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Abstract
The similarity join is an important database primitive which
has been successfully applied to speed up data mining algo-
rithms. In the similarity join, two point sets of a multidimen-
sional vector space are combined such that the result contains
all point pairs where the distance does not exceed a parameter
ε. Due to its high practical relevance, many similarity join al-
gorithms have been devised. In this paper, we propose an an-
alytical cost model for the similarity join operation based on
indexes. Our problem analysis reveals a serious optimization
conflict between CPU time and I/O time: Fine-grained index
structures are beneficial for the CPU efficiency, but deterio-
rate the I/O performance. As a consequence of this observa-
tion, we propose a new index architecture and join algorithm
which allows a separate optimization of CPU time and I/O
time. Our solution utilizes large pages which are optimized for
I/O processing. The pages accommodate a search structure
which minimizes the computational effort. In the experimental
evaluation, a substantial improvement over competitive tech-
niques is shown.

1. Introduction
Large sets of multidimensional vector data have become wide-
spread to support modern applications such as CAD [17], mul-
timedia [11], medical imaging [25], and time series analysis [2].
In such applications, complex objects are stored in databases.
To facilitate the search by similarity, multidimensional feature
vectors are extracted from the objects and organized in multidi-
mensional indexes. The particular property of this feature trans-
formation is that the Euclidean distance between two feature
vectors corresponds to the (dis-) similarity of the original ob-
jects of the underlying application. Therefore, a similarity
search can be translated into a neighborhood query in the fea-
ture space.

If a user is not only interested in the properties of single data
objects but also in the properties of the data set as a whole he or
she is supposed to run some data mining algorithms on the set
of feature vectors. Data mining is the process of extracting im-
plicit knowledge from the data set which is previously unknown
and potentially useful. Standard tasks of data mining are clus-
tering [12], i.e. finding groups of objects such that the intra-
group similarity is maximized and the inter-group similarity is
minimized, outlier detection [21], or the determination of asso-
ciation rules [19]. Considering these standard tasks, we can
observe that many of the state-of-the-art algorithms require
to consider all pairs of points which have a distance not ex-

ceeding a user-given parameter ε. This operation of generat-
ing all pairs is in essence a similarity join, and, as a conse-
quence, many data mining algorithms can be directly
performed on top of a similarity join [BBBK 00].

A typical example of such an algorithm is the clustering al-
gorithm DBSCAN [9]. This algorithm defines a point P of the
database to be a core point with respect to the user-given param-
eters ε and min_pts if at least a number min_pts of the points in
the database have a distance of no more than ε from P. To com-
pute the overall cluster structure, the algorithm transitively col-
lects all core points which have a distance not exceeding ε from
each other. The original definition of the algorithm performs a
range query with the radius ε for each point stored in the data-
base. We have shown in [3] that each of the two subtasks, core
point determination and cluster collection, can be performed
equivalently (i.e. yielding exactly the same result) by a single
run of a similarity join. This transformation allows great perfor-
mance improvements (up to 54 times faster) using standard join
algorithms. But also other algorithms for knowledge discovery
in databases are amenable to processing by similarity joins,
such as the outlier detection algorithm RT [21], nearest neigh-
bor clustering [16], single-link clustering [33], the hierarchical
cluster analysis method OPTICS [1], proximity analysis [20],
spatial association rules [19] and numerous other algorithms.

Due to the high impact of the similarity join operation, a con-
siderable number of different algorithms to evaluate the simi-
larity join have been proposed (the most relevant approaches
will be reviewed in section 2). From a theoretical point of view,
however, the similarity join has not been sufficiently analyzed.
Our feeling is that the lack of insight into the properties of the
similarity join is an obstacle in developing new methods with
better performance.

In this paper, we analyze the performance of the similarity
join using indexes. We will point out that the index selectivity
is the central key to the performance analysis. In section 3, we
will present the formula for the index selectivity with respect to
the similarity join operation. We will further analyze how much
selectivity is needed to justify the usage of an index for join pro-
cessing. The surprising result is, that for the optimization of the
CPU operations, a fine-grained index is indispensable. For the
I/O operations, however, fine-grained indexes are disastrous.
Our conclusion from these results is the necessity of decoupling
the CPU optimization from the I/O optimization. Taking this
into account, we will propose a suitable index architecture in
section 6. Our solution uses an index with a coarse granularity
in order to reduce the overhead of random I/O operations. To
additionally reduce the computational overhead, these large
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primary pages of the index are structured by a secondary search
structure. This structure partitions the primary pages into a set
of accommodated buckets which are, themselves, not subject to
I/O, but only used to decide whether or not to exclude the cor-
responding pairs of secondary pages from CPU processing. Us-
ing this approach, the granularity of the index can be separately
optimized for CPU and I/O operations. Our index architecture
is additionally supposed to profit from ongoing trends in hard-
ware development. E.g. [13] suggests that the transfer rates of
disk drives continue to improve much faster than the rotational
delay time. As a consequence the optimum page size with re-
spect to I/O will even increase. As we will show in section 5, the
optimum page size with respect to CPU time is determined by
the proportion between two kinds of distance calculations: Dis-
tances between points and distances between rectangles. As it
is not likely that one kind of distance calculation will improve
more than the other, we assume that the optimum with respect
to CPU time will not change much. 

2. Related work

2.1. Multidimensional join processing
In the relational data model a join means to combine the tuples
of two relations R and S into pairs if a join predicate is fulfilled.
In multidimensional databases, R and S contain points (feature
vectors) rather than ordinary tuples. In a similarity join, the join
predicate is similarity, i.e. the pair (p,q) ∈  R×S appears in the
result if the Euclidean distance between the two feature vectors
p and q does not exceed a threshold value ε. If R and S are actu-
ally the same point set, the join is called a self-join. 

Join algorithms using R-trees
Most related work on join processing using multidimensional
index structures is based on the spatial join. The spatial join op-
eration is defined for 2-dimensional polygon databases where
the join predicate typically is the intersection between two ob-
jects. This kind of join predicate is prevalent in map overlay ap-
plications. We adapt the relevant algorithms to allow distance
based predicates for point databases instead of the intersection
of polygons.

The most common technique is the R-tree Spatial Join (RSJ)
[7], which is based on R-tree like index structures built on R and
S. RSJ is based on the lower bounding property which means
that the distance between two points is never smaller than the
distance between the regions of the two pages in which the
points are stored. The RSJ algorithm traverses the indexes of R
and S synchronously. When a pair of directory pages (PR,PS) is
under consideration, the algorithm forms all pairs of the child
pages of PR and PS having distances of at most ε. For these pairs
of child pages, the algorithm is called recursively, i.e. the corre-
sponding indexes are traversed in a depth-first order.

Various optimizations of RSJ have been proposed. Huan,
Jing and Rundensteiner propose the BFRJ-algorithm [14]
which traverses the indexes according to a breadth-first strate-
gy. At each level, BFRJ creates an intermediate join index and
deploys global optimization strategies to improve the join com-
putation at the subsequent level. Improved cache management
leads to 50% speed-up factors.

Join algorithms without index
If no multidimensional index is available, it is possible to con-
struct the index on the fly before starting the join algorithm.
Usually, the dynamic index construction by repeated insert op-
erations performs poorly and cannot be amortized by perfor-
mance gains during join processing. However, several tech-
niques for bulk-loading multidimensional index structures have
been proposed [18, 5]. Their runtime is substantially smaller
compared to the runtime of the repeated insert operations, even
if the data set does not fit in main memory. This effort is typi-
cally amortized by efficiency gains in join processing.

The seeded tree method [26] joins two point sets provided
that only one is supported by an R-tree. The partitioning of this
R-tree is used for a fast construction of the second index on the
fly. The spatial hash-join [27, 29] decomposes the set R into a
number of partitions which is determined according to system
parameters. Sampling is applied to determine initial buckets.
Each object of R is inserted into a bucket such that bucket en-
largement and bucket overlap are minimized. Then, each object
of S is inserted into every bucket having a distance not greater
than epsilon from the object (object replication). If each bucket
fits in main memory, a single scan of the buckets is sufficient to
determine all join pairs.

A join algorithm particularly suited for similarity self joins
is the ε-kdB-tree [34]. The basic idea is to partition the data set
perpendicularly to one selected dimension into stripes of the
width ε to restrict the join to pairs of subsequent stripes. The join
algorithm is based on the assumption that the database cache is
large enough to hold the data points of two subsequent stripes.
In this case it is possible to join the set in a single pass. To speed
up the CPU operations, for each stripe a main memory data
structure, the ε-kdB-tree is constructed which also partitions the
data set according to the other dimensions until a defined node
capacity is reached. For each dimension, the data set is parti-
tioned at most once into stripes of the width ε. Finally, a tree
matching algorithm is applied which is restricted to neighbor-
ing stripes. Whether the ε-kdB join can be successfully applied
depends on the choice of the similarity parameter ε. For in-
stance, our experiments in section 7 using uniformly distributed
points of an 8-dimensional feature space [0..1]8 used ε = 0.3,
which is at a first glance rather high, but in high-dimensional
spaces it is necessary to choose such a large ε=in order to find
join mates at all (note that 0.38 = 6.5·10-5). As the correspond-
ing join algorithm needs to hold 2 stripes simultaneously in the
main memory (i.e. 60% of the database size plus the overhead
of the directory) the first partitioning step reduces the joining
problem by less than 40%. The authors also extended their tech-
nique to cases where a single dimension is not sufficient to par-
tition the data set into stripes fitting into the buffer. In this case,
the authors propose to partition the data set according to 2 di-
mensions and to hold 4 neighboring partitions simultaneously
in main memory for tree matching. In this case, however, it is
not possible to perform a single-pass join. Additionally, for our
running example, we still have to hold 36% (=4·0.32) of the da-
tabase in the main memory buffer. Even for all our real data ex-
periments (where ε was much smaller) some of the ε-stripes
contain too many data points (e.g. 35% for the meteorology data
with ε = 0.000; due to the skew of the data, even very small
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stripes such as ε = 0.0001 are filled with considerable
amounts of data. The 35% have been determined by analyz-
ing the data experimentally) and, therefore, the algorithm fails
in the required configuration.

Koudas and Sevcik present the Size Separation Spatial Join
[23] and the Multidimensional Spatial Join [24] which makes
use of space filling curves to order the points in a multidimen-
sional space. Each point is considered as a cube with side-length
ε in the multidimensional space. Each cube is assigned a value
l (level) which is essentially the size of the largest cell (accord-
ing to the Hilbert decomposition of the data space) that contains
the point. The points are distributed over several level-files each
of which contains the points of a level in the order of their Hil-
bert values. For join processing, each subpartition of a level-file
must be matched against the corresponding subpartitions at the
same level and each higher level file of the other data set. For
our running example of ε = 0.3 on uniform 8-dimensional data,
the probability that an ε-cube intersects the first partitioning line
is 0.3. That means 30% of all points are assigned to level l = 0
which must be compared with all other data points, and, there-
fore, be completely held in main memory during the scan of the
database. Of the remaining 70% points, another 30% is as-
signed to level l = 1 which must be compared to half of all other
points (these 21% = 0.7·0.3 must be held in main memory dur-
ing half the scan time), and so on. For all levels, the expected
value for the ratio of points to be held in main memory corre-
sponds to Σl  = 46%. Our real-data experiments
yield analogous results (e.g. 26% of the CAD data needed si-
multaneously in main memory, as determined experimentally).

2.2. Cost models for similarity queries
Due to the high practical relevance of similarity queries, cost
models for estimating the number of page accesses have already
been proposed several years ago. The first approach is the well-
known cost model proposed by Friedman, Bentley and Finkel
[10] for nearest neighbor queries using the maximum metric.
The original model estimates leaf accesses in a kd-tree, but can
be easily extended to estimate data page accesses of R-trees and
related index structures. The expected number of data page ac-
cesses in an R-tree is

,

where Ceff is the effective capacity (i.e. average number of
points) of a data page and d is the dimension of the data space.

Papadopoulos and Manolopoulos used these results for esti-
mating data page accesses of R-trees when processing nearest
neighbor queries in a Euclidean space [30]. As it is difficult to
determine accesses of pages with rectangular regions for spher-
ical queries, they approximate query spheres by minimum
bounding and maximum enclosed cubes and thus determine up-
per and lower bounds of the number of page accesses.

Berchtold, Böhm, Keim and Kriegel [6] presented a cost
model for query processing in high-dimensional data spaces. It
provides accurate estimations for nearest neighbor queries and
range queries using the Euclidean metric. In contrast to [30] it
does not approximate the Euclidean query by a cube to cope
with the Euclidean metric. The paper introduces the concept of

the Minkowski sum (cf. figure 1) to determine the access prob-
ability of a rectangular page for spherical queries (i.e. range
queries and nearest neighbor queries). The Minkowski sum will
be used in section 3 to determine the selectivity of an index with
respect to the join operation. The cost model in [6] has found
numerous applications. Weber, Schek and Blott [35] use it to
show the superiority of the sequential scan in sufficiently high
dimensions. They present the VA-file, an improvement of the
sequential scan. Ciaccia, Patella and Zezula [8] adapt the cost
model in [6] to estimate the page accesses of M-trees, an index
structure for data spaces which are metric spaces but not vector
spaces (i.e. only the distances between the objects are known,
but no explicit positions). Papadopoulos and Manolopoulos
[31] apply the cost model for declustering in disk arrays.

3. Problem analysis
In this section, we separately analyze the performance behavior
of the similarity join with respect to CPU cost and I/O cost. For
this purpose, we assume a simplified version of an R-tree like
index structure which consists of a set of data pages on the av-
erage filled with a number Ceff of points and a flat directory. In
our simplified index, similarity joins are processed by first read-
ing the directory in a sequential scan, then determining the qual-
ifying pairs of data pages, and, finally, accessing and processing
the corresponding data pages.

When using an index, the only gain is the selectivity, i.e. not
all pairs of pages must be accessed and not all pairs of points
must be compared. For a join, the index selectivity σ is defined
as the number of page pairs to be processed divided by the the-
oretically possible page pairs:

, 

where BR and BS are the numbers of blocks of the point sets and
|R| and |S| are the sizes of the corresponding data sets (number
of points). The index selectivity depends on the quality of the
index and on the parameter ε of the similarity join. As a matter
of fact, using an index for a join computation induces some
overhead. We will first determine the possible overhead for the
index usage. It is important to limit the overhead to a threshold,
say 10%, to avoid that the join algorithm becomes arbitrarily
bad in case of a large ε. 

The distance calculations in the directory are the most im-
portant overhead for the CPU. The calculation of a Euclidean
distance between two boxes (time tbox) can be assumed to be by
a factor α=more expensive than a distance calculation between
two points (time tpoint) with

, typically ,
because it requires 2 additional case distinctions per dimension
d (since both times tpoint and tbox are linear in d, α does not de-
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Figure 1. The Minkowski Sum
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pend on d). Therefore, the relative CPU overhead when pro-
cessing a page filled with Ceff points is

.

Limiting the CPU overhead vCPU ≤ 10% requires
. A similar consideration is possible for

the I/O. Here, the time for reading the directory is negligible
(less than 5%). Important are, however, the seek operations
which are necessary because index pages are loaded by random
accesses rather than sequentially. The overhead is the time nec-
essary for disk arm positioning (tseek) and for the latency delay
(tlat), divided by the “productive” time for reading the actual
data from disk (ttr is the transfer time per Byte):

with the hardware constant  (
for typical disk drives). We assume 4 bytes for a floating point
value. Limiting the I/O overhead vI/O ≤ 10% requires

 
which is even for a high data space dimension d ≥ 100 orders of
magnitude larger than the corresponding CPU limit.

Next we analyze how much selectivity is needed to brake-
even with the overhead in index-based query processing.
Again, we separately treat the CPU cost and the I/O cost. For
the CPU cost, we know that we have to perform one distance
calculation for every pair of pages in the directory. Additionally,
for those page pairs which are mates (i.e. 
pairs) all pairs of the stored points must be distance compared
(  distance computations). Altogether, we get 
distance computations for the points. For join processing with-
out index,  distance calculations must be performed. To
justify the index, we postulate:

and thus 

For each pair of pages which must be processed, we assume
that a constant number λ of pages must be loaded from disk. If
there is no cache and a random order of processing then λ = 2.
If a cache is available λ is lower, but we assume that λ is not
dependent on the page capacity, because the ratio of cached
pages is constant (e.g. 10 %). We postulate that the cost for the
page accesses using a page capacity Ceff and a selectivity σ must

not exceed the cost for the page accesses for low-overhead pag-
es without selectivity:

≤

We obtain the following selectivity which is required to justify
an index with respect to the I/O cost:

The actual selectivity of an index with respect to the similarity
join operation can be modeled as follows. As we assume no
knowledge about the data set, we model a uniform and indepen-
dent distribution of the points in a d-dimensional unit hypercube
[0..1]d. Furthermore, we assume that the data pages have the
side length  and , respectively because

 is the expected volume of a page region. 
The index selectivity can be determined by the concept of the

Minkowski sum [6]. A pair of pages is processed whenever the
minimum distance between the two page regions does not ex-
ceed ε. To determine the probability of this event, we fix one
page at some place and we (conceptually) move the other page
over the data space. Whenever the distance is less than or equal
to ε we mark the data space at the position of the center of the
second page (cf. figure 2). As we mark the complete area where
the variable page is a join mate of the fixed page, the probability
of an arbitrary page to be a mate of the fixed page, corresponds
to the marked area divided by the area of all possible positions
of the page (which is the data space, [0..1]d). The Minkowski
sum is a concept often used in robot motion planning. Under-
standing two geometric objects A and B each as an infinite num-
ber of vectors (points) in the data space (e.g. A = {a1, a2, ....})
the Minkowski sum A ⊕ B is defined as the set of the vector
sums of all combinations between vectors in A and B, i.e.
A ⊕ B = {a1+b1, a1+b2, a2+b1, ...}. For cost modeling we are
only interested in the volume of the Minkowski sum, not in its
shape. The example in figure 2 is now constructed, step by step:
On the left hand side, simply the fixed page region with side
length  is depicted. Next we show the complete area
of the data space where the distance from the page region does
not exceed ε. This corresponds to the Minkowski sum of the
page region and a sphere of radius ε. Then, we show an example
of a marginally mating page. The center point of the page is
marked, as depicted. If we move this page around the shaded
contour, we obtain the geometric object depicted on the right
hand side. It corresponds to the Minkowski sum of three objects,
the two page regions and the ε-sphere. The Minkowski sum of
the two cubes is a cube with added side length. The Minkowski
sum of the resulting cube and the ε-sphere can be determined by
a binomial formula which was derived first in [6]:

In figure 3 we compare the required and the estimated selec-
tivities along with varying block sizes. The thin, dashed line
shows=σ as it is needed to justify the CPU overhead of the index.
The curve is increasing very fast. Therefore, no good (i.e. low)
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selectivity is needed unless the block size is very small (<10).
Quite the opposite is true for the I/O cost (thick gray line). Until
a block size of at least 10,000 points, an unrealistic good selec-
tivity is needed. Only for block sizes starting at 10,000, index
selectivities above 10% are allowed. Also depicted are 3 actual
selectivities, estimated by our model. These curves are typical
examples to demonstrate the range of possible curves. 

The index usage is justified if the actual selectivity is below
the needed selectivity. The higher the difference between “ac-
tual” and “needed” is, the more the index will outperform non-
index joins. Over a wide range of block sizes, the actual selec-
tivity curve is below the curve for the CPU cost. The highest dif-
ference is obtained between 10 and 100 points. In contrast the
I/O curve needs always a better selectivity than the index has, if
the distance parameter ε is high. For lower ε, the index is justi-
fied, but only for very large pages. The difference is never high.

It would be possible to determine the optimum block size for
the CPU-cost and for the I/O cost. For this purpose we would
have to choose a fixed distance parameter ε. As our objective is
to create an index which is suitable in every join situation, it
would be bad to optimize for a specific ε.

However, we can learn some important lessons from
figure 3. Smaller pages are very good for minimizing the CPU
cost. But for the I/O cost, small pages of 10..100 points are di-
sastrous. Large pages, in contrast, minimize the I/O cost but are
bad for the CPU cost. Gains at one of the sides are always paid
by a higher price on the other side. Optimizing the overall-cost
can merely bring the two cost components in balance.

To escape from this dilemma, it is necessary to decouple the
I/O cost from the CPU cost by a new index architecture which
will be proposed in section 6. This architecture consists of large
blocks which are subject to I/O. These large blocks accommo-
date a secondary search structure with “subpages” which are
used for reducing the computational effort.

4. Optimization of the I/O time
We have seen in the previous sections that limiting the overhead
of I/O operations requires large pages with Ceff in the area of at
least some 10,000s points. Additionally, only for such large pag-
es, the actual selectivity is below the needed selectivity (cf. figure
3). When the block size is small, the selectivity which is needed
to compensate for the index overhead is much smaller than the
actually achievable selectivity of the multidimensional index.

We may ask ourselves whether or not the page size has an
influence on the performance if the selectivity is close to 100%.

For similarity queries with a bad index selectivity, the sequential
scan is optimal, i.e. an infinitely large page size. For joins, how-
ever, the situation may be different and at the end of this section,
we will know that a careful page size optimization is important. 

In section 6 we will propose a join algorithm which loads
several pages of R into the buffer and combines them with those
pages of S which have a distance less than or equal to ε to at least
one of the buffered S-pages. For such algorithms, the number of
page accesses is

,

where BS and BR are the numbers of blocks into which the point
sets are decomposed, C is the number of blocks of the buffer, b
is the block size in Bytes and fR, fS, and c are the sizes of the point
sets and of the buffer in Bytes. The formula states the fact that
the point set R is scanned once (BR accesses) and the blocks of
S are considered  times. As S is scanned block-
wise we face the following trade-off: If b is too large, i.e. close
to c/2, then S must be scanned more often than necessary. In
contrast, if b is chosen too small (e.g. 1 KByte), then the disk
yields a latency delay after each block access.

The total cost of the join can be summarized as follows: For
every block access of S, we have the corresponding transfer
time b·ttr and the latency delay tlat. Additionally, for each of the
BR / (C − 1) traversals of R we have two disk arm positioning
operations (tseek), one more latency delay, and the transfer time:

+

As R is scanned only once and in larger blocks than the inner
point set, we can neglect the cost for that. Further we can omit
the ceiling-operator in fR/b and fS/b, because the point sets are
much larger than the block size, and thus the relative error by
this approximation is negligible, too:

We are looking for the block size b which minimizes tI/O. The
only obstacle in optimization by setting the derivative to 0 is the
floor-rounding in c/b which cannot be neglected because c>>b
is not guaranteed (we are basically out to determine whether the
buffer should be assigned to R and S more balanced or more un-
balanced). We solve this problem by first optimizing a hull
function thull with thull = tI/O if b divides c and thull < tI/O other-
wise:

Figure 4 depicts the actual cost function tI/O and the hull func-
tion thull for a file size of 10 MByte and a buffer of 500 KByte.
It is easy to see that the optimum of tI/O cannot be at some posi-
tion where tI/O is continuous, because the remaining term
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(when the floor-expression is some constant γ) is strictly mono-
tonically decreasing. This can be shown by the derivative. So,
the minimum of tI/O must be at a position where b divides c with-
out rest. As thull meets tI/O at all such positions, we know that the
optimum of tI/O can only be at the first meeting point (tI/O = thull)
immediately left or right from the minimum of thull. The mini-
mum of thull can be determined by setting the derivative to zero
which yields two results. Only one is positive and it is a mini-
mum, which can be shown according to the second derivative.
The positive solution of  is (because 
for large pages):

The two possible positions of the actual optimum of tI/O are

.

These two values must be substituted in the cost function to de-
termine the actual minimum.

As the minimum of thull is very stable (cf. figure 4), it is also pos-
sible to use e.g. b1 without considering b2.

Figure 5 depicts b1 with a buffer size varying from 0 to 10
MByte for a disk drive with a transfer rate of 4 MByte/s and a
latency delay of 5 ms. The optimum for a 10 MByte buffer, for
instance, is 455903 Bytes (i.e., 23 buffer pages).

5. Optimization of the CPU time
The CPU cost are composed of two components: cost of direc-
tory processing (i.e. distance computations among page re-
gions) and cost of data level processing (i.e. point distance cal-
culations). In our simplified index structure, the distance
between every pair of pages must be calculated, i.e.

 calculations. The number of point distance cal-
culations depends on the index selectivity and is .
The total CPU cost is:

As we have , we can rewrite this and insert our
estimate of the selectivity:

We do not want to optimize the index for a specific distance pa-
rameter ε, because we must create an index which is good for
every similarity join. Therefore, we consider the two extreme
situations of very low and very high distance parameters. For
small ε, we can rewrite our CPU cost formula to

which is optimized by

.

If ε is very large, then the index cannot yield any selectivity. In
this case, it is merely necessary to limit the overhead as in the
beginning of section 3. For a 10% limit at least 10α points must
be stored in a data page. Therefore, we have the following value
for the effective capacity:

6. The Multipage Index (MuX)
It has been shown in section 3 that it is necessary to decouple
the I/O and CPU optimization to achieve a satisfactory perfor-
mance in multidimensional join processing. In section 4 and
section 5, it was shown how to optimize join processing with
respect to I/O and CPU performance. We now introduce an in-
dex architecture and the corresponding algorithms which en-
able the separate optimization. In essence, our index consists of
large I/O pages that are supported by an additional search struc-
ture to speed up the main-memory operations. A few index
structures with supporting search structures have already been
previously proposed. For instance, Lomet and Salzberg pro-
pose the hB tree [28] which uses a kd-tree like structure to or-
ganize directory pages. Their objective is improve the insert op-
erations in order to achieve an overlap-free space
decomposition in their index, not a separate optimization of
CPU and I/O operations. Also, some quad tree based structures
can be used in such a way. Kornacker [22] provides an interface
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for GIST that allows the application of supporting search struc-
tures in index pages. Our solution uses a simple R-tree like sec-
ondary search structure. In the current paper, we have not yet
evaluated which kind of search tree serves the best purpose. Our
motivation for using minimum bounding rectangles for both,
the primary and the secondary search structure, is to be able to
apply the same cost model for both optimizations. Using differ-
ent concepts for the primary and secondary search structure is
viable, but requires different cost models and makes the analy-
sis thus more complex. It remains as an issue for future work to
evaluate different secondary search structures with respect to
high-dimensional indexing and similarity join processing.

6.1. Index architecture

The Multipage Index (MuX) is a height-balanced tree with di-
rectory pages and data pages (cf. figure 6). Both kinds of pages
are assigned to a rectilinear region of the data space and to a
block on secondary storage. The block size is optimized for I/O
according to the model proposed in section 4. The I/O opti-
mized pages are called the hosting pages. As in usual R-trees,
both kinds of pages store a number of entries (directory entries
and data points). In contrast to usual R-trees, where the entries
of pages are stored in random order in a simple array, MuX uses
a secondary search structure to organize the entries. The com-
plete search structure is accommodated in the hosting pages.
Therefore, search operations in the secondary search structure
do not raise any further I/O operations once the hosting page has
been loaded. 

For the secondary search structure, we use a degenerated R-
tree consisting of a flat directory (called page directory) and a
constant number of leaves (called accommodated buckets). If
the hosting page is a data page, the accommodated buckets are
data buckets and contain feature vectors. If the hosting page is
a directory page, the accommodated buckets are directory
buckets which store pairs of a MBR and a pointer to another
hosting page. The page directory is flat and consists of an array
of MBRs and pointers to the corresponding accommodated
buckets. Generally, it would be straightforward to use a hierar-
chical page directory. The actual number of buckets accommo-
dated on a hosting page, however, is not high enough to justify
a deep hierarchy. In our current implementation, the primary di-
rectory of MuX also consists of a single level (flat hierarchy),

because hierarchical directories often do not pay off in high-di-
mensional query processing, as it was pointed out e.g. in [4].

6.2. Construction and maintenance
For a fast index construction, the bottom-up algorithm for X-
tree construction [5] was adopted. The various R-tree algo-
rithms for insertions and deletions can also be adapted to the
MuX architecture. Due to space limitations we cannot go into
further details at this point.

6.3. Similarity queries
Similarity range queries can be efficiently processed by a depth-
first traversal of the multipage index. For nearest neighbor que-
ries, k-nearest neighbor queries and ranking queries, we pro-
pose to adapt the HS algorithm [15] which uses a priority queue
for page scheduling. In our implementation, only the hosting
pages are scheduled by the priority queue. Once a hosting page
is accessed, the corresponding accommodated buckets are pro-
cessed in order of decreasing priority. Accommodated buckets
can additionally be pruned whenever their query distance ex-
ceeds the current pruning distance.

6.4. Join processing
We use the following strategy for join processing: One block of
the buffer memory with the size of one hosting page is reserved
for S (the S-buffer). The rest of the buffer (R-buffer) is used for
caching one or more hosting pages of R. In the outermost loop
of the algorithm presented in figure 7, the R-buffer is filled with
a chunk of pages of R. In line (*), each hosting page of S which
is a join mate of (at least) one of the accommodated buckets in
the R-buffer is accessed. Then each pair of accommodated
buckets having a distance of at least ε is processed, i.e. the point
pairs fulfilling the join criterion are determined.

In line (*) our algorithm considers the accommodated buck-
ets of the chunk in the R-buffer to exclude hosting pages of S
from consideration. Note that our algorithm could also use the
hosting pages of R instead of the accommodated buckets. The
buckets, however, exclude more S-pages from processing (i.e.
the index selectivity is improved). It would also be desirable to
use the accommodated buckets of S for this exclusion test, but

hosting
directory page
accommodated
directory buckets

page directory hosting
data page
accommodated

Figure 6. Index architecture of the multipage index

page directory

page directory

data buckets

algorithm MuX_join
for i := 1 to BR step C − 1 do

load hosting pages BR(i) .. BR(i + C − 1) ;
for j := 1 to BS do

(*) if BS(j) has some join mate in an accomm.
bucket of BR(i) .. BR(i+C−1) then

load hosting page BS(j) ;
for each accomm. bucket of

BR(i) .. BR(i + C − 1) do
for each accomm. bucket of BS(j)

if distance (buckets) ≤=ε=then
process pair of buckets;

Figure 7. Join Processing for the Multipage Index
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the corresponding MBRs of these buckets are not known until
the hosting page is loaded.

In the following two claims, we will point out why our MuX
structure achieves a separate optimization of CPU and I/O per-
formance and why this leads to a superior performance com-
pared to the conventional R-tree join. For these claims we as-
sume that the capacity of an accommodated bucket is at least 20
data points and that a hosting page stores at least 10 accommo-
dated buckets.

Claim 1: The I/O cost of an R-tree and MuX are very similar
if the page capacity of the R-tree corresponds to the capacity of
a hosting page of MuX.

Claim 2: With respect to CPU cost, the MuX join performs
similarly to an R-tree if the page capacity of the R-tree is chosen
like the accommodated buckets of MuX.

Rationale for claim 1: Provided that the R-tree and the MuX
structure apply the same insertion and splitting rules and pro-
vided that the page capacities are equal, both techniques lead to
identical paginations. Therefore, the same page pairs have to be
considered which leads to the same number of page accesses.
The main difference is that MuX pages have to store addition-
ally the page directory which increases the cost of a page access.
The page directory stores pairs of lower bounds and upper
bounds for each accommodated bucket. For each bucket we
have to store as much information as for two data points. As the
capacity of a bucket is at least 20 data points, the storage size of
a MuX hosting page is at most 10% larger than the storage size
of the R-tree. Therefore, the I/O cost of MuX is at most 10%
higher than that of the R-tree.

Rationale for claim 2: Provided that the page capacity of the
R-tree corresponds to the page capacity of the accommodated
buckets, and provided that the same insertion and split strategy
has been applied, the two structures exactly compare the same
point pairs. The number of point distance computations is iden-
tical. The MuX structure determines at most as many distances
between accommodated buckets as the R-tree determines dis-
tances between R-tree pages (in practice even much fewer be-
cause not all pairs of accommodated buckets have to be consid-
ered; only those located in mating hosting pages). The
additional CPU cost in the MuX structure are the distance com-
putations between the hosting pages. Because each hosting
page stores more than 10 accommodated buckets there can be
only one successful distance calculation per 102=100 distance
calculations between accommodated buckets. MuX can in the
worst case be 1% worse than the corresponding R-tree.

We optimize the capacity of the hosting pages of MuX such
that they are I/O optimal. The capacity of the accommodated
buckets is optimized such that they are CPU-optimal. Taken
claim 1 and claim 2 together, we obtain a CPU performance
which resembles a CPU-optimized R-tree and an I/O perfor-
mance that resembles an I/O optimal R-tree (for both cases plus
the overhead mentioned in the rationales of the claims).

Compared to conventional index join algorithms which
traverse the indexes depth-first [7] or breadth-first [14], our new
algorithm improves the performance with respect to CPU and
I/O. The I/O effort is reduced by two ideas: The first idea is to
use more cache for the point set R which is scanned in the out-
ermost loop. The advantage is that in the case of a bad index se-
lectivity the number of scans of the other point set S is mini-
mized. Therefore, the I/O cost cannot become substantially
worse than the I/O cost of a nested loop join. In the case of a
good index selectivity, in the inner loop only those S-pages are
loaded which are actually needed. Therefore, the performance
cannot become substantially worse than a breadth-first or
depth-first index traversal. For these extreme cases, we have al-
ways the performance of the best of the two worlds: nested
loops or tree traversal. In the cases between these extremes, we
combine the advantages of both paradigms and outperform
them both clearly. The second idea leading to reduced I/O cost
is that we use the page regions of the accommodated R-buckets
to exclude hosting S-pages. While only I/O optimized pages are
subject to I/O operations, the more selective bucket regions are
used for excluding, leading to a clear advantage in the index se-
lectivity. The CPU effort is minimized due to the optimization
of the bucket size for minimum computational cost. Addition-
ally, many distance computations between bucket regions are
avoided, because buckets can only mate if their hosting pages
mate, too.

7. Experimental evaluation
To show the superiority of our proposal over competitive tech-
niques, we have performed an extensive experimental evalua-
tion. For this purpose, we implemented our multipage index
join algorithm. For comparison, we also implemented a simi-
larity join algorithm using nested loops and a similarity join al-
gorithm based on the R-tree spatial join (RSJ) algorithm [7]
with three different scheduling and caching schemes.

The cache for the nested loop-join was assigned according
to our optimization presented in section 4. All RSJ variants used
a caching strategy discarding the page which will not be used
for the longest time in the future. Note that, in contrast to usual
paging algorithms applied in general-purpose operating sys-
tems, the join algorithm allows to exploit the knowledge of the
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page schedule in the future. The basic RSJ algorithm accesses
the data pages of the index in a random order. The cache hit rate
can be improved by accessing the pages of the index in an order
preserving the spatial proximity. In [14], 4 different kinds of
page ordering were proposed, including the Hilbert curve, and
an improvement of the cache hit ratio of up to 50% was report-
ed. We implemented a page scheduling strategy based on Z-or-
dering and a greedy optimization strategy which starts with an
arbitrary page and accesses in each step the unprocessed page
with the smallest distance to the last previously accessed pages.
We will refer to the three variants as “R-tree Similarity Join
(RSJ)”, “RSJ with Z-ordering optimization”, and “RSJ with
greedy optimization.” All algorithms were allowed to use the
same amount of buffer memory (5% of the database size).

All our experiments were carried out on HP 9000/780 work-
stations under HPUX-10.20. We used a disk device with a trans-
fer rate of 4 MByte/sec, a seek time of 5 msec, and latency time
of 5 msec. Our algorithms do not exploit parallelism between
CPU and I/O, which would be possible in all approaches.
Therefore, our reported total query time corresponds to the sum
of the CPU time and the I/O time. The index construction was
not taken into account.

For our experiments, we used synthetic as well as real data.
Our synthetic data sets consist of up to 800,000 uniformly dis-
tributed points in the unit hypercube with the dimensions 4 and
8. Our real-world data stem from three application domains: A
CAD database with 16-dimensional feature vectors extracted
from geometrical parts, a color image database with 64-dimen-
sional feature vectors representing color histograms, and a me-
teorology database with 9-dimensional feature vectors generat-
ed by weather observation. In the similarity join, we used the
Euclidean distance. Appropriate distance parameters ε=for each
data set were determined such that they are useful in clustering
[9] and that each point of the data set is combined with a few
other points on the average. That means in particular that we
avoided in our experiments the extreme cases of no resulting
pair (or in the case of self joins: each point is only a join mate of
itself), or each point is combined with every other point.

Figure 8 shows our experiments on uniformly distributed
point data. In the left diagram, the data space is 4-dimensional
and an appropriate ε = 0.05 (i.e. in the result, each point has an
average of 8.5 join mates). The nested loop join has the worst
performance over all scales. With increasing database size, this
technique is outperformed by all other techniques by increasing
factors. For low-dimensional data spaces, the scheduling strat-
egy in the R-tree similarity join plays a relatively important role.
Therefore, the more sophisticated strategies which order the
page accesses by Z-ordering or a greedy strategy improve the
performance of the R-tree similarity join by factors up to 4.2.

The clear winner over all database sizes is our new technique,
the MuX-join. It outperforms the nested loop join up to 400
times and is up to 10 times faster than the R-tree similarity join.
Even the improved R-tree join versions are outperformed with
factors between 2.3 and 4.6. The diagram in the middle shows
our experiments with an 8-dimensional data space (ε = 0.3;
each point has an average of 22.3 join mates). In this dimension,
the various R-tree join variants do not differ much. As the index
selectivity begins to deteriorate in medium-dimensional data
spaces, the nested loop join is much more competitive and is
only for the largest database (800,000 points) outperformed by
the three R-tree join variants. Our new technique, in contrast,
outperforms the other techniques by a factor of 6.3 (over R-
trees) and 8.1 (over nested loop) for the largest database size.
For 100,000 points, the corresponding factors are 7.4 (over R-
trees) and 3.1 (over nested loop). The diagram on the right side
depicts the performance of the join algorithms with varying dis-
tance parameter ε (d = 8; n = 50,000). It is obvious that for very
large ε the nested loop join must be the winner, because the join
result combines each point with every other point, and the nest-
ed loop join has no additional index overhead. Therefore, the R-
tree variants are clearly outperformed. As our new technique
strictly limits the index overhead by an appropriate optimiza-
tion of I/O as well as CPU, it is never clearly outperformed. In-
stead, the performance slowly approaches the performance of
the nested loop join with increasing ε.

Our experiments on real application data depicted in figure 9
clearly confirm our experiments on uniform data. Partially, the
improvement factors are even higher. The left diagram depicts
the results on the 9-dimensional meteorology feature vectors
(ε = 0.0001; 3.9 join mates per point). For the largest database
size, our technique was 590 times faster than the nested loop
join, 5.9 times faster than the R-tree similarity join, and 3.5
times faster than RSJ with the improved scheduling strategies.
For the 16-dimensional CAD feature vectors (diagram in the
middle; ε = 0.01; 7.5 join mates per point) our technique is up
to 87 times faster than the nested loop join and between 6 and 7
times faster than the 3 R-tree similarity join variants. The right
diagram shows the results on our color image database
(ε = 0.0001; 1.1 join mates per point). For the largest database,
our technique yields an improvement factor of 1203 over the
nested loop join of 25 over all R-tree similarity join algorithms. 

8. Conclusions
In this paper, we have proposed an analytical model and a per-
formance study of the similarity join operation. In this context,
a severe optimization conflict between CPU and I/O optimiza-
tion has been discovered. To solve this conflict, we propose an

1

10

100

1000

10000

100000

6.25 12.5 25 50 100

Number of Points ('000)

T
ot

al
 T

im
e 

[S
ec

.]

10

100

1000

10000

100000

25 50 100 200 400 800

Number of Points ('000)

T
ot

al
 T

im
e 

[S
ec

.]

Figure 9. Application Data: Meteorology Data 9D (left), CAD Data 16D (middle), Color Images 64D (right)
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index architecture which allows a separate optimization of the
CPU time and the I/O time. Our architecture utilizes large pri-
mary pages which are subject to I/O processing and optimized
for this purpose. The primary pages accommodate a secondary
search structure to reduce the computational effort. Our exper-
imental evaluation has shown consistently good performance.
Competitive approaches are outperformed by large factors. An
open question for future work is the suitability of our secondary
search structure. For simplicity, and in order to uniformly apply
the same cost model for CPU and I/O optimization, we used
minimum bounding rectangles for both, the primary and the
secondary search structure. More sophisticated techniques,
however, should have the potential to even improve our high
speedup factors.
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