data, we measured an improvement factor of 5.7. For our
future work, we plan to integrate our new approximation techniques into the IQ-tree.
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