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CT perfusion imaging constitutes an important contribu-
tion to the early diagnosis of acute stroke. Cerebral
blood flow (CBF), cerebral blood volume (CBV) and time-
to-peak (TTP) maps are used to estimate the severity of
cerebral damage after acute ischemia. We introduce
functional cluster analysis as a new tool to evaluate CT
perfusion in order to identify normal brain, ischemic
tissue and large vessels. CBF, CBV and TTP maps
represent the basis for cluster analysis applying a
partitioning (k-means) and density-based (density-based
spatial clustering of applications with noise, DBSCAN)
paradigm. In patients with transient ischemic attack and
stroke, cluster analysis identified brain areas with
distinct hemodynamic properties (gray and white mat-
ter) and segmented territorial ischemia. CBF, CBV and
TTP values of each detected cluster were displayed. Our
preliminary results indicate that functional cluster anal-
ysis of CT perfusion maps may become a helpful tool for
the interpretation of perfusion maps and provide a rapid
means for the segmentation of ischemic tissue.
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INTRODUCTION

Stroke constitutes the third most frequent cause

of death and disability in industrialized

countries. Examination of cerebral perfusion using

computed tomography (CT) has become an

accepted tool to assess functional properties of

ischemic brain tissues.1Y6 Under normal condi-

tions, the mean global cerebral blood flow (CBF)

is about 50 ml/100 g/min. CBF in gray matter

(40Y60 ml/100 g/min) is twice to three times

higher compared to white matter (20Y25 ml/100

g/min) and decreases in older people. Regional

CBF values lower than 20 or 15 ml/100 g/min

can be observed in cerebral ischemic events. Below

15 ml/100 g/min, irreversible damage occurs.

The combined interpretation of CBF, cerebral

blood volume (CBV) and time-to-peak (TTP) maps

via visual analysis is most commonly used in the

clinical situation. Manual extraction of defined

cerebral regions may help to estimate the degree

of hemodynamic alteration but relies on a tedious

and observer-dependent process of segmentation.

Our purpose was to employ functional cluster

analysis to facilitate a computer-assisted extraction

of abnormal brain perfusion in acute stroke. We

applied a partitioning (k-means) and a density-

based (density-based spatial clustering of applica-

tions with noise, DBSCAN) clustering algorithm to

CBF, CBV and TTP maps in order to (i) identify

and segment clusters of normal and apparently

ischemic parenchyma by combining hemodynamic

alterations of all three parameters into a single map
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and to (ii) estimate absolute values of each detec-

ted cerebral cluster area.7,8

METHODS

CT Examination Protocol

The acquisition procedure for CT perfusion application

consisted of repetitive scanning through a defined Bregion of

interest^ (ROI) after injection of a contrast medium bolus using

a last generation multi slice scanner (Somatom Sensation 16,

Siemens, Erlangen, Germany). Two slices (slice thickness

12 mm) defined according to the clinical deficit were imaged

with a time resolution of 0.5 s (110 mAs, 120 kV) for a period

of 40 s. 40 ml of a non-ionic contrast medium (Ultravist

370 Schering, Berlin, Germany) was injected at a flow rate of

5 ml/s.

CT Perfusion

CBF, CBV and transit time maps were calculated using

commercial software (Syngo\, Siemens). This software uses

the so-called maximal slope model for determining absolute

values of CBF and was initially developed for microspheres

assuming that the indicator is completely extracted in the

capillary network at first pass.5,9 This model can also be

applied to CT perfusion studies as follows:

CBF ¼ maximal slope of QðtÞ
maximal height of CaðtÞ

ð1Þ

where Q(t) designates the amount of indicator in a local

vascular network and Ca(t) is the arterial concentration of

indicator at time t.

CBF, CBV and Transit Times

Basically, dynamic CT can be used for measurements of

CBF, CBV and blood transit time through the cerebral tissue

after injection of an iodinated contrast medium into a large

vein, in particular, in an antecubital position.2,5,10Y12

The theoretical basis is the indicator-dilution principle13,14

which relates CBF, CBV and mean transit time (MTT) values

in the simple relationship:

CBF ¼ CBV

MTT
ð2Þ

Mean transit time (MTT) relates to the time it takes for blood

to cross the local capillary network. The calculation of a CBV

map necessitates knowledge of a timeYconcentration curve in a

vascular region of interest (ROI), e.g., at the center of the

superior sagittal venous sinus, devoid of a partial averaging

effect:

CBV ¼ K
area under the curve in a parenchymal ROI

area under the curve in the vascular ROI
ð3Þ

where K is a proportionality constant considering the ratio of

peripheral hematocrit and tissue hematocrit. Finally, the

combination of CBV and MTT at each pixel gives a CBF

value, as indicated by Equation 2.

Clustering Techniques

For cluster analysis, we considered (i) CBF (ml/100 g/min)

as calculated from the maximal slope model, (ii) CBV (ml/

100 g) using Equation 3, and (iii) TTP (time-to-peak) which

is the time (seconds) it takes from injection of a contrast

bolus to the maximum level of attenuation recorded in a ROI.

The calculation of the MTT map is not provided in the Syngo

package.

Clustering algorithms are used for the task of class

identification, i.e., the grouping of Bfunctional^ pixels into

meaningful subclasses scanning CBF, CBV and TTP maps.

The similarity among pixels of the form f Pixel = f (CBF,

CBV, TTP) within the transformed three-dimensional feature

space S(CBF, CBV, TTP) is calculated by means of a distance

function, i.e., the Euclidian distance (ED):

EDðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i ¼ 1

xi � yið Þ2
s

ð4Þ

where xi = xCBF, xCBV, xTTP and yi = yCBF, yCBV, yTTP are two

pixels in the n = 3 dimensional feature space. Finally, the

identified clusters are retransformed from feature space back

into image space by visualizing the clusters in a single map.

Thereby, pixels of the same cluster, which may represent

normal, abnormal (ischemic) cerebral tissue or large vessels,

are characterized by maximum similarity in hemodynamic

behavior; pixels of different clusters indicate maximum

dissimilarity.7,8

For the classification of cerebral tissue, we applied

two different clustering techniques, k-means and a density-

based (DBSCAN) algorithm, and compared their clustering

characteristics.

k-Means

k-Means, a partitioning paradigm, constructs a partition of

the database of N pixels (= 3nm, three maps of image size nm;

n = number of pixels in rows; m = number of pixels in

columns) into a set of k clusters. Each cluster is represented

by the gravity center and all pixels must be assigned to a

cluster.8,15 The algorithm is briefly sketched as follows:

(i) Initialization (arbitrary assignment of the ith pixel to the i

modulo k th class).

(ii) Start loop until termination condition is met:

Each pixel in the image is assigned to a class such that the

distance (= Euclidean distance, which is the square root of

the componentwise square of the difference between the

pixel and the class, see Eq 4) from this pixel to the center

of that class is minimized.

Means of each class are recalculated on the pixels that

belong to that class.

(iii) End loop.

Theoretically, k-means should terminate when no more pixels

change classes. This relies on the fact that both steps of

k-means (assign pixels to nearest centers, move centers to cluster

centroids) reduce variance. Running to completion (no pixels
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changing classes) may require a large number of iterations, so

we terminated after 50 iterations.

For the application of k-means on perfusion maps, the user

needs to know the Bnatural^ number of clusters (k = expected

number of cerebral structures) in the image data which is the

only input parameter of the paradigm. The limited spatial

resolution of the functional maps provided enables primarily

the classification of normal parenchyma (gray and white

matter), abnormal ischemic parenchyma and large vessels.

Therefore, we suggested a k-value of 3 for the segmentation of

gray and white matter as well as large vessels in normal brain

perfusion or reversible ischemia (e.g., TIA), a k-value 9 3, if

additionally, ischemic parenchyma was visualized in perfusion

maps.

DBSCAN

The key idea of density-based clustering is that for each

pixel of a cluster the neighborhood of a given radius EE has to

contain at least a minimum number of pixels MinPts. The

algorithm DBSCAN (density-based spatial clustering of appli-

cations with noise), which discovers clusters and noise in a

database, is based on the fact that a cluster is equivalent to the

set of all pixels which are density-reachable from an arbitrary

core pixel in the cluster.16

To find a cluster, DBSCAN starts with an arbitrary pixel in

the database and checks the EE-neighborhood of each pixel in

the database. If the EE-neighborhood NEE (p) of a pixel p has more

than MinPts pixels, a new cluster C containing the pixels in

NEE ( p) is created. Then, the EE-neighborhood of all pixels q in C

which have not yet been processed is checked. If NEE(q)

contains more than MinPts pixels, the neighbors of q which

are not already contained in C are added to the cluster and their

EE-neighborhood is checked in the next step. This procedure is

repeated until no new point can be added to the current cluster

C. DBSCAN uses MinPts and EE-neighborhood as global input

parameters specifying the lowest density not considered to be

noise. MinPts is recommended to be 93.16 We used MinPts =

5. An EE-neighborhood of 0.1 was determined empirically from

prior experiments.

Image Pre- and Post-Processing

Our calculations were performed on a software tool which

has been developed at our institutions implementing k-means

and DBSCAN. It is easy to handle so that cluster analysis can

be performed by physicians or CT technologists during clinical

routine.

For cluster analysis, input image data was generated

routinely in a 12-bit grayscale format (Monochrome2) from

Siemens Syngo software. Syngo already segments cerebral

tissue so that the processed matrix size can be reduced from

originally 512 � 512 to approximately 300 � 350 (depending

on the patient’s head size and the imaged topographic level).

This reduction is helpful in shortening the runtime of the

cluster algorithms, because pixels outside the skull contain no

information that could change clustering outcome. The seg-

mented areas of the ventricle system and background pixels

were set to zero by default. However, the pre-segmented maps

contained the absolute CBF, CBV and TTP values added to an

offset of 210 (= 1024) counts, which had to be subtracted before

the algorithm was started. These offset-corrected maps were

then normalized to m = 0 and s2 = 1, which is an essential

condition for calculating the Euclidian distance function (Eq 4)

in a meaningful way.

Functional maps were also available in RGB format, which

were preferably used for clinical decision making (see Figs 1

and 2a), but were not appropriate for cluster analysis. After

each analytic run, all clusters identified were retransformed

from feature space into a single 8-bit grayscale image (TIFF),

visualizing the clustered cerebral regions and displaying CBF,

CBV and TTP values of each cluster detected. Currently, our

software runs on a PC (Pentium IV, 500 MB RAM, 2 GHz)

computing cluster results G10 min when applying k-means

and G2 min when using DBSCAN supported by an index

structure.

Quality of Clustering

Between-cluster and within-cluster variance measurements

for each k-level were performed using F-tests. In this test, the

ratio of two variances was calculated. If the two variances were

not significantly different (P 9 0.05), their ratio would be close

to 1. This measure constitutes a way to test whether the use

of k + 1 clusters instead of k clusters adds any significant

information. Student’s t-tests were considered to compare the

mean CBF, CBV or TTP values between clusters. A P-value

less than 0.05 indicated two significantly different means.

Fig 1. Cerebral blood flow (CBF), cerebral blood volume (CBV)
and time-to-peak (TTP) maps of a 66-year-old male patient
(patient 1) with aphasia and moderate hemiparesis. Clusters
identified applying k-means (k = 3) are shown. Clusters c1 and
c2 represent gray and white matter, cluster c3 depicts a large
venous vessel.
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Clinical Examples

Cluster analysis was applied to CBF, CBV and TTP maps of

two patients who had undergone a CT perfusion examination

within 2 and 3 h after onset of symptoms as part of their

routine diagnostic workup. Patient data was anonymized before

transfer to an external workstation where cluster analysis was

performed.

Patient 1 (male, 66 years) was presented with aphasia and

moderate hemiparesis on admission, which resolved complete-

ly over the following hours. CT, CT angiography and CT

perfusion maps were normal (Fig 1). Patient 2 (male, 40 years)

showed a left-sided hemiparesis. CT angiography revealed an

occlusion of the right middle cerebral artery (MCA). On CT

perfusion maps, there was a marked prolongation of TTP over

the right MCA territory. Decrease in CBF and CBV was less

prominent (Fig 2a, first line). He received thrombolytic therapy

(rTPA 47.7 mg, i.v.). Follow-up examination after 24 h showed

normalized perfusion parameters and recanalization of the

MCA, the neurologic deficit resolved (Fig 2a, second line).

RESULTS

Functional Clusters Identified by k-Means

Functional clusters identified by scanning CBF,

CBV and TTP maps are summarized in Figure 1

(Patient 1, k = 3) and Figure 2b (Patient 2, k = 2 to

k = 5). Mean (SD) cluster values of CBF, CBV

and TTP are shown in Tables 1 and 2. Choosing

k = 1, the mean global CBF, CBV and TTP values

Fig 2. (a) Cerebral blood flow (CBF), cerebral blood volume (CBV) and time-to-peak (TTP) maps of a 40-year-old male patient (patient
2) at acute stroke (left-sided hemiparesis, occlusion of the right MCA, first line) and 24 h after thrombolytic therapy (second line). (b)

Clusters identified applying k-means at acute stroke are depicted for k = 2, 3, 4 and 5 (clusters c2Yc5). Cluster analysis 24 h after
thrombolytic therapy with k = 3 showed symmetric cluster patterns for both hemispheres, as illustrated in patient 1 (maps not shown,
absolute CBF, CBV and TTP values see Table 2). (c) Sub-clusters identified (c1Yc7) in the global ischemic region using density-based
clustering (DBSCAN, MinPts = 5 and EE-neighborhood = 0.1) are shown. Sub-clusters c1Yc7 are ordered by increasing TTP. Sub-cluster
c8 represents the accumulated cluster of all seven sub-clusters c8 ¼

P

7

i ¼ 1
ci

� �

. (d) CBF, CBV and TTP values of sub-clusters c1Yc7 and
accumulated cluster c8 are displayed as means (SD).
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were determined. The high standard deviations of

accumulated CBF and CBV can be explained by

the large differences of these parameters in white

and gray matter and large vessels, respectively.

TTP yielded more homogenous values. In Patient

1, three clusters representing white matter (cluster

Table 1. Absolute functional values of clusters identified in patient 1

k-Value Cluster no. CBF (ml/100 g/min) CBV (ml/100 g) TTP (s) Area (cm2)

At acute TIA

k = 1 23.2 (25.1) 4.2 (4.4) 11.2 (2.1) 121.7

k = 2 c1 13.7 (8.5) 2.7 (1.7) 12.7 (1.9) 64.3

c2 33.8 (32.3) 5.8 (5.8) 10.0 (1.2) 57.4

k = 3 c1 13.5 (8.6) 2.7 (1.8) 12.8 (1.9) 60.92

c2 31.2 (16.3) 5.3 (2.8) 10.0 (1.2) 60.49

c3 412.6 (78.9) 74.1 (14.6) 14.4 (0.4) 0.29

CBF, CBV and TTP values of each cluster are given as means (SD) using k-means. k = 1 represents the mean global functional values of

the examined CT level. TIA is transient ischemic attack. All differences in CBF, CBV and TTP cluster values (c1Yc2 for k = 2 and c1Yc2,

c1Yc3 and c2Yc3 for k = 3) show statistical significance (P G 0.001). Changing the k-value from 2 to 3, cluster c2 (gray matter + large

vessels) is separated into c2 (gray matter only) and new c3 (vessels only). F-tests for c1 between k = 2 and k = 3 indicate that both

variances CBF (F = 3.93) and CBV (F = 4.29) are significantly different (P G 0.001). However, TTP reveals an F-value close to 1,

showing no significant changes.

Table 2. Absolute functional values of clusters identified in patient 2

k-Value Cluster no. CBF (ml/100 g/min) CBV (ml/100 g) TTP (s) Area (cm2)

At acute stroke

k = 1 29.5 (41.5) 5.2 (6.4) 11.0 (3.4) 134.11

k = 2 c1 15.9 (13.4) 3.3 (2.2) 17.0 (4.1) 22.72

c2 32.2 (44.7) 5.6 (6.9) 9.8 (1.4) 111.39

k = 3 c1 15.1 (10.4) 3.3 (1.9) 18.9 (3.6) 15.20

c2 22.7 (15.1) 4.1 (2.4) 10.0 (1.6) 111.48

c3 161.9 (94.0) 26.1 (13.3) 9.8 (2.2) 7.43

k = 4 c1 15.0 (10.0) 3.3 (1.8) 19.0 (3.6) 15.19

c2 21.3 (12.3) 3.8 (1.9) 10.1 (1.6) 108.74

c3 112.8 (36.4) 17.7 (5.7) 9.6 (2.1) 8.91

c4 322.2 (124.4) 48.9 (17.1) 11.9 (1.7) 1.28

k = 5 c1 14.7 (10.5)# 3.3 (1.9) 20.2 (3.3) 11.46

c2 14.8 (9.1)# 2.9 (1.5) 11.8 (1.4) 47.96

c3 26.4 (13.1) 4.6 (2.1) 9.1 (1.0) 65.42

c4 121.3 (33.3) 20.1 (6.0) 9.6 (2.1) 8.31

c5 357.1 (123.3) 53.7 (16.8) 12.4 (10.1) 0.97

24 h after therapy

k = 1 47.9 (64.3) 8.2 (10.2) 9.1 (3.1) 164.56

k = 2 c1* 37.4 (19.7) 5.4 (3.2) 7.5 (1.6) 117.58

c2* 85.7 (108.6) 15.5 (6.9) 12.8 (16.5) 46.98

k = 3 c1* 23.3 (15.4) 4.8 (3.3) 11.3 (2.3) 74.75

c2* 40.2 (23.7) 6.5 (4.0) 6.6 (1.0) 77.02

c3* 234.9 (103.5) 39.5 (11.8) 11.0 (3.7) 12.79

CBF, CBV and TTP values of each cluster are given as means (SD) using k-means. k = 1 represents the mean global functional values of

the examined CT level. The asterisk (*) indicates clusters identified after thrombolytic therapy. Differences in CBF, CBV and TTP cluster

values show statistical significance (P G 0.001) by testing all combinations of clusters cX within each k-level at acute stroke and after

therapy. Only mean CBF values between c1 (ischemic parenchyma) and c2 (normal tissue) at k = 5 (see symbol #) are not significantly

different (P = 0.387). However, increased CBV and prolonged TTP in ischemic cluster c1 differ significantly from c2. F-tests indicate

similar results as presented in Patient 1 (cf. Table 1). The area of ischemic cluster c1 decreases by raising the k-value from 2 to 5 which

is affected by the partitioning concept of k-means. These changes thus lead to little alterations of mean CBF (,) and TTP values (j).
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c1: CBF = 13.5 ml/100 g/min, CBV = 2.7 ml/100 g,

TTP = 12.8 s), gray matter (cluster c2: CBF =

31.2 ml/100 g/min, CBV = 5.3 ml/100 g, TTP =

10.0 s) and large vessels (cluster c3, see Fig 1

bottom right and Table 1) were identified at a

k-level of 3. Mean CBF, CBV and TTP values

between white and gray matter and vessels differed

significantly (P G 0.001).

Patient 2 revealed a diminished mean global

CBF of 29.5 ml/100 g/min (k = 1) compared to the

24 h follow-up examination (47.9 ml/100 g/min,

P G 0.001, Table 2). Similar results were obtained

with CBV and TTP (P G 0.001). By increasing

the value of k, clustering yielded more clusters

with altered hemodynamic patterns (Fig 2b). A

k-value of 2 identified the apparent territory of

the occluded right MCA with a decrease in CBF

(15.9 ml/100 g/min vs. 32.2 ml/100 g/min in

normal brain tissue of cluster c2, P G 0.001), CBV

(3.3 ml/100 g vs. 5.6 ml/100 g in normal brain

tissue, P G 0.001) and prolonged TTP (17 vs. 9.8 s

in normal brain tissue, P G 0.001). Increasing k up

to 3, the areas of high blood flow (predominately

large vessels) were separated. At k = 4, arterial

and venous vessels may be distinguished (arterial

TTP = 9.6 s, venous TTP = 11.9 s, P G 0.001). At a

k-value of 5, two low-perfused areas, c1 (ischemic

parenchyma) and c2 (normal tissue), were clus-

tered, showing the same CBF of approximately 15

ml/100 g/min (P = 0.387) but different CBV and

TTP values (P G 0.001).

Comparing cluster results from admission to

the 24-h follow-up examination after therapy, im-

provement in global CBF, CBV and normalization

of TTP were observed (Table 2). On follow-up,

cluster c1 (ischemic area at the initial examina-

tion) had disappeared according to the recanali-

zation of the MCA. At a k-value of 3, cluster c1*

(white matter) and cluster c2* (gray matter)

showed normalized values (P G 0.001) as well as

symmetric cluster patterns for both hemispheres

(maps not shown).

Functional Clusters Identified by DBSCAN

For the investigation of local hemodynamic

alterations within global ischemic regions, as

clustered by k-means in Patient 2, DBSCAN is

appropriate to more sensitively distinguish region-

al processes (Fig 2cYd). Comparing k-means

segmented ischemic area c1 (Fig 2b, k = 2) to

DBSCAN, cluster c1 could be separated into seven

sub-clusters with CBF values ranging from 11.9

to 17.9 ml/100 g/min, CBV values between 2.9

and 3.5 ml/100 g/min and increasing TTP values

from 15.2 up to 27.1 s. Sub-cluster c7, predom-

inantly located at the parietal lobe, indicated

the core region of ischemia with lowest CBF

(j35%) and maximum prolongation of TTP

(+48%, P G 0.001) compared to c8, the accumu-

lated sub-clusters c1Yc7 (c8 corresponds to the

above-mentioned k-means cluster c1, k = 2).

DISCUSSION

Diagnostic interpretation of CT perfusion inte-

grates the information derived from CBF, CBV

and TTP maps and shows limitations when

performing visual analysis. The degree of hemo-

dynamic alterations can better be analyzed quan-

titatively using manual segmentation of defined

brain areas on single CBF, CBV and TTP maps,

which can be done within minutes but is observer-

dependent.

Functional cluster analysis of CBF, CBV and

TTP maps facilitates the identification and seg-

mentation of anatomic regions with inherent

hemodynamic properties. Each calculated cluster

represents tissue with related functional parame-

ters by combining all three parameters into a

single map, where CBF, CBV and TTP values of

each voxel are simultaneously accessible. The

detected clusters are automatically computed in a

few analytical runs and reflect functional inter-

actions of the measured parameters in terms of

similarity operations in the three-dimensional

feature space.

In normals, the segmentation of gray and white

matter, as well as areas of large vessels can be

obtained with the algorithm k-means, choosing a

k-value of 3 by default (cf. Fig 1). k-Means clus-

ters all pixels independent of the number of iden-

tified clusters and—in contrary to DBSCAN—

requires the favored number of clusters as input

parameter (cf. Figs 1 and 2b). However, the

Bnatural^ number of clusters is limited by k $ 5

since the quality of provided functional maps en-

ables primarily the classification of normal paren-

chyma (gray and white matter), abnormal infarcted

parenchyma and large (arterial and venous) ves-

sels. Therefore, a further increase in k is not likely
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to yield meaningful results, as the number of

cerebral tissues and structures with functional

varying data is less than the specified number of

clusters. k-Means also reveals a decrease in the

cluster area (cf. ischemic cluster c1 of Patient 2,

Table 2) after incrementing the k-value which is

affected by the partitioning concept of k-means

and has to be accepted.

Density-based cluster analysis using the para-

digm DBSCAN is more sensitive to local he-

modynamic alterations within global ischemic

regions and provides an additional means to grade

between ischemic core (sub-cluster c7) and adja-

cent ischemic tissue (sub-clusters c1Yc6), as

shown in Patient 2 (Fig 2cYd). DBSCAN detects

a finite number of clusters and—compared to

k-means—noise pixels which, however, are gener-

ated according to the settings of the given input

parameters, MinPts and EE-neighborhood. As al-

ready mentioned, MinPts and EE-neighborhood

were determined empirically for this specific case

to identify hemodynamic alterations within the

global ischemic cluster. However, more patients

are needed to optimize parameter settings for both

algorithms—these experiments are presently on-

going—and to compare cluster findings to the

clinical situation.

Both algorithms showed small SDs for TTP

cluster values and larger SDs for CBF and CBV

values. This observation might be caused by the

high dissimilarity between the examined function-

al parameters (TTP vs. CBF and CBV) and a

correlation of CBF and CBV (cf. Eq 2), which can

be easily verified using, e.g., principal component

analysis. A decorrelation of the features is jus-

tified, e.g., in normal brain perfusion or reversible

ischemia clustering solely CBF (or CBV) and TTP

maps. However, ischemia is a complex pathophys-

iological condition, where CBF and CBV become

important when distinguishing reversible and irre-

versible changes. In our approach we thus con-

sidered all three feature maps for cluster analysis

in which correlation of CBF and CBV does not

affect final clustering results significantly, as prior

experiments showed.

TTP maps seem to represent the most sensitive

parameter for the estimation of endangered brain

tissue following vessel occlusion. This observa-

tion corresponds well with the result of cluster

analysis in our patient who had suffered a completed

stroke. The Bk = 2^ cluster map of this patient

segmented an area that is comparable to the TTP

map. In the clinical situation, the extension of ab-

normal values on TTP maps indicates the maxi-

mum amount of tissue that may be salvaged by a

recanalization therapy. The extension of abnormal

CBF indicates the tissue that is reached by col-

lateral flow and may still be amenable to benefit

from recanalization. CBV shows the center of

ischemia with complete cessation of perfusion that

is likely to progress to infarction. The correlation

of CBF and CBV with cluster maps of k 9 2 or

with identified sub-clusters c1Yc7 using DBSCAN

and its impact on decision making for recanaliza-

tion therapy remains to be investigated in larger

patient samples.

Appropriate models to quantify CBF, CBV and

TTP (or MTT) are needed to differentiate various

stages of cerebral ischemia. For our investiga-

tions we used Siemens Syngo perfusion software

which creates perfusion maps based on the max-

imal slope model.5,9 To be valid, this model re-

quires a very short injection time accompanied

by a high injection rate of the intravenous contrast

medium. Wintermark et al.5 described injection

rates between 5 and 20 ml/s, all showing an un-

derestimation of the absolute CBF. Models based

on the central volume principle have been

validated and seem to be more appropriate for

estimating absolute CBF, CBV and MTT values

in CT.10Y12,17 However, cluster analysis, which

runs on the normalized data space (m = 0, s2 = 1)

of CBF, CBV and TTP maps, is thus unaffected

by the underlying perfusion model. Absolute

cluster values, of course, reflect the accuracy of

the model to measure cerebral perfusion, which

may limit the clinical interpretation of functional

values.

CONCLUSION

Our preliminary results show that functional

cluster analysis of CT perfusion maps is a pro-

mising means for the identification of acute ce-

rebral ischemia. It facilitates the segmentation of

tissue at risk as well as the estimation of areas

with different severity of ischemia and collaterali-

zation within the endangered brain parenchyma.

Further studies are now warranted to investigate

the correlation between functional clusters and

pathophysiology and histological characteristics
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of the identified tissues, as well as to correlate

different clusters with clinical outcome.
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