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Abstract 
 
Motivation: During the Bavarian newborn screening program all newborns have been tested for 
about 20 inherited metabolic disorders. Due to the amount and complexity of the generated 
experimental data machine learning techniques provide a promising approach to investigate novel 
patterns in high-dimensional metabolic data which form the source for constructing classification 
rules with high discriminatory power.  
Results: Six machine learning techniques have been investigated for their classification accuracy 
focusing on two metabolic disorders, PKU and MCADD. Logistic regression analysis led to 
superior classification rules (sensitivity >96.8%, specificity >99.98%) compared to all investigated 
algorithms. Including novel constellations of metabolites into the models, the positive predictive 
value could be strongly increased (PKU 71.9% vs. 16.2%, MCADD 88.4% vs. 54.6% compared to 
the established diagnostic markers). Our results clearly proof that the mined data confirm the known 
and indicate some novel metabolic patterns which may contribute to a better understanding of 
newborn metabolism.  
 

Availability:   
WEKA machine learning package:    www.cs.waikato.ac.nz/~ml/weka
Statistical software package ADE-4:    http://pbil.univ-lyon1.fr/ADE-4

Contact: 
christian.baumgartner@umit.at
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Metabolomics; supervised machine learning; newborn screening; phenylketonuria, medium-chain 
acyl-CoA dehydrogenase deficiency. 
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Introduction 
 
Background 
Newborn screening programs for severe metabolic disorders, which hinder an infant’s normal 
physical or mental development, are well-established (Liebl et al., 2002, Liebl et al., 2003). 
Otherwise not apparent at this early age, these metabolic disorders can be addressed by effective 
therapies. New and refined screening methodologies based on tandem mass spectrometry of 
metabolites have been developed for routine deployment (Millington et al., 1984). The functional 
endpoint of metabolic cycles, which offer a precise snapshot of the current metabolic state, can be 
detected in a single analysis of a small blood sample that is collected during the first few days of 
life. Screening simultaneously for more than 20 inherited metabolic disorders by quantifying the 
concentrations of up to 50 metabolites (Millington et al., 1992, Chace et al., 1999), the amount and 
complexity of the experimental data is quickly becoming unmanageable to be evaluated manually. 
Therefore, machine learning techniques have been suggested to discover and mine novel data in 
metabolic networks and to construct screening models for metabolic disorders in newborns with 
high predictive power (Mendes, 2002, Neville et al., 2003, Purohit et al., 2003, Baumgartner et al.,
2004).  
 
Task definition 
Focusing on two representative inborn errors of metabolism – phenylketonuria (PKU), an amino 
acid disorder, and medium-chain acyl-CoA dehydrogenase deficiency (MCADD), a fatty acid 
oxidation defect – six well-established supervised machine learning techniques were evaluated to 
determine the “best” screening model according to the following criteria: 

• discriminatory performance of the learning algorithm based on pre-classified, selected and 
clinically validated sub-databases of PKU and MCADD newborns, and controls, 

• diagnostic prediction of constructed classifiers with respect to optimising sensitivity and 
minimizing the number of false positive results considering a larger database of 
approximately 100,000 controls. 

In particular, we compared the classification capabilities of three directly interpretable decision 
rules (discriminant analysis, logistic regression analysis and decision trees), which represent the 
data relations in an explicit way, e.g. in a formula or in a tree-like structure, and three not directly 
interpretable techniques (k-nearest neighbours, artificial neural networks and support vector 
machines), which can not easily be described in terms of the original variables or attributes. 
Correlation based feature-selection methods were applied which aim at removing irrelevant and 
redundant metabolites while retaining or improving the discriminatory power of our classification 
models. 

 
System and Methods 
 
Tandem mass spectrometry (MS/MS) 
A mass spectrometer separates ions based on their mass/charge (m/z) ratios. Characteristic patterns 
of fragments and relative peak intensities in the resulting spectrum allow qualitative as well as 
quantitative determination of chemical compounds. By coupling two mass spectrometers, usually 
separated by a reaction chamber or collision cell, the modern tandem mass spectrometry (MS/MS) 
allows simultaneous analysis of multi-compounds in a high-throughput process (Millington et al., 
1984). MS/MS has been used for several years to identify and measure carnitine ester 
concentrations in blood and urine of children suspected of having inborn errors of metabolism. 
Indeed, acylcarnitine analysis is a superior diagnostic test for disorders of fatty acid oxidation 
because abnormal levels of related metabolites are detected before the patient is acutely ill 
(Millington et al. 1992). More recently, MS/MS has been used in pilot programs to screen 
newborns for these conditions and for disorders of amino- and organic-acid metabolism as well 
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(Liebl et al., 2002, Liebl et al., 2003). MS/MS thus permits very rapid, sensitive and, with internal 
standards, accurate quantitative measurement of many different types of metabolites by conversion 
of raw mass spectra into clinically meaningful results (concentrations). 
 
Disease characteristics, metabolism and epidemiological aspects of investigated disorders  
Phenylketonuria (PKU, OMIM #261600) is an amino acid disorder which is caused primarily by a 
deficiency of phenylalanine hydroxylase activity with blocked hydroxylation of phenylalanine to 
tyrosine or impaired synthesis or recycling of the biopterin (BN4) cofactor. Phenylalanine 
hydroxylase deficiency produces a spectrum of disorders including classic PKU, non-PKU 
hyperphenylalaninemia and variant PKU (Chace et al. 1993, Rashed et al., 1995, Guldberg et al.,
1998). Untreated children with persistent severe PKU show impaired brain development. Signs and 
symptoms include microcephaly, epilepsy, mental retardation, and behaviour problems. Since the 
appearance of universal newborn screening, symptomatic classic PKU is infrequently seen. Its 
predicted incidence in screened populations of less than one in a million live births reflects those 
children not detected by newborn screening. Prevalence of phenylalanine hydroxylase deficiency in 
various populations shows different values: Turks (1:2,600), Caucasians (1:10,000), Japanese 
(1:143,000). In our experiments we focused on cases of classic PKU. The estimated incidence of 
classic PKU calculated from Bavarian newborn screening (NBS) data is approximately 1:14,000. 
Medium-chain acyl-CoA dehydrogenase deficieny (MCADD, OMIM #201450) is a fatty acid 
oxidation defect which leads to an accumulation of fatty acids and a decrease in cell energy 
metabolism. Fatty acids that accumulate due to the erroneous metabolism of MCADD are C6-
carnitine, C8-carnitine, C10-carnitine as well as C10:1, which is metabolised by four β-oxidation 
cycles of oleyl-carnitine (C18:1) (Van Hove et al., 1993, Rashed et al., 1995, Blau et al., 2001, 
Rinaldo et al., 2002). Patients with MCADD (clinically two forms of MCADD can be 
distinguished, i.e. “classic” and “mild” MCADD) appear normal at birth and usually present 
between three and 24 month of age in response to e.g. intercurrent and common infections. 
Instances of metabolic stress can lead to vomiting and lethargy, which may quickly process to coma 
and death. MCADD is a disease that is prevalent in Caucasians, especially those of Northern 
European descent. The overall frequency of the disorder has been estimated to range from 1:4,900 
to 1:17,000 (variations related to the ethnic background of populations). Based on NBS programs 
worldwide, the incidence has been defined in Northern Germany (1:4,900), USA (1:15,700) and in 
Australia (1:25,000). In our experiments we only investigated the classic form of MCADD. The 
estimated incidence of classic MCADD calculated from Bavarian (Southern Germany) NBS data is 
approximately 1:10,000. 
For the screening of inborn errors of metabolism physicians generally use decision rules or flags, 
which are based on so-called primary diagnostic metabolites. In 2000 the American College of 
Medical Genetics/American Society of Human Genetics Test and Technology Transfer Committee 
Working Group (ACMG/ASHG) published a guideline where these primary metabolites/markers 
are summarized. According to this document phenylalanine (Phe) and tyrosine (Tyr) are mentioned 
as established primary markers for PKU, C8-carnitine and C10:1-carnitine for MCADD. We have 
used the proposed markers as reference for discussion of our found metabolites. 
 
Examined newborn screening data  
Our experimental datasets were anonymously provided from the newborn screening program in 
Bavaria, Germany (Public Health Newborn Screening Center of the State of Bavaria, 
Oberschleissheim) between 1999 and 2002. A single blood sample, which has been taken within a 
few days after newborn’s birth, undergoes MS/MS analysis, the measured metabolic datasets have 
been saved in a database (file based DB, stage 2002). 
For an objective train-and-test design cycle we focused on one representative disorder of the amino 
acid and one of the fatty acid oxidation metabolism, each of them showing a relatively high 
incidence in-between their group of disorders (classic PKU, n=43 cases and classic MCADD, n=63 
cases). The number of cases of further screened metabolic disorders was unfortunately too small for 
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an useful examination (e.g. 3-OH long chain acyl CoA dehydrogenase deficiency, LCHADD, n=2; 
short chain Acyl CoA dehydrogenase deficiency, SCADD, n=1; very long chain Acyl CoA 
dehydrogenase deficiency, VLCADD, n=5; propionic acidemia, PA, n=6; and methylmalonic 
acidemia, MMA, n=5). Based on the limited number of PKU and MCADD cases we created a 
statistically representative control group from the NBS database (~600,000 entries, end of year 
2002) using a rate of ~1:25 (disorder to controls). Therefore the PKU sub-database (train-and-test 
database) contains all 43 cases designated as confirmed classic PKU and a small number of 
randomly sampled controls (1241 cases i.e. each  500th case from NBS controls, which represent all 
newborns without verified cases of known metabolic disorders), the MCADD sub-database contains 
all 63 cases newborns of classic MCADD and again 1241 controls. A much larger randomly 
sampled control group of 98,411 cases, representing one sixth of the NBS control database, serves 
to obtain reliable estimates of the false positive rates. 
 
Experimental design of the classification analysis  
The general scheme for constructing a screening model (classifier) of high-dimensional metabolic 
data is illustrated in figure 1. Starting from the NBS database, we first selected two sub-databases 
containing all available PKU and MCADD cases and a representative small number of randomized 
controls for training and cross (X)-validation. Thus, computational efficiency could be ensured 
without loosing the models’ classification accuracy on reduced data during training phase. 
However, aim of the classification task is to achieve highest discriminatory performance by 
minimizing the number of false negative and false positive cases. Feature sub-selection algorithms 
led to a reduced number of metabolites relevant for the calculated classifier. Finally, the most 
sensitive models were re-evaluated by applying them on a larger database of approximately 100,000 
controls in order to estimate a representative value for specificity.                     
[FIGURE 1] 
 
Supervised machine learning techniques  
Usually, for a supervised classification problem, the training data sets are in the form of a set of 
tuples {(y1, x1,j),…, (yn, xn,j)} where yi is the class label and xij is the set of attributes (metabolites) for 
the instances. The task of the learning algorithm is to produce a classifier (model) to classify the 
instances into the correct class. The used classification and feature selection algorithms are 
described shortly in the section “algorithms”. 
 

Algorithms 
 
Classification algorithms 
 
Discriminant analysis (DA) 
Both discriminant analysis and logistic regression analysis construct a separating hyperplane 
between the two datasets. This hyperplane is described by a linear discriminant function                  
z = f(x1,…xn) = b1x1 + b2x2 + … + bnxn + c which equals to zero at the hyperplane if two 
preconditions are fulfilled: (i) multivariate normal distribution in both datasets and (ii) homogeneity 
of both covariance matrices. For discriminant analysis, the hyperplane is defined by the geometric 
means between the centeroids (i.e. the centres of gravity) of the two data sets. To take different 
variances and covariances in the data sets into account, the variables are usually first transformed to 
standard means (µ=0) and variance (σ2=1) and the Mahalanobis distance (an ellipsoid distance 
determined from the covariance matrix of the data set) is preferred to the Euclidean distance. 
(McLachlan, 1992). 
 
Logistic regression analysis (LRA) 
Similar to DA logistic regression analysis constructs a linear separating hyperplane between the two 
datasets which have to be distinguished by the classifiers. Additionally, a logistic function p
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is used to consider the distance from the hyperplane as a probability measure of class membership, 
where p is the conditional probability of the form P(z=1| x1,...,xn ) and z the logit of the model. The 
class membership to both classes is indicated by a cut-off value (p=0.5 by default). LRA uses a 
maximum likelihood method which maximises the probability of getting the observed results given 
the fitted coefficients (Hosmer et al., 2000). 
 
Decision trees (DT) 
Decision trees are rooted, usually binary trees, with simple classifiers placed at each internal node 
and a class label at each leaf. For most DT algorithms, these simple classifiers associated with the 
internal nodes are comparisons between an input variable and a fix value. The algorithm most often 
used to generate decision trees is ID3 (Quinlan, 1986) or its successors C4.5 and C5.0, respectively 
(Quinlan, 1993). This algorithm selects the next node to place in the tree by computing the 
information gain for all candidate features. Information gain (IG) is a measure how well the given 
feature A separates the remaining training data by expecting a reduction of entropy E, a measure of 
the impurity in the data (Mitchell, 1997). 
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S represents the data collection, |S| its cardinality, C is the class collection, Sc the subset of S
containing items belonging to class c, V(A) is the set of all possible values for feature A, Sv is the 
subset of S for which A has value v. We used the C4.5 algorithm with reduced-error-pruning option 
to avoid overfitting of training data.  

k-nearest neighbour classifier (kNN) 
A k-NN classifier defines decision boundaries in an n-dimensional space which separate different 
sample classes from each other in the data. The learning process consists in simply storing the 
presented data. All instances correspond to points in an n-dimensional space and the nearest 
neighbours of a given query are defined in terms of e.g. the standard Euclidean distance. The 
probability of a query q belonging to a class c can be calculated as follows: 
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where K is the set of nearest neighbours, kc the class of k and d(k,q) the Euclidean distance of k
from q. Larger values of K consider more neighbours, and therefore smooth over local 
characteristics, smaller values leads to limited neighbourhoods (Mitchell, 1997). In general, K can 
only be determined empirically. For our data representation we proposed K values of 1, 3 and 5.  
 
Artificial neural networks (ANN) 
An artificial neural network is an information processing paradigm that is inspired by the biological 
nervous systems, such as the brain. The network consists of several layers of neurons, which are the 
input, hidden and output layers. An input layer takes the input and distributes it to the hidden layers 
which do all the necessary computation and output the results to the output layer. 
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The standard algorithm which we used is a multi-layered ANN trained using backpropagation and 
the delta rule. This algorithm attempts to minimize the squared error between the network output 
values and the target value for these outputs (Bishop, 1995; Mitchell, 1997). The ANN was 
designed using a single layer of hidden units with (number of attributes + number of classes)/2 
hidden units. Note that too many or too few hidden units can lead to over- or underestimation of 
training data. We chose 500 epochs to train through and a learning rate of 0.3, the amount the 
weights to be updated. 
 
Support Vector Machines (SVM) 
The basic idea of a SVM classifier is that the data vectors can be separated by a hyperplane. In the 
simplest case of a linear hyperplane there may exist many possible separating hyperplanes. Among 
them, the SVM classifier seeks the separating hyperplane that produces the largest separation 
margin between the two classes. Such a scheme is known to be associated with structural risk 
minimization to find a learning machine that yields a good trade-off between low empirical risk and 
small capacity. 
In the more general case in which the data points are not linearly separable in the input space, a 
non-linear transformation is used to map the data vector x into a high-dimensional space prior to 
applying the linear maximum-margin classifier. To avoid over-fitting in this higher dimensional 
space, a SVM uses kernel functions (polynomial and Gaussian radial basis kernels are the most 
common) in which the non-linear mapping is implicitly embedded. With the use of a kernel, the 
decision function in a SVM classifier has the following form: 
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where K (·,·) is the kernel function, xi are the so-called support vectors determined from training 
data,  LS is the number of support vectors, yi is the class indicator associated with each xi, and αi, the 
Lagrange multipliers. Additionally, for a given kernel it is necessary to specify the cost factor c, a
positive regularization parameter that controls the trade-off between complexity of the machine and 
the allowed classification error (Cortes et al., 1995, Vapnik, 1998). We used the SVM with its 
simplest case of a linear hyperplane and with polynomial kernels of degree 2 and 3. The cost factor 
c was set to 100 for all three SVM settings.  
 
Feature extraction algorithms 
Feature subset selection is the process of identifying and removing as much irrelevant and 
redundant information as possible. This reduces the dimensionality of the data and may allow 
learning algorithms to operate faster and more efficiently (Mitchell, 1997).  
We propose the filter approach using gain ratio and relief, two representatives of correlation based 
extraction techniques coupling an applicative correlation measure with a heuristic search strategy: 
As described previously the effectiveness of a feature in classifying the training data can be 
quantified using the given entropy E (equation 2). Using equation 3 (information gain, IG) the 
expected reduction of entropy caused by partitioning the data according to feature A can be 
measured. Thereby, IG favors features with many different values over those with few values which 
is not always desired. The concept of gain ratio (GR) overcomes this problem by introducing an 
extra term SI taking into account how the feature A splits the data.  
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where Si are d subsets of data resulting from partitioning S by the d-valued feature A. For the 
special case where the SI term can be 0, GR(S, A) is set to IG(S, A). 
Relief is a feature weighting algorithm that is sensitive to feature interactions. It evaluates the merit 
of a feature by repeatedly sampling an instance and considering the value of the given feature for 
the nearest instance of the same class (nearest hit) and different class (nearest miss). Equation 7 
represents the weight updating formula:  
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where WA is the weight for attribute A, R is a randomly sampled instance, H is the nearest hit, M is 
the nearest miss, and m is the number of randomly sampled instances. The function diff calculates 
the difference between two instances for a given attribute (Kira et al., 1992; Kononenko, 1995). The 
number of nearest neighbours was selected to be 10. 
 
Evaluation of classifier’s accuracy and validation 
We evaluated the discriminatory power of the investigated techniques constructing a classification 
(confusion or contingency) table for our two class problem stating true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN). The evaluation measure most 
frequently used in classification is accuracy (Acc) which describes the proportion of correctly 
classified instances: Acc = (TP+TN)/(TP+FP+TN+FN). Measures which consider more precisely 
the influence of the class size are sensitivity (Sn) or recall, specificity (Sp), positive predictive value 
(PPV) or precision and negative (NPV) predictive value.  Sn = TP/(TP+FN) measures the fraction of 
actual positive instances that are correctly classified; while Sp = TN/(TN+FP) measures the fraction 
of actual negative examples that are correctly classified. The PPV (or the reliability of positive 
predictions) is computed by PPV=TP/(TP+FP), the NPV is defined as NPV=TN/(TN+FN) 
(Salzberg, 1999).  
Five classification algorithms (DT, LRA, kNN, ANN and SVM) and the feature extraction 
techniques gain ratio and relief used in this study were obtained from the WEKA machine learning 
package (http://www.cs.waikato.ac.nz/~ml/weka). WEKA is a publicly available, widespread and 
comprehensive tool set which guarantees high comparability of our results. DA and statistical 
analysis were performed with the software package ADE-4 (http://pbil.univ-lyon1.fr/ADE-4). The 
packages were used to investigate the models’ discriminatory power on full and reduced data 
dimensionality. An established methodology to evaluate the robustness of the classifier is to 
perform a cross validation on the classifier. 10-fold-cross validation has been proved to be 
statistically good enough in evaluating the classification accuracy of the models (Witten et al.,
2000). 

Experiments  
 
Descriptive statistics of metabolic data 
Table 1 summarizes all metabolites measured by mass spectrometry: 14 amino acids representing 
the spectrum of metabolites involved in investigated amino acids disorders and 29 fatty acids 
(acylcarnitines) involved in the metabolism of fatty acid oxidation defects. The mean concentrations 
and respective standard deviations (sd) of all metabolites are given in µmol/L. Differences of 
metabolite concentrations between disorder and control group were performed with unpaired 
significance testing. 
 
Comparison of classification methods examined on the full metabolite dimensionality 
In order to investigate the discriminatory performance in a high-dimensional feature space, we first 
examined all presented supervised machine learning algorithms on selected sub-databases 
considering full amino acid dimensionality (PKU sub-database) and full fatty acid dimensionality 

http://pbil.univ-lyon1.fr/ADE-4
http://www.cs.waikato.ac.nz/~ml/weka


9

(MCADD sub-database), respectively. Overview of full amino and fatty acid dimensionality see 
table 1. The effectiveness of the classifiers is summarized in table 2 a-b. 
These results revealed that most of the classifiers (without DA and k-NN) applied on the PKU 
database performed well in terms of classification accuracy (Sn ≥ 95.3%, Sp ≥ 99.8%, Acc               
≥ 99.7%). Except the DT learner, all classifiers indicated an optimal specificity of 100%. Thereby, 
not directly interpretable algorithms such as ANN and SVM-2 yielded a minor advantage in 
sensitivity compared to the other ones (table 2a). Running our experiments on the MCADD sub-
database, all six algorithms showed reduced classification accuracy (cf. Sn and Acc compared to the 
PKU results, table 2b). This tendency may arise from the induced classifiers being able to 
characterize the negative samples as our training set contains twice as much higher feature 
dimensionality compared to the PKU data (29:14 metabolites). In general, the DA and k-NN 
learners demonstrated decreased classification accuracy for both PKU and MCADD datasets. LRA, 
ANN, DT, SVM-1 (linear hyperplane) and SVM-2 (polynomial kernel, degree 2) led to better 
discrimination and, accordingly, classification accuracy indicated by high Sn (≥ 95.3%) and high Sp

(≥ 99.8%) in PKU data, and minor reduced Sn (≥ 92.1%) but also superior Sp of ≥ 99.6% in 
MCADD data.  
 
Feature extraction and metabolic patterns 
Feature extraction methods identify redundant metabolites which can be removed leading to 
simplified classification models. We applied two correlation based filter techniques, gain ratio and 
relief, in order to identify most significant metabolites. Figure 2 a-b summarizes the metabolic 
patterns resulting from both techniques. Black bars indicate the established diagnostic markers.           

 [FIGURE 2]  
According to the sequence of the amino acids group obtained by the gain ratio filter (figure 2a), 
Glu, Argsuc and Arg showed a high impact in PKU data in addition to Phe. However, these results 
correspond just partly with the abnormal PKU metabolism, as solely Phe and Tyr are used as 
conventional diagnostic metabolites for screening for PKU. Little differences were observed in the 
relief ranking where again Phe, which shows a highly accumulated concentration, was top-placed 
followed by the acids Xle, Glu, Val and Gly. The diagnostic marker Tyr, which is significantly 
diminished in PKU metabolism (cf. table 1), ranked at an irrelevant position in both filter 
approaches. In addition to Phe, Arg and Glu yielded strongly increased concentration levels, but 
accompanied by high variances (cf. descriptive results) in PKU data. However, they show no 
significant concentration changes in the control group. These observations can not be directly 
explained by the deficiency of phenylalanine hydroxylase activity, but seem to be an interesting 
secondary effect of metabolism which currently is in discussion with our clinical and biochemical 
experts. 
For MCADD data the gain ratio ranker figured out a strong dominance of octanyl-carnitine (C8), 
followed by C10:1, which corresponds well to the established diagnostic markers. It is also of 
interest to note that the result of the relief algorithm yielded similar ranking results in the order of 
the first six fatty acids. In addition to C8 and C10:1 also C10 and C2 (medium and short chain fatty 
acids) with elevated and C12DC and C18:1 (long chain fatty acids) with diminished concentration 
levels correspond quite well with the abnormal MCADD metabolism.  
 
Comparison of classifiers examined on reduced metabolite dimensionality 
We applied five of six machine learning algorithms (DT learner was not examined on the reduced 
feature spectrum due to its internal feature selection strategy) to the established diagnostic markers 
(ACMG/ASHG statement, 2000), which served as a reference for employing a low dimensional 
metabolite space. Table 3a-b summarizes the classification accuracy for PKU’s and MCADD’s 
primary diagnostic metabolites Phe and Tyr, and C8 and C10:1, respectively. Despite the small 
nuances on differences in classification accuracy within the examined algorithms on full and 
reduced feature dimensionality LRA is top-ranked for MCADD (Sn = 95.2%) and together with 
ANN and k-NN learners also best ranked for PKU (Sn = 97.7%). By contrast, DA and SVMs with 
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polynomial kernels show considerably decreased Sn values compared to full metabolite 
dimensionality. However, the minor alterations of classification accuracy in both disorders are 
caused simply by the obvious statistically significant differences between the groups of disorder and 
controls (cf. descriptive results). 
 
Screening models for classic PKU and classic MCADD  
Models which may prove feasible for clinical routine have to ensure easy interpretation without 
loosing predictive power. Within this context, from all six investigated machine learning paradigms, 
LRA, 1-NN, 3-NN, ANN and SVM-1 gave promising classification results on reduced metabolite 
dimensionality. For the screening of classic MCADD and classic PKU, we trained the LRA model - 
a paradigm widely used in medical applications - on both metabolic sub-databases showing highest 
Sn of ≥ 95.2% (cf. table 3). In order to further optimise the model’s discriminatory performance we 
computed the six top-ranked metabolites as investigated from feature selection methods and 
examined their possible pair-wise combinations. Including combinations of more than two 
metabolites did not further improve the classification accuracy. Table 4 summarizes the most 
sensitive screening models (PKU: Sn = 95.4-100%, MCADD: Sn = 95.2-96.8%). The total number 
of falsely negative classified newborns did not exceed 0-4.6% for PKU and 3.2-4.8% for MCADD. 
Promising models predominantly include two metabolites, but differing partly from the clinically 
applied diagnostic metabolites. Following the process of analysis depicted in figure 1, our most 
sensitive models were consecutively re-evaluated on a larger control database of 98,411 cases. As 
expected this procedure decreased specificities of the constructed models significantly. However, 
the models’ real classification accuracy in terms of the false positive rate and the positive predictive 
value can now easily be extrapolated considering the estimated disorder’s incidences.  
All derived screening models for PKU contain Phe as the predominant metabolite which is 
consistent with its role in erroneous metabolism (Chace et al. 1993, Rashed et al., 1995). Models 
including Phe alone or combined with Arg or Argsuc yielded the highest PPV of 70.7-71.9%, i.e. 
16-17 FP cases (0.00017%) out of 98,411 controls. The latter constellations, however, cannot be 
directly explained from the PKU metabolism. The classifier which includes the established 
diagnostic markers Phe and Tyr show maximum Sn (100%), but its PPV drops off significantly 
(16.2%). However, combinations of Phe and further meaningful metabolites do not change 
classification accuracy significantly, Phe remains the key marker for PKU. Nevertheless, the role of 
Arg, Glu, Argsuc, Val or Xle in alternative pathways needs to be cross-checked in order to 
understand their individual influence on PKU metabolism.    
MCADD models led to Sn values (95.2-96.8%) slightly decreased but still superior to the 
established clinical markers; Sp and PPV showed higher values compared to the PKU models. The 
most sensitive model (Sn = 96.8%) combining octanyl-carnitine (C8) and octadecenoyl-carnitine 
(C18:1) yields an excellent Sp of 99.992% and a PPV of 88.4%. In other words only a marginal 
fraction of 8 FP cases (0.00008% of all controls) is wrongly classified to be a classic MCADD 
patient. Considering the established diagnostic markers C8 and C10:1 in the model, PPV decreases 
to 54.6%, so that decision rules based on alternative combinations of C8 + C18:1 and C8 + C12DC 
or C8 alone seem to be the better markers to enhance discriminatory performance and thus to 
optimise classification accuracy. 
In addition the derived classification models allow to calculate a conditional probability value of the 
form P(disorder = 1| metabolite1, …, metaboliten). The logits of constructed LRA models               
(z = a0+a1m1+ …+ anmn) are presented in table 4 (final column). 
 

Discussion  
 
Machine learning techniques have great potential to increase our knowledge in functional 
metabolomics, an area which is still in the early stages of comprehensive investigation. Focusing on 
inborn errors of metabolism from newborn screening data the metabolic patterns of a wide spectrum 
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of amino and fatty acid concentrations were examined in order to enhance diagnostics in an early 
stage of disorder. 
Therefore we investigated the use of six different machine learning techniques for their suitability to 
construct classification models for two severe metabolic disorders, PKU and MCADD. To increase 
the classifier’s effectiveness we reduced full metabolite dimensionality with two correlation based 
feature selection algorithms, gain ratio and relief, with their central hypotheses that good feature 
sets contain features that are highly correlated with the class, yet uncorrelated with each other. 
Experiments showed that correlation based feature selection quickly removes irrelevant, redundant, 
and noisy features, and identifies relevant attributes as long as their relevance does not strongly 
depend on other features (Hall, 1999). In most cases, classification accuracy using reduced feature 
(metabolite) dimensionality equaled or increased accuracy using the entire metabolite spectrum as 
our experiments confirm.  
The highest discriminatory performance was achieved with the LRA model, a directly interpretable 
technique, which proved readily applicable in the daily screening procedure. The resulting 
discriminant function can easily be cross-checked with already acquired patient data. Furthermore, 
the formulas can be used as a starting point for the detection of previously unknown causal 
dependencies in metabolic pathways. 
For both disorders the computed sensitivity of the best LRA models ranged above 96.8%, the 
specificity exceeded 99.98%. By including novel constellations of metabolites into our models – as 
examined by the feature extraction procedures – specificity and PPV could be increased compared 
to the established screening metabolites. In case of PKU the PPV, which was determined on a larger 
sampled control database of 98,411 cases, improved up to 71.9% using solely Phe, and up to 70.7% 
by combining e.g. Phe and Arg. The PPV deteriorated to just 16.2% when considering Phe and Tyr, 
both of them being the metabolites predominantly altered in the abnormal PKU metabolism. Note 
that for the classification task solely single metabolite concentrations have been considered as 
model input variables. However, modelling e.g. a ratio of Phe/Tyr, which represent abnormal 
changes of Phe (↑) and Tyr (↓ ) due to the blocked hydroxylation of Phe to Tyr, the PPV can 
significantly be increased as already shown elsewhere (Chace et al., 1998). 
For MCADD the model’s PPV increased significantly compared to the PPV of 54.6% for the 
established screening metabolites C8 and C10:1 resulting in PPV values of 88.4% for C8 and 
C18:1, 88.2% for solely C8 and 85.7% for combining C8 and C12DC, respectively. The false 
positive rate for MCADD most likely varies between screening programs because of differences in 
acylcarnitine analysis and profiling. Programs that screen for MCADD but not for other fatty 
oxidation disorders often limit their analysis to C8, the predominant, but not specific marker for 
MCADD which is elevated in several other disorders (e.g. medium/short chain 3-OH acyl CoA 
dehydrogenase deficiency or glutaric acidemia type II). Consideration of the disorders included in 
the differential diagnosis should minimize the false positive rate. Our presented models including 
novel combinations such as C8 + C18:1 and C8 + C12DC give additional information with respect 
to the aforementioned differential diagnostic challenges. However, the experimental confirmation is 
essential and is part of our ongoing investigations. 
For the routine clinical screening LRA models proved particularly feasible because of their highly 
significant prognostic accuracy. The models permit to calculate the probability for the occurrence of 
the disorder by classifying the tested newborns according to a default cut-off level of p = 0.5. By 
employing sharper cut-offs (e.g. 0.25 ≤ p ≤ 0.75, i.e. between the first and third quartile), this 
approach can be extended to a prognostic “alarm system” allowing a more effective response to 
cases of metabolic disorders detected during the screening procedure. Subsequent diagnostic 
clarification has only to focus on this “third” class of newborns in the interval [0.25, 0.75] which is 
highly suspicious for the screened disorders. However, the presented models showing high 
specificity do not always have optimal Sn of 100%. A feasible procedure for optimizing sensitivity 
is to change the default cut-off level of p = 0.5. The costs for elevating sensitivity by decreasing the 
default cut-off are subject of our current work. Preliminary results indicate that classification 
models showing optimised sensitivity of 100% have to accept a 2 to 3 fold increase of FP cases.  
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To sum it up, the top three machine learning techniques, LRA (as discussed above), SVM and 
ANN, delivered results of high predictive power when running on full as well as on reduced feature 
dimensionality. Although SVMs can effectively construct nonlinear decision boundaries by 
mapping training data into a higher-dimensional feature space (SVM-2, SVM-3), these polynomial 
SVM did not perform better in low dimensional feature spaces compared to the known linear 
techniques like LRA. Interestingly, SVM operating with a linear separating hyperplane (SVM-1) 
performed better than the polynomial ones. They led to results similar to the LRA classifier, an 
observation already described by other authors (Dreiseitl et al., 2001). The C4.5 DT classifier, 
which selects features internally based on the information gain, showed good discriminatory 
performance, leading to the same Sn (95.3%) as LRA on PKU data (tree root = Phe, no child nodes) 
and slightly decreased Sn (-1.6%) on MCADD data (tree root C10:1, two child nodes C8 and C16). 
The third directly interpretable method, DA, operates on a separating linear hyperplane similar to 
LRA. As expected, the DA classifier discriminated worse in both, full and reduced feature 
spectrum, since an important precondition, the homogeneity of both covariance matrices, was not 
fulfilled (confer e.g. the data distribution of Phe in the PKU and control groups; see table 1). Out of 
the group of not directly interpretable techniques the ANN classifier performed best. Despite 
lacking direct interpretation of the knowledge representation, its ability to calculate non-linear 
decision boundaries emphasizes its diagnostic potential. The results of the k-NN algorithms (for all 
applied k values) were comparable with those running on established diagnostic metabolites, but 
significantly inferior (2 to 10 percentage points) to those running on the entire dimensionality of 
PKU and MCADD databases. However, k values larger than 5 generally led to a decrease of the 
classification accuracy due to smoothing effects of local data characteristics.  
In conclusion, our results show that the use of machine learning paradigms, in particular the LRA 
model, is suitable to construct classifiers on high-dimensional metabolic data. Moreover, we could 
demonstrate that the screening model’s high predictive power could be achieved by reducing the 
dimensionality of the parameter space using only 1-2 representative metabolites for PKU and 
MCADD. The mined results confirm some known patterns among the metabolites and reveal a 
number of novel patterns which may contribute towards a better understanding of newborn 
metabolism, and constitutes a significant contribution to the early recognition and therapy of 
metabolic diseases.   
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Table 1: Metabolites of a single blood spot from MS/MS analysis  
 
Amino acids (symbol) PKU  Controls 
Alanine (Ala) 421.8 ± 129.8 508.9 ± 210.7 
Arginine (Arg) 333.0 ± 447.5 90.9 ± 49.7 

Argininosuccinate (Argsuc) 1.17 ± 2.23 0.01 ± 0.02 

Citrulline (Cit)* 24.7 ± 21.7 28.7 ± 39.9 

Glutamate (Glu) 3498 ± 2485 235.9 ± 74.0 

Glycine (Gly) 331.2 ± 140.0 624.2 ± 315.9 

Methionine (Met) 23.5 ± 7.9 29.2 ± 12.9 

Ornitine (Orn)* 80.4 ± 54.7 85.2 ± 60.7 

Phenylalanine (Phe) 588.0 ± 240.4 57.9 ± 17.9 

Pyroglutamate (Pyrglt) 32.1 ± 18.1 51.8 ± 31.6 

Serine (Ser) 689.8 ± 362.2 400.6 ± 358.2 

Tyrosine (Tyr) 58.1 ± 24.2 97.2 ± 64.2 

Valine (Val)* 183.4 ± 71.8 170.6 ± 61.3 

Leucine+Isoleucine (Xle) 193.1 ± 91.7 264.5 ± 107.7 

Fatty acids (symbols) MCADD  Controls 
Free carnitine (C0) 26.416 ± 11.138 29.416 ± 12.087 

Acetyl-carnitine (C2) 14.361 ± 7.245 6.661 ± 3.066 

Propionyl-carnitine (C3) 3.209 ± 1.396 2.326 ± 1.205 

Butyryl-carnitine (C4)* 0.524 ± 0.396 0.522 ± 0.309 

Isovaleryl-carnitine (C5) 0.195 ± 0.122 0.160 ± 0.105 

Hexanoyl-carnitine (C6) 1.990 ± 1.821 0.415 ± 0.516 

Octanyl-carnitine (C8) 8.346 ± 6.558 0.223 ± 0.142 

Decanoyl-carnitine (C10) 0.764 ± 0.501 0.079 ± 0.067 

Dodecanoyl-carnitine (C12)* 0.166 ± 0.104 0.209 ± 0.206 

Myristoyl-carnitine (C14)* 0.207 ± 0.104 0.198 ± 0.106 

Hexadecanoyl-carnitine (C16)* 4.066 ± 1.615 4.413 ± 2.144 

Octadecanoyl-carnitine (C18)* 0.954 ± 0.378 0.928 ± 0.394 

Tiglyl-carnitine (C5:1) 0.031 ± 0.027 0.052 ± 0.067 

Decenoyl-carnitine (C10:1) 0.805 ± 0.478 0.095 ± 0.059 

Myristoleyl-carnitine (C14:1) 0.096 ± 0.048 0.122 ± 0.094 

Hexadecenoyl-carnitine (C16:1) 0.158 ± 0.078 0.185 ± 0.104 

Octadecenoyl-carnitine (C18:1) 0.743 ± 0.276 1.030 ± 0.401 

Decenoyl-carnitine (C10:2)* 0.045 ± 0.029 0.051 ± 0.045 

Tetradecadienoyl-carnitine (C14:2) 0.032 ± 0.019 0.055 ± 0.046 

Octadecadienoyl-carnitine (C18:2) 0.108 ± 0.068 0.161 ± 0.115 

Hydroxy-isovaleryl-carnitine (C5-OH)* 0.168 ± 0.101 0.159 ± 0.078 

Hydroxytetradecadienoyl-carnitine (C14-OH) 0.016 ± 0.010 0.028 ± 0.024 

Hydroxypalmitoyl-carnitine (C16-OH)* 0.021 ± 0.013 0.023 ± 0.016 

Hydroxypalmitoleyl-carnitine (C16:1-OH)* 0.036 ± 0.021 0.043 ± 0.038 

Hydroxyoleyl-carnitine (C18:1-OH)* 0.013 ± 0.010 0.016 ± 0.013 

Dicarboxyl-butyryl-carnitine (C4-DC)* 0.137 ± 0.054 0.151 ± 0.077 

Glutaryl-carnitine (C5-DC) 0.092 ± 0.056 0.047 ± 0.031 

Methylglutaryl-carnitine (C6-DC) 0.072 ± 0.049 0.046 ± 0.040 

Methylmalonyl-carnitine (C12-DC) 0.036 ± 0.036 0.096 ± 0.064 

Concentrations (mean ± sd) of amino acids and fatty acids are denounced in µmol/L for PKU, 
MCADD and control group. Controls represent a randomised fraction of 1241 cases. The asterisk 
(*) indicates no significant (P>0.05) differences between both classes comparing by means of an 
unpaired significance test.  
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Table 2:  Discriminatory performance of all six machine learning algorithms applied to full 
metabolite dimensionality  
 
(a) 
Classifier (PKU) Sn (%) Sp (%) Acc (%) 
DA                90.7 100 99.7 
LRA 95.3 100 99.8 
DT 95.3 99.8 99.7 
1-NN 93.0 100 99.8 
3-NN 90.7 100 99.7 
5-NN 90.7 100 99.7 
ANN 97.7 100 99.9 
SVM-1 95.3 100 99.8 
SVM-2 97.7 100 99.9 
SVM-3 95.3 100 99.8 

(b) 
Classifier (MCADD) Sn (%) Sp (%) Acc (%) 
DA                88.9 100 99.5 
LRA 93.7 98.8 98.5 
DT 92.1 99.8 99.4 
1-NN 88.9 99.4 98.9 
3-NN 84.1 100 99.2 
5-NN 82.5 100 99.2 
ANN 92.1 99.7 99.3 
SVM-1 93.7 99.6 99.3 
SVM-2 93.7 99.8 99.5 
SVM-3 93.7 99.8 99.5 

Directly interpretable (DA, LRA, and DT) and not directly interpretable classifiers running on (a) 
14 amino acids (PKU data) and on (b) 29 fatty acids (MCADD data). 1-NN, 3-NN and 5-NN 
represent the k-NN classifiers with a k value of 1, 3 and 5. Support vector machines (SVM) with a 
linear hyperplane are denounced as SVM-1, SVMs with polynomial kernels of degree 2 and 3 are 
abbreviated with the symbols SVM-2 and SVM-3. 
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Table 3: Discriminatory performance of all six machine learning algorithms applied to the 
established diagnostic markers 
 
(a) 
Classifier (PKU) Sn (%) Sp (%) Acc (%) 
DA                93 100 99.8 
LRA 97.7 99.9 99.8 
(DT) (95.3) (99.8) (99.7) 
1-NN 97.7 99.9 99.8 
3-NN 97.7 100 99.9 
5-NN 95.3 100 99.8 
ANN 97.7 100 99.9 
SVM-1 95.3 100 99.8 
SVM-2 93 100 99.8 
SVM-3 76.7 100 99.2 

(b) 
Classifier (MCADD) Sn (%) Sp (%) Acc (%) 
DA                71.4 100 98.6 
LRA 95.2 99.8 99.6 
(DT) (92.1) (99.8) (99.4) 
1-NN 93.7 99.8 99.5 
3-NN 93.7 99.8 99.5 
5-NN 92.1 99.8 99.5 
ANN 92.1 99.8 99.4 
SVM-1 93.7 99.9 99.6 
SVM-2 84.1 99.9 99.2 
SVM-3 60.3 100 98.1 

Directly interpretable (DA, LRA, and DT) and not directly interpretable (k-NN, ANN, SVM) 
classifiers are including the primary diagnostic markers (a) Phe and Tyr for PKU and (b) C8 and 
C10:1 for MCADD. The DT learner was not examined on pre-selected metabolites due to its 
internal feature extraction strategy. Therefore the results are not directly comparable with the other 
classifiers and are depicted in brackets. 
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Table 4: Screening models based on LRA for classic PKU and classic MCADD  

(a) 
Metabolites 
(PKU) 

Sn

(%) 
FN 

(# of 
cases)

Sp

(%) 
FP 

(# of 
cases) 

PPV 
 (%) 

NPV 
 (%) 

Acc 
 (%) 

Logit of models 
z=a0+a1m1+ …+ 

anmn

Phe, Xle 100 0 99.793 204 17.41 100 99.793 − 61.2577 
+ 1.8037⋅Phe 
− 1.4518⋅Xle 

Phe, Tyr 100 0 99.775 222 16.23 100 99.775 − 211.2566 
+ 2.1318⋅Phe 
− 0.6224⋅Tyr 

Phe, Val 97.67 1 99.895 103 28.966 99.999 99.894 − 11.8046 
+ 0.2248⋅Phe 
− 0.1210⋅Val 

Phe, Arg 95.35 2 99.983 17 70.69 99.998 99.981 − 9.827 
+ 0.0462⋅Phe 
− 0.0035⋅Arg 

Phe, Argsuc 95.35 2 99.984 16 71.93 99.998 99.982 − 10.167 
+ 0.0457⋅Phe 
− 0.340⋅Argsuc 

Phe 95.35 2 99.984 16 71.93 99.998 99.982 − 10.1482 
+ 0.0455⋅Phe 

(b) 
Metabolites 
(MCADD) 

Sn

(%) 
FN 

(# of 
cases)

Sp

(%) 
FP 

(# of 
cases)

PPV 
 (%) 

NPV 
 (%) 

Acc 
 (%) 

Logit of models 
z=a0+a1m1+ …+ 

anmn

C8, C18:1 96.83 2 99.992 8 88.41 99.998 99.990 − 5.4917 
+ 5.7436⋅C8 
− 2.1833⋅C18:1 

C8 95.24 3 99.992 8 88.24 99.997 99.989 − 7.5362 
+ 5.7931⋅C8 

C8, C12DC 95.24 3 99.990 10 85.71 99.997 99.987 − 4.8647 
+ 5.149⋅C8 
− 40.4661⋅C12DC 

C8, C10 95.24 3 99.989 11 84.51 99.997 99.986 − 7.6114 
+ 4.6649⋅C8 
+ 3.3668⋅C10 

C8, C10:1 95.24 3 99.950 50 54.55 99.997 99.947 − 8.7572 
+ 4.2517⋅C8 
+ 10.888⋅C10:1 

Screening models for (a) classic PKU and (b) classic MCADD. Sensitivity (Sn), specificity (Sp), 
positive predictive value (PPV), negative predictive value (NPV), accuracy (Acc), number (#) of 
false negatives (FN), number (#) of false positives (FP) and the logits (z) of the LRA models are 
denounced. The specificity of the models was re-evaluated on a randomly selected control database 
of 98,411 cases. 

 



17 

 

Figure 1: General process of data analysis for constructing a screening model on high dimensional 
metabolic data. Starting from the newborn screening database (NBS DB) several intermediate data 
mining steps resulted in a classification model with optimised sensitivity and specificity. χ
describes all available tuples of the database containing the measured metabolites (xi) and the flag 
for the class membership (yi). fχ is the formula for the final model. 
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Figure 2: Metabolic patterns examined with gain ratio and relief filter algorithms on (a) full amino 
acid dimensionality (14 acids, PKU) and on (b) full fatty acid dimensionality (29 acids, MCADD). 
Black bars indicate the established primary diagnostic markers for PKU and MCADD 
(ACMG/ASHG statement, 2000). 
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