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Abstract

In recent years, the complexity of data objects in data
mining applications has increased as well as their plain
numbers. As a result, there exist various feature trans-
formations and thus multiple object representations. For
example, an image can be described by a text annotation,
a color histogram and some texture features. To cluster
thesemulti-represented objects, dedicated datamining al-
gorithms have been shown to achieve improved results. In
this paper, we will therefore introduce a method for hi-
erarchical density-based clustering of multi-represented
objects which is insensitive w.r.t. the choice of parame-
ters. Furthermore, we will introduce a theoretical model
that allows us to draw conclusions about the interaction
of representations. Additionally, we will show how these
conclusions can be used for defining a suitable combina-
tion method for multiple representations. To back up the
usability of our proposed method, we present encourag-
ing results for clustering a real world image data set that
is described by 4 different representations.

1. Introduction

In modern data mining applications, the data ob-
jects are getting more and more complex. Thus, the
extraction of meaningful feature representations yields
a variety on different views on the same set of data ob-
jects. Each of these views or representations might fo-
cus on a different aspect and may offer another no-
tion of similarity. However, in almost any application
there is no universal feature representation that can
be used to express similarity between all possible ob-
jects in a meaningful way. Thus, recent data mining
approaches employ multiple representations to achieve
more general results that are based on a variety of as-
pects. An example application for multi-represented
objects is data mining in protein data. A protein can
be described by multiple feature transformations based

upon its amino acid sequence, its secondary or its three
dimensional structure. Another example is data min-
ing in image data which might be represented by tex-
ture features, color histograms or text annotations.

Mining multi-represented objects yields advantages
because more information can be incorporated into the
mining process. On the other hand, the additional in-
formation has to be used carefully since too much in-
formation might distort the derived patterns. Basically,
we can distinguish two problems when clustering multi-
represented objects, comparability and semantics.

The comparability problem subsumes several effects
when comparing features, distances or statements from
different representations. For example, a distance value
of 1,000 might indicate similarity in some feature space
and a distance of 0.5 might indicate dissimilarity in an-
other space. Thus, directly comparing the distances is
not advisable.

Other than the comparability problem the semantics
problem is caused by differences between the knowl-
edge that can be derived from each representation. For
example, two images described by very similar text an-
notations are very likely to be very similar as well. On
the other hand, if the words describing two images are
completely disjunctive the implication that both im-
ages are dissimilar is rather weak because it is possi-
ble to describe the same object using a completely dif-
ferent set of words. Another type of semantics can be
found in color histograms. An image of a plane in blue
skies might provide the same color distribution as a
sailing boat in the water. However, if two color images
have completely different colors, it is usually a strong
hint that the images are really dissimilar.

To cluster multi-represented objects with respect to
both problems, [1] described a multi-represented ver-
sion of the density-based clustering algorithm DB-
SCAN. However, this approach is still very sensi-
tive with respect to its parametrization. Therefore,
we adapt the density-based, hierarchical clustering al-
gorithm OPTICS to the setting of multi-represented
objects. This new version of OPTICS is far less sen-
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sitive to parameter selection. Another problem of
density-based multi-represented clustering is the han-
dling of the semantic problem for multiple representa-
tions. In this paper, we will give a theoretical discussion
of possible semantics and demonstrate how to com-
bine the already proposed basic methods for more
than two representations. Furthermore, we will ex-
plain the need of domain knowledge for judging
each representation. To demonstrate the applicabil-
ity of our approach, we will show the results of several
experiments on an image data set that is given by 4 dif-
ferent representations.

The rest of this paper is organized as follows. Sec-
tion 2 surveys related work in the areas of density-based
clustering and multi-represented or multi view cluster-
ing. In section 3 the extension of OPTICS to multi-
represented data is described. Section 4 starts with a
formal discussion of the sematics problems and derives
a theory for constructing meaningful distance functions
for multi-represented objects. In our experimental eval-
uation in section 5, it is shown how the cluster qual-
ity can be improved using the proposed method. Fi-
nally, we will conclude the paper in section 6 with a
short summary and some ideas for future work.

2. Related Work

DBSCAN [2] is a density-based clustering algorithm
where clusters are considered as dense areas that are
separated by sparse areas. Based on two input param-
eters (ε ∈ R and k ∈ N), DBSCAN defines dense re-
gions by means of core objects. An object o ∈ DB
is called core object, if its ε-neighborhood contains at
least k objects. DBSCAN is able to detect arbitrar-
ily shaped clusters by one single pass over the data. To
do so, DBSCAN uses the fact, that a cluster can be de-
tected by finding one of its core-objects o and comput-
ing all objects which are ”density-reachable” from o.
OPTICS [3] extends the density-connected clustering
notion of DBSCAN by hierarchical concepts. In con-
trast to DBSCAN, OPTICS does not assign cluster
memberships but computes a cluster order in which the
objects are processed and additionally generates the in-
formation which would be used by an extended DB-
SCAN algorithm to assign cluster memberships. This
information consists of only two values for each object,
the core distance and the reachability distance. If the
ε-neighborhood of an object o contains at least k ob-
jects, the core distance of o is defined as the k-nearest
neighbor distance of o. Otherwise, the core distance
is undefined. The reachability distance of an object p
from o is an asymmetric distance measure that is de-
fined as the maximum value of the core distance of

o and the distance between p and o. Using these dis-
tances, OPTICS computes a ”walk” through the data
set and assigns to each object o its core distance and
the smallest reachability distance w.r.t. all objects con-
sidered before o in the walk. In each step, OPTICS se-
lects the object o having the minimum reachability dis-
tance to any already processed object. A special order
of the database according to its density-based cluster-
ing structure is generated, the so-called cluster order,
which can be displayed in a reachability plot. A reach-
ability plot consists of the reachability distances on the
y-axis of all objects plotted according to the cluster or-
der on the x-axis. The ”valleys” in the plot represent
the clusters, since objects within a cluster have lower
reachability distances than objects outside a cluster.

In [1] the idea of DBSCAN has been adapted to
multi-represented objects. Two different methods have
been proposed to decide wether a multi-represented ob-
ject is a core object: the union and the intersection
method. The union method assumes an object to be
a core object if at least k objects are found within
the union of its local ε-neighborhoods of each repre-
sentation. The intersection method requires that at
least k objects are within the intersection of all local
ε-neighborhoods of each representation of a core ob-
ject. In [4] an algorithm for spectral clustering of multi-
represented objects is proposed. The author proposes
to calculate the clustering in a way that the disagree-
ment between the cluster models in each representation
is minimized. In [5] a version of Expectation Maximiza-
tion (EM) clustering was introduced. Additionally, the
authors proposed a multi view version of agglomera-
tive clustering. However, this second approach did not
display any benefit against clustering single represen-
tations. [6] introduces the framework of reinforcement
clustering, which is applicable to multi-represented ob-
jects. All of these approaches do not consider any se-
mantic aspect of the underlying data spaces. The pro-
posed approaches result in a partitioning clusterings of
the data spaces, which makes the maximization of the
agreement between local models a beneficial goal to op-
timize. However, in a density-based setting, there is an
arbitrary number of clusters and no explicit cluster-
ing models that can be optimized to agree with each
other.

3. Hierarchical Clustering of Multi-
Represented Objects

3.1. Normalization

In order to obtain the comparability of distances de-
rived from different feature spaces, we perform a nor-
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malization of the distances for each representation. Let
D be a set of n objects and let R := {R1, . . . , Rm}
be a set of m different representation existing for ob-
jects in D.

The normalized distance between two objects o, q ∈
D w.r.t. Ri is denoted by di(o, q) and can be calcu-
lated by applying one of the following normalization
methods:

• Mean normalization: Normalize the distance with
regard to the mean value µorig

i of the original dis-
tance dorig

i in representation Ri. The mean value
can be calculated by sampling a small set of ob-
jects from the current representation Ri.

di(o, q) = dorig
i (o, q)/µorig

i

• Range normalization: Normalize the distance into
the range of [0 . . . 1].

di(o, q) =
dorig

i (o, q)− min
r,s∈D

{dorig
i (r, s)}

max
r,s∈D

{dorig
i (r, s)} − min

r,s∈D
{dorig

i (r, s)}
.

• Studentize: Normalize the distance around the
mean µorig

i and standard deviation σorig
i of the

distances in representation Ri.

di(o, q) = (dorig
i (o, q)− µorig

i )/σorig
i .

Since the factors can be calculated on database sam-
ple, we employed the first method in our experiments.

3.2. Multi-represented OPTICS

The algorithm OPTICS [3] works like an extended
DBSCAN algorithm, computing the density connected
clusters w.r.t. all parameters εi that are smaller than
a generic value of ε. Since we handle multi-represented
objects we have not only one ε-neighborhood of an ob-
ject o but several ε-neighborhoods, one for each rep-
resentation Ri. In the following, we will call the ε-
neighborhood of an object o in representation Ri its
local ε-neighborhood w.r.t Ri.

Definition 1 (local ε-neighborhood w.r.t Ri )
Let o ∈ D, ε ∈ IR+ , Ri ∈ R, di the distance function of
Ri. The local ε-neighborhood w.r.t. Ri of o, denoted by
NRi

ε (o), is defined as the set of objects around o with dis-
tances in representation Ri less or equal than ε, formally

NRi
ε (o) = {x ∈ D | di(o, x) ≤ ε}.

In contrast to DBSCAN, OPTICS does not assign
cluster memberships, but stores the order in which
the objects have been processed and the information

which would be used by an extended DBSCAN al-
gorithm to assign cluster memberships. This informa-
tion consists of two values for each object, its core dis-
tance and its reachability distance. To compute these
information during a run of the OPTICS algorithm on
multi-represented objects, we must adapt the core dis-
tance and reachability distance predicates of OPTICS
to our multi-represented approach. In the next two sub-
sections, we will show how we can use the concepts
of union and intersection of the local ε-neighborhoods
of each representation to handle multi-represented ob-
jects.

Union of different representations . The union
method characterizes an object o to be density-
reachable from another object p, if o is density-
reachable from p in at least one of the represen-
tations Ri. If an object is placed in a dense re-
gion of at least one representation, it is already union
density-reachable regardless in how many other rep-
resentations it is density-reachable. In the following,
we adapt some of the definitions of OPTICS in or-
der to apply OPTICS on the union of different repre-
sentations.

In the union approach, the (global) union ε-
neighborhood of an object o ∈ D is defined by the
union of all of its local ε-neighborhoods NRi

ε (o) in
each representation Ri.

Definition 2 (union ε-neighborhood)
Let ε ∈ IR+ and o ∈ D. The union ε-neighborhood o,
denoted byN∪

ε (o), is defined by

N∪
ε (o) =

⋃
Ri∈R

NRi
ε (o).

Since the core distance predicate of OPTICS is
based on the concept of k-nearest neighbor distances,
we have to redefine the k-nearest neighbor distance of
an object o in the union approach. Assume that all ob-
jects p ∈ D are ranked according to their minimum
distance dmin(o, q) = min

i=1...m
(di(o, p)) in each represen-

tation Ri to o. Then, the union k-nearest neighbor dis-
tance of o ∈ D, short nn-dist∪k (o) is the distance dmin

to its k-nearest neighbor in this ranking. The union
k-nearest neighbor distance is formally defined as fol-
lows:

Definition 3 (union k-NN distance)
Let k ∈ IN , |D| ≥ k and o ∈ D. The union k-nearest
neighbors of o is the smallest set NN∪

k (o) ⊆ D that con-
tains (at least) k objects and for which the following con-
dition holds:

∀p ∈ NN∪
k (o),∀q ∈ D −NN∪

k (o) :
min

i=1...m
{di(p, o)} < min

i=1...m
{di(q, o)}.
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The union k-nearest neighbor distance of o, denoted
by nn-dist∪k (o) is defined as follows:

nn-dist∪k (o) = max{ min
i=1...m

{di(o, q)} | q ∈ NN∪
k (o)}.

Now, we can adopt the core distance definition
from OPTICS to our union approach: If the union ε-
neighborhood of an object o contains at least k objects,
the union core distance of o is defined as the union k-
nearest neighbor distance of o. Otherwise, the union
core distance is undefined.

Definition 4 (union core distance)
The union core distance of object o ∈ DB w.r.t. ε ∈
IR+ and k ∈ IN is defined as

Core∪ε,k(o) =
{

nn-dist∪k (o) if |N∪
ε (o)| ≥ k

∞ else.

The union reachability distance of an object p ∈ D
from o ∈ D is an asymmetric distance measure that is
defined as the maximum value of the union core dis-
tance of o and the minimum distance in each represen-
tation Ri between p and o.

Definition 5 (union reachability distance)
The union reachability distance of an object o ∈ DB
relative from another object p ∈ D w.r.t. ε ∈ IR+ and
k ∈ IN is defined as

Reach∪ε,k(p, o) = max{Core∪ε,k(p), min
i=1...m

{di(o, p)}}

Intersection of different representations .
The intersection method denotes an object o to
be density-reachable from another object p, if o
is density-reachable from p in all representations.
The intersection ε-neighborhood N∩

ε (o) of an ob-
ject o ∈ D is defined by the intersection of all of
its local ε-neighborhoods NRi

ε (o) in each representa-
tion Ri.

Definition 6 (intersection ε-neighborhood)
Let ε ∈ IR+ and o ∈ D. The intersection ε-neighborhood
o, denoted byN∩

ε (o), is defined by

N∩
ε (o) =

⋂
Ri∈R

NRi
ε (o).

Analogously to the union method, we define the in-
tersection k-nearest neighbor distance of an object o. In
the intersection approach all objects p ∈ D are ranked
according to their maximum distance dmax(o, q) =
max

i=1...m
(di(o, p)) in each representation Ri to o. Then,

the intersection k-nearest neighbor distance of o ∈ D,
short nn-dist∩k (o) is the distance dmax to its k near-
est neighbor in this ranking.

Definition 7 (intersection k-NN distance)
Let k ∈ IN , |D| ≥ k and o ∈ D. The intersection k-
nearest neighbors of o is the smallest set NN∩

k (o) ⊆ D
that contains (at least) k objects and for which the follow-
ing condition holds:

∀p ∈ NN∩
k (o),∀q ∈ D −NN∩

k (o) :
max

i=1...m
{di(p, o)} < max

i=1...m
{di(q, o)}.

The intersection k-nearest neighbor distance of o, de-
noted by nn-dist∩k (o) is defined as follows:

nn-dist∩k (o) = max{ max
i=1...m

{di(o, q)} | q ∈ NN∩
k (o)}.

In the following, we define the intersection core dis-
tance and the intersection reachability distance anal-
ogously to the union method. If the intersection ε-
neighborhood of an object o contains at least k ob-
jects, the intersection core distance of o is defined as
the intersection k-nearest neighbor distance of o. Oth-
erwise, the intersection core distance is undefined.

Definition 8 (intersection core distance)
The intersection core distance of object o ∈ DB w.r.t.
ε ∈ IR+ and k ∈ IN is defined as

Core∩ε,k(o) =
{

nn-dist∩k (o) if |N∩
ε (o)| ≥ k

∞ else.

The intersection reachability distance of an object
p ∈ D from o ∈ D is an asymmetric distance measure
that is defined as the maximum value of the intersec-
tion core distance of o and the maximum distance in
each representation Ri between p and o.

Definition 9 (intersection reachability distance)

The intersection reachability distance of an ob-
ject o ∈ DB relative from another object p ∈ D w.r.t.
ε ∈ IR+ and k ∈ IN is defined as

Reach∩ε,k(p, o) = max{Core∩ε,k(p), max
i=1...m

{di(o, p)}}

By first normalizing the distances within the repre-
sentations, we are now able to use OPTICS applying ei-
ther the union or the intersection method. In the next
section, we will discuss the proper choice of one of these
basic methods and introduce a heuristic for a meaning-
ful combination of both methods for multiple represen-
tations.

4. Handling Semantics

In this section, we will discuss the handling of se-
mantics. Therefore, we will first of all introduce a model
that will help us to understand the interaction between
different representations.
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4.1. A Model for Local Semantics

Since feature spaces are usually not a perfect model
of the intuitive notion of similarity, a small distance in
the feature space does not always indicate true object
similarity. Therefore, we denote two objects that a hu-
man user would classify as similar as truly similar. To
formalize the semantic problem, we first of all distin-
guish two characteristics of representation spaces:

Definition 10 (Precision Space) A precision space
is a data space Ri where for each data object o there ex-
ists a σ-neighborhood NRi

σ (o) in which the percentage of
data objects inNRi

σ (o) that are considered to be truly sim-
ilar exceeds a given value π. Formally, a precision space
Ri is defined as:

∃σ ∈ IR+, ∀o ∈ D :
|NRi

σ (o) ∩ sim(o)|
|NRi

σ (o)
≥ π

where sim(o) denotes all truly similar objects inD for ob-
ject o.

Definition 11 (Recall Space) A recall space is a
data space Ri where for each data object o there ex-
ists a σ-neighborhood NRi

σ (o) in which the percentage
of all truly similar data objects among the data ob-
jects in NRi

σ (o) exceeds a given value ρ. Formally, a
recall space Ri is defined as:

∃σ ∈ IR+, ∀o ∈ D :
|NRi

σ (o) ∩ sim(o)|
|sim(o)|

≥ ρ

where sim(o) denotes all truly similar objects inD for ob-
ject o.

A precision space (recall space respectively) is called
optimal, iff there exists an σ for which π = 1 ( ρ = 1 re-
spectively). Let us note that these definition treats sim-
ilarity as a boolean function instead of using continu-
ous similarity. However, the density-based clustering
employs ε-neighborhoods ND

ε (o) for finding dense re-
gions and within these dense regions the objects should
be similar to o. Thus, boolean similarity should be suf-
ficient for discussing density-based clustering. Figure
1 displays a maximal σp-neighborhood for object o if
Ri would be an optimal precision space. Additionally,
the figure displays the minimum σr-neighborhood of
o if Ri is an optimal recall space as well. Note that
the σp-neighborhood is a subset of the σr in all opti-
mal precision and recall spaces.

Though it is possible that a representation space is
as well a good precision as a recall space, most real
world feature spaces are usually more suited to fulfill
only one of these conditions. An example for a preci-
sion space are text vectors. Since we can assume that
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Figure 1. Maximal σp-neighborhood and mini-
mum σr-neighborhood of an optimal precision
and recall space.

two very similar text annotations indicate that the de-
scribed data objects are very similar as well, text an-
notations usually provide a good precision space. How-
ever, descriptions of two very similar objects do not
have to use the same words. An object representa-
tion that is often well-suited for providing a good re-
call space are color histograms. If the color histograms
of two color images are quite different from each other
the images are unlikely to display the same object. On
the other hand, two images having similar color his-
tograms, are not necessarily displaying the same mo-
tive.

When combining optimal precision and recall spaces
for density-based clustering our goal is to find maxi-
mum density-connected clusters where each object has
only truly similar objects in its global neighborhood.
In general, we can derive the following useful observa-
tions:

1. A data space that is as well an optimal precision
as an optimal recall space for the same value of
σ is already optimal w.r.t our goal and thus does
not need to be combined with any other represen-
tation.

2. A set of optimal precision spaces should always be
combined by the union method because the union
method improves the recall but not the precision.
If there is at least one representation for any sim-
ilar object in which the object is placed in the
σ-neighborhood, the resulting combination is op-
timal w.r.t. recall.

3. A set of recall spaces should always be combined
by the intersection method because the intersec-
tion method improves the precision but not the re-
call. If there exists no dissimilar data object that
is part of the σ-neighborhoods in all representa-
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tions, the resulting intersection is optimal w.r.t.
precision.

4. Combining an optimal recall space with an opti-
mal precision space with either union or intersec-
tion method does not make any sense. For this
combination the objects in the σ-neighborhood of
the precision space are always a subset of the ob-
jects in the σ-neighborhood of the recall space. As
a result, applying the union method is equivalent
to only using the recall space and applying the in-
tersection method is equivalent to only using the
precision space.

The observations that are made in this model are
not directly applicable to the combination of represen-
tations using the multi-represented version of OPTICS
described in the previous section. To apply the con-
clusion of our model to OPTICS, we have to fulfill
two requirements. The normalization has to be done
in a proper way, meaning that the normalization fac-
tors should have the same ratio as the σ values in each
representation. The second requirement is that ε > σi

in each representation Ri ∈ R. If both requirements
are satisfied, it is guaranteed that there is some level
in the OPTICS plot representing the σ-values guaran-
teeing optimality.

Another aspect is that the derived statements only
hold for optimal precision and recall spaces. Since a
representation is always as well a precision space as
a recall space to some degree, the observations gener-
ally do not hold for the non-optimal case. For exam-
ple, it might make sense to combine a very good re-
call space with a very good precision space if the recall
space has a good quality as a precision space as well
at some other σ level. However, the implications to the
general case are strong enough to derive useful heuris-
tics.

A final problem for applying our model is the fact
that it is not possible to determine π and ρ values for
the given representations without additional informa-
tion about true similarity. Thus, we have to employ
domain knowledge when deriving some heuristics for
building a well-suited combination of representations
for clustering.

4.2. Combining Multiple Representations

Though we might not be able to exactly determine
the parametrization for which a representation fulfills
the precision and recall space conditions in a best pos-
sible way, we can still reason about the suitability of a
representation for each of both conditions. Like in our
running example of text vectors and color histograms,

R1 R2 R3

R6

Figure 2.Combination tree of the imagedata set.

we can derive the suitability of a representation for be-
ing a good precision or a good recall space by ana-
lyzing the underlying feature transformations. If it is
likely that two dissimilar objects have very similar fea-
ture representations the data space still might provide
a useful recall space. If it is possible that very simi-
lar objects are mapped to some far away feature rep-
resentations the data space might still provide a useful
precision space.

The most important implication of our model is that
combining a good precision space (recall space respec-
tively) with a rather bad precision space (recall space
respectively) will not increase the all over quality of
clustering. Considering only two representations, there
are only three options: use the union method for two
precision spaces, the intersection method for two re-
call spaces or cluster only the more reliable represen-
tation in case of a mixture.

For more than two representations, the combination
of precision and recall spaces still can make sense. The
idea is to combine these representations on different
levels. Since the intersection method increases the pre-
cision and the union method increases the recall, we
are able to construct recall spaces or precision spaces
from a subset of the representations. To formalize this
method, we will now define the so-called combination
tree:

Definition 12 (Combination Tree) A combination
tree is a tree of arbitrary degree fulfilling the following
conditions:

• The leafs are labeled with representations.

• The inner nodes are labeled with either the union or
the intersection operator.

A good combination according to our heuristics can
be described by a combination tree where the sons of
each intersection node are all reasonable recall spaces
and the sons of each union node are all reasonable pre-
cision spaces. After we derived the combination tree,
we can now modify the core distance and reachabil-
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(a) OPTICS plot using only color histograms. Additionally,
a representative sample set for one of the clusters is shown.
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Intersection of Texture and ColorHistograms

(b) OPTICS plot when employing the intersection of color
histograms and both texture representations. The displayed
cluster shows promising precision.
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(c) OPTICSplot using onlyText annotations.Thedisplayed
cluster has a high precision but is incomplete.
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(d) OPTICS plot of the combination of all representations.
Theprecise clusterobserved in the text representation is com-
pletes with similar images.

ity distance of OPTICS in an top-down order to im-
plement the semantics described by the combination
tree.

Figure 2 displays the combination tree of the im-
age data set, we used in our experiments. R1, R2 and
R3 represent the content based feature repressntations
expressing texture features and colors distributions. In
each of these representations a small distance between
the feature vectors does not necessarily indicate that
the underlying image is truly similar. Therefore, we
use all of these 3 representations as recall spaces. R4

consists of text annotations. As mentioned before, text
annotations usually provide good precision spaces but
may provide good recall spaces. Thus, we use the text
annotation as a precision space. The combination of
the representation is now done in the following way. We
first of all combine our recall spaces R1, R2 and R3 us-
ing the intersection method. Due to the increased pre-
cision resulting from applying the intersection method,

the suitability of the result for being a precision space
should be sufficient for applying the union method with
the remaining text annotations R4.

5. Performance Evaluation

In order to show the capability of our method,we im-
plemented the proposed clustering algorithm in Java
1.4. All experiments were processed on a work station
with a 2.4 GHz Pentium IV processor and 2 GB main
memory. We used a data set containing 500 images
manually annotated by a short text. From each im-
age, we extracted 3 representations, namely a color his-
togram and two textural feature vectors. We used the
HSV color space and calculated 32 dimensional color
histograms based on 8 ranges of hue and 4 ranges of
saturation. The textural features were generated from
16 gray-scale conversions of the images. We computed
contrast and inverse difference moment using the co-
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occurrence matrix [7]. For comparing text annotations,
we applied the cosine coefficient and used the Euclid-
ian distance in the rest of the representations. Since
OPTICS does not generate a partitioning clustering
but only a cluster order, we did not apply a quan-
titative quality measure. To verify the results of the
found clustering, we visually verified the similarity of
images in each cluster instead. To demonstrate the re-
sults of multi-represented OPTICS with the combina-
tion method described above, we ran OPTICS on each
single representation. Additionally, we examined the
clustering for the combination of color histograms and
texture features using the intersection method like pro-
posed in the combination tree. Finally, we ran OPTICS
using the complete combination of image and text fea-
tures. For all clusterings, we used k = 3 and ε = 10.
Normalization was achieved using the average distances
between two objects in the data set.

The result for the text annotations provided a very
precise clustering. However, due to the fact that some
annotations used different languages for describing the
image, some of the clusters were incomplete. Figure
3(c) displays the result of clustering the text an-
notations. The observed cluster displays only simi-
lar objects. The cluster order derived for color his-
tograms, found some clusters. However, though the im-
ages within the clusters had similar colors the objects
were not necessarily similar. Figure 3(a) displays the
cluster order using color histograms and an image clus-
ter containing two similar groups of images and some
noise. Let use note that the clustering of the two tex-
ture representation performed similarily. However, due
to space limitations, we do not display the correspond-
ing plots. In Figure 3(b) the clustering of all 3 im-
age feature spaces using the intersection method is dis-
played. Though the number of clusters was decreased,
the quality of the remaining clusters increased consid-
erably, as expected. The cluster shown in figure 3(b)
showed exclusively very similar images. Finally, figure
3(d) displays the result on all representations. The clus-
ter observed for text annotations displayed in figure
3(c) was extended with additional similar images that
are described in German instead of English language.
To conclude, examining the complete clustering, the all
over quality of clustering was improved by using all 4
representations.

6. Conclusions

In this paper, we discussed the problem of hier-
archical density-based clustering of multi-represented
objects. A multi-represented object is described by a
tuple of feature representations belonging to different

feature spaces. Therefore, we adapted the hierarchical
clustering algorithm OPTICS to multi-represented ob-
jects by introducing the union (intersection) core dis-
tance and the union (intersection) reachability distance
for multi-represented objects. Since union and intersec-
tion method might not be suitable to compare an ar-
bitrary large number of representations, we proposed
a theoretical model distinguishing so-called precision
and recall spaces. Based on these concepts, we observed
that the combination of good precision spaces using
the union method increases the completeness of clus-
ters and applying the intersection method on good re-
call spaces increases the pureness of clusters. Finally,
we concluded that combining a good precision (recall)
space with a bad one results in no benefit. To use these
conclusion for combining problems with multiple rep-
resentation, we introduced combination trees that dis-
play valid combination of precision and recall spaces.
In our experimental evaluation, we described the im-
provement of clustering results for an image data set
that is described by 4 representations.

For future work, we plan to find a reasonable way
to quantify the usability of representations as precision
or recall spaces. Additionally, we are currently working
an theory for describing optimal combination trees.
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