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Abstract: In this article, we propose an efficient and effective method for finding arbitrarily oriented subspace clusters by
mapping the data space to a parameter space defining the set of possible arbitrarily oriented subspaces. The objective of a
clustering algorithm based on this principle is to find those among all the possible subspaces that accommodate many database
objects. In contrast to existing approaches, our method can find subspace clusters of different dimensionality even if they
are sparse or are intersected by other clusters within a noisy environment. A broad experimental evaluation demonstrates the
robustness and effectiveness of our method.  2008 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 1: 111–127, 2008
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1. INTRODUCTION

Subspace clustering is a data-mining task, which has
attracted considerable attention during the last years. There
are two main reasons for this popularity. Firstly, con-
ventional (full space) clustering algorithms often fail to
find useful clusters when applied to datasets of higher
dimensionality, because typically, many of the attributes
are noisy, some attributes may exhibit correlations among
another, and only few of the attributes really contribute to
the cluster structure. Secondly, the knowledge gained from
a subspace-clustering algorithm is much richer than that
of a conventional clustering algorithm. It can be used for
interpretation, data compression, similarity search, etc. as
we will discuss in the next paragraph.

We can distinguish between subspace-clustering algo-
rithms for axis-parallel subspaces [1–5] and those for
subspaces which are arbitrarily oriented (called oriented
clustering, generalized subspace clustering, or correlation
clustering, e.g. [6–8]). In both cases, the data objects which
are grouped into a common subspace cluster, are very
dense (i.e. the variance is small) when projected onto the
hyperplane which is perpendicular to the subspace of the
cluster (called the perpendicular space plane). The objects
may form a completely arbitrary shape with a high vari-
ance when projected onto the hyperplane of the subspace
in which the cluster resides (called the cluster subspace
plane). This means, that the objects of the subspace cluster
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are all close to the cluster subspace plane. The knowledge
that all data objects of a cluster are close to the cluster sub-
space plane is valuable for many applications: If the plane
is axis-parallel, this means that the values of some of the
attributes are more or less constant for all cluster mem-
bers. The whole group is characterized by this constant
attribute value, an item of information which can definitely
be important for the interpretation of the cluster. This prop-
erty may also be used to perform a dedicated dimensionality
reduction for the objects of the cluster and may be use-
ful for data compression (because only the higher-variance
attributes must be stored at high precision individually for
each cluster member) and similarity search (because only
the high-variance attributes need to be individually con-
sidered for the search, and an index needs only to be
constructed for the high-variance attributes).

If the cluster subspace plane is arbitrarily oriented, the
knowledge is even more valuable. In this case, we know
that the attributes which define the cluster subspace plane,
have a complex dependency among each other. This depen-
dency defines a rule, which again characterizes the cluster
and which is potentially useful for cluster interpretation.
Similar to the case of axis-parallel clusters, this depen-
dency rule may also be used for dimensionality reduction,
data compression, similarity search, and indexing. Con-
sider, for example, Fig. 1 which contains two general sub-
space clusters in a very noisy environment. For each of
the subspace clusters, we know that the x and y coordi-
nates are approximately linearly dependent from each other
(y ≈ mi · x + ti), and, therefore, only one of them needs
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Fig. 1 Dataset with two nondense general subspace clusters in a
noisy environment.

to be stored at full precision, indexed, etc. Furthermore,
the knowledge of the degree of dependency, as well as the
slope and intercept may be important for the interpretation
of the cluster in the context of the application.

One well-known effect of the ‘curse of dimensional-
ity’ is the correlation among attributes in high-dimensional
data. While full-dimensional clustering approaches are eas-
ily misled by these correlations, generalized subspace-
clustering approaches, hence also called correlation cluster-
ing, make use of this effect to identify clusters in subspaces
of arbitrary dimensionality. However, finding axis-parallel
or generally oriented subspace clusters is not a trivial task.
The number of possible axis parallel subspaces is exponen-
tial in the number of dimensions, and the number of general
subspaces is even infinite. Therefore, a complete enumer-
ation of all possible subspaces to be checked for clusters
is not feasible. Consequently, all previous solutions rely on
specific assumptions and heuristics and try to find promis-
ing subspaces during the clustering process, for instance,
in an iterative optimization. We will see that this previ-
ous approach of learning suitable subspaces works well if
(but only if) subspace clusters are locally well separated
and no outlier objects (belonging to any cluster) exist. In
the presence of outliers in the local neighborhood of clus-
ter points or cluster representatives in the entire feature
space, most previous subspace-clustering algorithms fail to
detect subspace clusters, because the algorithms try to find
suitable subspaces for each cluster from the local neigh-
borhood of cluster points or cluster representatives in the
entire feature space. This fundamental assumption that all
existing approaches to correlation clustering are based upon
is called the ‘locality assumption’. Outliers in the neigh-
borhoods, that do not belong to the corresponding cluster
prevent the algorithms from finding suitable subspaces, and
the absence of a precise subspace prevents the algorithm
from effectively filtering out the outliers.

In high-dimensional spaces, however, where distances
cannot be used to differentiate between near and far
points, the concept of local neighborhoods is meaning-
less [9,10,11]. Consequently, the neighborhoods of cluster
points or cluster representatives will contain a large num-
ber of outliers that do not belong to the corresponding
cluster. However, those problems arise even if the num-
ber of outliers is very small (e.g. 5–10 outliers in the
complete dataset—see e.g. [12]). Thus, an environment
of heavy noise such as that of Fig. 1 is completely out
of the scope of previous subspace-clustering methods even
in lower-dimensional data spaces, as we will discuss more
deeply in Section 2 for locally optimizing approaches such
as ORCLUS [6], and for density-based approaches such as
4C [7].

To escape from this circular dependency of subspace
finding and outlier filtering, we propose in this article to
reconsider the problem of finding generally oriented sub-
space clusters from a new perspective. The main idea is to
transform every object into a new space, the space of all
possible subspaces in which this object is contained. Since
the number of all such subspaces is infinite, we neither
enumerate these subspaces nor represent each object by
an infinite (or very high) number of transformed objects.
Instead, we consider a continuum of many possible sub-
spaces represented by a small number of parameters. This
continuum is split up on demand during the clustering pro-
cess to set limits to the allowed cluster subspace planes
and finally identify subspace clusters. We will describe
this method in detail in Section 3, and then experimentally
evaluate our method in Section 4. Section 5 concludes our
article.

2. RELATED WORK

Existing approaches for subspace clustering rely on cer-
tain heuristics that use specific assumptions to shrink the
search space and thus reduce the runtime complexity. How-
ever, if these assumptions are not true for a given dataset,
the effectiveness of these methods will either deteriorate,
or the method will even fail to detect any suitable patterns,
or the methods exhibit an exponential runtime, and a good
performance in terms of effectiveness is paid for in terms
of efficiency.

Many subspace-clustering algorithms (e.g. [1,2,3,4,5,
13,14]) assume that the subspace clusters are axis-parallel.
Otherwise, they will not find any pattern. Pattern-based
subspace-clustering algorithms (e.g. [15,16,17,18,19]) are
limited to finding only clusters that represent pairwise
positive correlations in the dataset. In contrast, arbitrarily
oriented hyperplanes (subspace clusters) may also represent
more complex or negative correlations.
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In this article, we focus on the generalized problem of
finding arbitrarily oriented subspace clusters. All existing
algorithms for this problem assume that the cluster struc-
ture is significantly dense in the local neighborhood of the
cluster centers or other points that participate in the clus-
ter. In the context of high-dimensional data, this ‘locality
assumption’ is rather optimistic. Theoretical considerations
[10] show that concepts like ‘local neighborhood’ are not
meaningful in high-dimensional spaces because distances
can no longer be used to differentiate between points. This
is a consequence of the well-known curse of dimensionality.

ORCLUS [6] is based on k-means and iteratively learns
the similarity measure capturing the subspace containing
a given cluster from the points assigned to the cluster in
each iteration by applying principal component analysis
(PCA) on these points. Since the algorithm starts with
the Euclidean distance, the algorithm learns the subspaces
from the local neighborhood of the initial cluster centers.
However, if this local neighborhood contains some noise
or the clustering structure is too sparse within this local
neighborhood, the learning heuristic will be misled because
PCA is rather sensitive to outliers. In those cases, ORCLUS
will fail to detect meaningful patterns. These considerations,
accordingly, apply to the method proposed in [20] which
is a slight variant of ORCLUS designed for enhancing
multidimensional indexing.

4C [7] integrates PCA into density-based clustering.
It evaluates the Euclidean neighborhood of each point p

to learn the subspace characteristics in which p can be
clustered best. Similar to ORCLUS, 4C thus relies on the
assumption that the clustering structure is dense in the
entire feature space. Otherwise, 4C will also fail to produce
meaningful results. The same holds true of some variations
of 4C, like HiCO [21], COPAC [22], and ERiC [23], and
also for robustified versions of these algorithms as described
in [12].

The method CURLER [8] merges the clusters computed
by the EM algorithm using the so-called cosharing level.
The resulting clusters need not represent linear correlations.
Rather, any dense pattern in the data space is found that may
represent a more complex, not necessarily linear correlation.
CURLER also relies on the assumption that the subspace-
clustering structure is dense in the entire feature space
because both the generation as well as the merging of
microclusters uses local neighborhood information.

Let us note that the term ‘correlation clustering’ relates to
a different task in the machine-learning community, where
a partitioning of the data correlates as much as possible with
a pairwise similarity function f learned from past data (e.g.
cf. [24]).

3. ALGORITHM CASH

Obviously, the locality assumption that the clustering
structure is dense in the entire feature space, and that
the Euclidean neighborhood of points in the cluster, or of
cluster centers, does not contain noise is a very strict lim-
itation for high-dimensional real-world datasets. In [10]
the authors show that in high-dimensional spaces, the dis-
tance to the nearest neighbor and the distance to the far-
thest neighbor converge. As a consequence, distances can
no longer be used to differentiate between points in high-
dimensional spaces and concepts like the neighborhood of
points become meaningless. Usually, although many points
share a common hyperplane, they are not close to each
other in the original feature space. In those cases, existing
approaches will fail to detect meaningful patterns because
they cannot learn the correct subspaces of the clusters. In
addition, as long as the correct subspaces of the clusters
cannot be determined, obviously outliers and noise cannot
be removed in a preprocessing step.

In this article, we propose to use the ideas of the Hough
transform [25] to develop an original principle for charac-
terizing the subspace containing a cluster.

The basic Hough transform has been introduced in
the computer graphics community to address the problem
of finding linear segments in pictures (especially straight
lines) by [26]. Most work focuses on discretized two-
dimensional data. The key idea is to map each point of a
two-dimensional picture (or data space D) such as a pixel
onto a set of points (e.g. a line) in a parameter space P .
An area of the parameter space containing many mapped
points (e.g. the intersection of many lines) indicates a poten-
tial feature of interest. In general, a linear segment s can
be represented by its slope ms and its axis intercept ts in
a system of Cartesian coordinates, i.e. y = ms · x + ts . We
can now take m and t as the axes of the parameter space
and reformulate the line equation by ts = −ms · x + y.
Thus, each two-dimensional picture point p = (xp, yp) ∈ D
in the picture space is mapped on a line fp with slope
−xp and intercept yp in the parameter space, i.e. a line
fp represented by t = −m · xp + yp. The line fp in the
parameter space models all linear segments (lines) that pass
through p in the original picture space. Thus, whenever
several lines fp1, . . . , fpk

in the parameter space intersect
at a given point (mi, ti) ∈ P , this indicates that the points
p1, . . . , pk ∈ D are located on a common line in picture
space given by y = mi · x + ti . A simplified example of
the relationship between the picture space and the param-
eter space is visualized in Fig. 2. The three picture points
p1, p2, and p3 are located on a common line s represented
by y = ms · x + ts in the picture space (left). The corre-
sponding mappings in the parameter space (right) fp1 , fp2 ,
and fp3 intersect at point (ms, ts) in the parameter space.
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Fig. 2 Hough transform from picture space to parameter space
using slope and intercept parameters.
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Fig. 3 Hough transform from picture space to parameter space
using angle and radius parameters.

Obviously, both the slope and the intercept are unboun-
ded which may cause some problems when applying this
basic technique. Thus, [27] proposed to use spherical (also
known as polar) coordinates, i.e. to use a parameter space
based on angle and radius parameters rather than on slope
and intercept parameters. The normal parameterization of a
linear segment s in two-dimensional is given by the angle
αs of its normal and its distance (radius) δs from the origin,
i.e. s is represented by x · cos αs + y · sin αs = δs . If αs is
restricted to the interval [0, π), the normal representation of
a line is unique. The mapping from the picture space onto
the parameter space using angle/radius works similar to the
mapping using slope/intercept (see Figure 3). In either case,
the parameter space represents all possible one-dimensional
lines in the original two-dimensional data space.

In principle, each point of the data space is mapped
on an infinite number of points in the parameter space
which is not materialized as an infinite set, but instead
as a trigonometric function in the parameter space. Each
function in the parameter space represents all lines in
the picture space crossing the corresponding point in data
space. The intersection of two curves in the parameter space
indicates a line through both the corresponding points in the
picture space. The objective of a clustering algorithm is to
find intersections of many curves in the parameter space
representing lines through many database objects. The key
feature of the Hough transform is that the distance of the
points in the original data space is not considered any more.

Objects can be identified as associated to a common line
even if they are far apart in the original feature space. As a
consequence, the Hough transform is a promising candidate
for developing a principle for subspace analysis that does
not require the locality assumption and, thus, enables a
global subspace-clustering approach.

In what follows, we will first present a novel princi-
ple for subspace analysis inspired by the ideas of the
Hough transform (cf. Section 3.1). This principle enables
us to transform the task of subspace clustering (in data
space) into a grid-based clustering problem (in parameter
space). Unlike grid-based methods operating directly in the
data space, our method does not suffer from grid resolu-
tion and grid positioning problems. In order to perform
this transformation, we first need to define the boundaries
of the grid (cf. Section 3.2). Then we will show how to
identify dense grid cells that represent potential subspace
clusters (cf. Section 3.3). Since the parameter space is d-
dimensional for a d-dimensional data space, finding dense
grid cells becomes rather costly for higher-dimensional
datasets. Thus, we will propose a more efficient search strat-
egy for finding regions of interest in the parameter space (cf.
Section 3.4). An important step in the clustering process is
a recursive descent in order to find lower-dimensional clus-
ters. We describe this descent in more detail in Section 3.5.
We will also discuss how this recursive descent can be used
to derive a hierarchy of subspace clusters (cf. Section 3.6).
In fact, the clustering procedure implicitly provides a quan-
titative model of the reported clusters. We describe how
this quantitative model can be made explicit in order to
provide a comprehensive and user-friendly explanation of
the detected clusters (cf. Section 3.7). Last but not least
we will also summarize our subspace-clustering algorithm
CASH (Clustering in Arbitrary Subspaces based on the
Hough transform) and discuss some of its properties (cf.
Section 3.8).

3.1. Subspace Analysis: A Novel Principle

Our novel principle for subspace analysis is based on
a generalized description of spherical coordinates. Gen-
eralized spherical coordinates combine d − 1 independent
angles α1, . . . , αd−1 with the norm r of a d-dimensional
vector x = (x1, . . . , xd)

T to completely describe the vector
x with respect to the given orthonormal basis e1, . . . , ed .
We present a formalization analogously to [28]:

DEFINITION 1 (Spherical coordinates) Let ei , 1 ≤ i ≤
d, be an orthonormal basis in a d-dimensional feature space.
Let x = (x1, . . . , xd)

T be a d-dimensional vector on the
hypersphere of radius r with center at the origin. Let ui be
the unit vector in the direction of the projection of vector
x onto the manifold spanned by ei, . . . , ed . For the d − 1
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independent angles α1, . . . , αd−1, let αi , 1 ≤ i ≤ d − 1, be
the angle between ui and ei . Then the generalized spherical
coordinates of vector x are defined by:

x1 = r · cos(α1)

x2 = r · sin(α1) · cos(α2)

...

xi = r · sin(α1) · . . . · sin(αi−1) · cos(αi)

...

xd−1 = r · sin(α1) · . . . · sin(αd−2) · cos(αd−1)

xd = r · sin(α1) · . . . · sin(αd−2) · sin(αd−1)

Generally:

xi = r ·

i−1∏

j=1

sin(αj )


 · cos(αi),

where αd = 0.

For any point p ∈ D ⊆ R
d there exists an infinite num-

ber of hyperplanes containing p. The spherical coordinates
are utilized to define the normal vector of the Hessian
normal form for any of those hyperplanes, i.e. each hyper-
plane is uniquely defined by a point p and d − 1 angles
α1, . . . , αd−1, with αi ∈ [0, π), defining the normal vec-
tor. Thus, any point p together with any tuple of angles
α1, . . . , αd−1, can be mapped by the following param-
eterization function to the distance of the corresponding
hyperplane to the origin.

DEFINITION 2 (Parameterization Function) Let p =
(p1, . . . , pd)

T ∈ D ⊆ R
d be a d-dimensional vector, and

let n = (n1, . . . , nd)
T be a d-dimensional unit vector spec-

ified by d − 1 angles α1, . . . , αd−1 according to Defini-
tion 1. Then the parameterization function fp : R

d−1 → R

of vector p denotes the distance of the hyperplane defined
by the point p and the normal vector n to the origin:

fp(α1, . . . , αd−1) = 〈p, n〉

=
d∑

i=1

pi ·

i−1∏

j=1

sin(αj )


 · cos(αi)

Based on Definition 2, we can map any point p ∈ R
d to a

function in a d-dimensional parameter space P representing

all possible hyperplanes containing p. This parameter space
is spanned by the d − 1 angles α1, . . . , αd−1 of the normal
vectors defining the hyperplanes in Hessian normal form
and their distances δ = fp(α1, . . . , αd−1) to the origin.

By means of the parameterization function (Definition 2),
we can also extend the properties of the original Hough
transform as stated in [27] for the mapping of two-
dimensional points to d-dimensional data spaces and the
corresponding parameter spaces:

PROPERTY 1: A point p ∈ D ⊆ R
d in data space is

represented by a sinusoidal curve fp : R
d−1 → R in param-

eter space P .

Figure 4 illustrates a three-dimensional example of this
property. Three points p1, p2, and p3 in data space are
mapped onto the corresponding sinusoidal curves fp1 , fp2 ,
and fp3 , respectively, in parameter space.

PROPERTY 2: A point (α1, . . . , αd−1, δ) ∈ P in
parameter space corresponds to a (d − 1)-dimensional
hyperplane in data space.

In Fig. 4, the point (αs
1, αs

2, δs) in parameter space rep-
resents the two-dimensional plane s with

δs = cos(αs
1) · x1 + sin(αs

1) · cos(αs
2) · x2

+ sin(αs
1) · sin(αs

2) · x3

in data space.

PROPERTY 3: Points that are located on a (d − 1)-
dimensional hyperplane in data space correspond to sinu-
soidal curves through a common point in parameter space.

The three points p1, p2, p3 ∈ D (Fig. 4) are located on
the two-dimensional plane s. Their corresponding sinusoidal
curves fp1, fp2 , fp3 intersect in the point (αs

1, αs
2, δs) ∈ P ,

where αs
1, αs

2 and δs are the parameters of plane s as given
above (cf. Property 2).

PROPERTY 4: Points located on the same sinusoidal
curve in parameter space represent (d − 1)-dimensional
hyperplanes through the same point in data space.

For example, in Fig. 4, fp1 in parameter space represents
all two-dimensional planes through p1 in data space. Thus,
any point on fp1 in parameter space represents a given
two-dimensional plane in data space that passes through
p1.

Properties 1– 4 induce that an intersection point in the
parameter space indicates points in the data space that are
located on a common (d − 1)-dimensional hyperplane. In
order to detect those linear hyperplanes in the data space,
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Fig. 4 Transform of a three-dimensional data space into a three-dimensional parameter space.

the task is to search for points in the parameter space where
many sinusoidal curves intersect. Since computing all pos-
sibly interesting intersection points is computationally too
expensive, we discretize the parameter space by some grid
and search for grid cells with which many sinusoidal curves
intersect. For that purpose, for each grid cell the number of
intersecting sinusoidal curves is aggregated. Owing to this
discretization of the parameter space, exact intersections
are no longer considered. Rather, a slight impreciseness is
allowed while modeling a certain degree of jitter given by
the grid resolution. The higher the grid resolution is, the
lower is the allowed degree of jitter, i.e. the more accurate
the recognition of the line segments.

With the proposed concepts, we transform the original
subspace-clustering problem (in data space) into a grid-
based clustering problem (in parameter space).

3.2. Specifying the Boundaries of the Grid

To define a discretization of the parameter space, the
range of the axes must be known. The axes for the angle-
parameters α1, . . . , αd−1, are bounded by [0, π). The δ-
axis ranges from the minimum of all minima of all param-
eterization functions to the maximum of all their maxima
within [0, π)d−1. Each fp is a sinusoid with a period of
2π . Thus, any fp has exactly one global extremum in the
interval [0, π)d−1. If the extremum of fp is a maximum,
the minimal value for fp in the given interval has to be
determined and vice versa.

To find the global extremum of a parameterization
function fp in the interval [0, π)d−1, those angles α1, . . . ,

αd−1 need to be determined where all the first-order
derivatives of fp are zero, and the Hessian matrix of fp

is either positive or negative definite. As noted above,
fp is guaranteed to have exactly one global extremum

fp(α̃1, . . . , α̃d−1) in [0, π)d−1. The values for the angles
α̃n (n = 1, . . . , d − 1) of the global extremum of fp are
given by (cf. Appendix A for details):

α̃n = arctan




d∑
j=n+1

pj ·
[

j−1∏
k=n+1

sin(α̃k)

]
· cos(α̃j )

pn




Given the global extremum of a parameterization func-
tion fp in the interval [0, π)d−1, we have to distinguish
several cases to determine the opposite value, i.e. to deter-
mine the maximum of fp if the global extremum of fp is a
minimum or to determine the minimum of fp if the global
extremum is a maximum. In the following text, we describe
how to determine the point αmin where the parameterization
function fp has a minimum in interval [0, π)d−1 given that
the global extremum is a maximum. In the opposite case,
the point αmax where the parameterization function fp has a
maximum in interval [0, π)d−1 given the global extremum
is a minimum can be determined analogously. Please refer
to Appendix B for a detailed formalization of this step.

We determine the point αmin = (αmin
1 , . . . , αmin

d−1) where
the parameterization function fp has a minimum in interval
[0, π)d−1 as follows: First, the angle αd−1 on axis (d − 1)

is determined where fp has an extremum on this axis.
Dependent on the type of the extremum in αd−1 and the
location of αd−1 in the interval [0, π), the minimum angle
αmin

d−1 on axis (d − 1) in interval [0, π) is determined. In
the next step, axis (d − 2) will be considered: Now, the
angle αd−2 will be determined, where fp has an extremum
on this axis under the constraint of the known minimum on
axis d − 1, which is given by αmin

d−1. Analogously to the first
step, dependent on the type of the extremum in αd−2 and the
location of αd−2 in the interval [α̌d−2, α̂d−2), the minimum
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angle αmin
d−2 is determined. In this way, all minimum angles

are determined under the constraint of the known minima
on the already processed axes.

In summary, given for each parameterization function fp

its minimal and maximal value αmin
p and αmax

p in interval
[0, π)d−1, the δ-axis of the parameter space P is bounded
by [δmin, δmax] = [minp∈D(fp(αmin

p )), maxp∈D(fp(αmax
p ))]

and P = [δmin, δmax] × [0, π)d − 1.

3.3. Identifying Dense Grid Cells

Given a discretized parameter space, now those grid cells
(hypercuboids) have to be found that are intersected by
parameterization functions of a minimum number m of
functions. Hypercuboids containing at least m parameter-
ization functions are called dense regions of the parameter
space. Those dense regions represent arbitrarily oriented
subspaces in the data space accommodating at least m

points. This is illustrated in Fig. 5. The two subspace clus-
ters forming lines in the data space (cf. Fig. 5(a)) are repre-
sented by two distinct dense regions in the parameter space
(cf. Fig. 5(b)).

To find those dense regions in the parameter space,
for each grid cell or hypercuboid, the number of param-
eterization functions which intersect this hypercuboid has
to be counted. This can be done conveniently by deter-
mining those values αmin

p and αmax
p in a given interval

[α̌, α̂) ⊆ [0, π)d−1 that minimize and maximize a param-
eterization function fp. Then, all hypercuboids based on
this interval and positioned between fp(αmin

p ) and fp(αmax
p )

are intersected by fp. The values αmin
p and αmax

p in a given
interval [α̌, α̂) ⊆ [0, π)d−1 that minimize and maximize fp

can be determined analogously to the algorithm specified
in Section 3.2 where the given interval was assumed to be
[0, π)d−1.

3.4. Efficiently Finding Regions of Interest

A region qualifying as a dense region, but containing
exclusively one cluster, possibly needs to be defined by
a rather small interval of angles and also a rather small
interval of distances from the origin because otherwise
the same interval could also contain functions representing
points of other clusters (cf. the dense region of cluster
C1 in Fig. 5). For that purpose, a rather high number
of intervals in each dimension of the parameter space is
needed, resulting in a huge number of grid cells possibly
qualifying as dense regions. Thus, searching the parameter
space with a predefined grid in the range [0, π) for each
angle and [δmin, δmax] for the distance from the origin is
not feasible for high-dimensional data in terms of space
and time complexity.

(a) Two lines in data space

(b) Dense regions in parameter space

Fig. 5 Dense regions in parameter space capturing two lines in
data space.

To avoid exponential complexity, the following search
strategy for the parameter space is proposed:

(1) The axes (distance and angles) are divided succes-
sively in a static order given by δ, α1, . . . , αd−1. After
dividing one axis, from the resulting two hypercuboids
the one containing most points is selected for refinement.
If both hypercuboids contain an equal number of points,
the first one is selected (arbitrarily). The selected hyper-
cuboid is divided recursively by splitting the next axis. The
neglected hypercuboid is kept in a queue.

(2) If both children of a divided hypercuboid contain
less than m points, the search in the corresponding path is
discontinued. Unless the queue is empty, the next hyper-
cuboid in the queue is examined using the same procedure.
In the queue, hypercuboids are ordered descendingly by the
number of points contained by a hypercuboid. If two hyper-
cuboids contain an equal number of points, the smaller one
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is preferred, since a smaller interval containing an equal
number of data points is a more promising candidate.

(3) At a predefined depth (i.e. a given number s of succes-
sive splits), a hypercuboid (i.e. the corresponding interval)
is considered to be sufficiently small to define a hyperplane
containing a subspace cluster. If the number of points within
the hypercuboid exceeds a predefined number m of points,
these points are considered to build a subspace cluster. The
corresponding subspace is treated as a new data space con-
taining all the points accounted for in the hypercuboid.
This new data space of dimensionality d − 1 undergoes
the same procedure recursively, while d > 2, i.e. CASH
is called for the points in the hypercuboid using the cor-
responding subspace as data space (see Section 3.5 for a
more detailed explanation of the recursive descent). If no
subspace cluster of lower dimensionality is found in this
(d − 1)-dimensional space, all the points in this subspace
are supposed to build a (d − 1)-dimensional subspace clus-
ter.

(4) All points participating at a (d − 1)-dimensional
subspace cluster derived at a search path are removed from
the d-dimensional data space. The queue is reorganized and
hypercuboids are removed if they now contain less than m

points. A new search path based on the next hypercuboid
in the queue is pursued.

(5) The search is complete, if in the d-dimensional space
no interval is found containing at least m points.

This search strategy determines clusters of at least m

points in any arbitrarily oriented subspace, and provides a
description with an accuracy regarding the orientation α and
the distance δ from the origin as defined by the predefined
number s of splits.

Unlike traditional grid-based clustering approaches,
CASH has no problems if a region of interest (i.e. a clus-
ter) is located at the boundary of two connected grid cells,
g1 and g2. In that case, the functions will intersect both
neighboring grid cells and both grid cells, g1 and g2, will
be dense. CASH will refine one of these grid cells (e.g.
g1 –cf. step 1) until the cluster is found. After that, CASH
eliminates the participating points (i.e. functions) and, thus,
the second grid cell (g2) will not be dense anymore (step
4).

Owing to the recursive search in an obtained cluster
(step 3), a cluster hierarchy is gained along the way, i.e.
a subspace cluster may in turn contain nested subspace
clusters of lower dimensionality. In that case, it may be
interesting to report all nested clusters and the information
of the ‘contained-in’ relationships. Section 3.6 provides
more details on how such a hierarchy can be obtained.

3.5. Recursive Descent

In this section, we describe in more detail the recursive
procedure to find lower-dimensional clusters within higher-
dimensional clusters as mentioned in step 3 of the search
heuristic (Section 3.4).

If CASH finds a cluster, i.e. a d-dimensional hypercuboid
g (d > 2) at a predefined depth (i.e. a given number s of
successive splits) being sufficiently dense, the search space
is transformed according to the current orientation and
affinity of the subspace defined by the hypercuboid g. In
particular, the hypercuboid g defines a subspace by means
of the Hessian normal form with a certain error (as defined
by the intervals of angles [α̌i , α̂i) for each axis i and the
interval of distances [δmin, δmax] from the origin spanned by
g). The corresponding hyperplane (a (d − 1)-dimensional
affine subspace) is given by spherical coordinates of the
normal vector n assuming the mean of δmin and δmax as
the length (radius r) of n and for each angle the mean of
the corresponding values of α̌ and α̂, respectively. In other
words, the spherical coordinates of n are given by

r = δmin + δmax

2
(1)

and

αi = α̌i + α̂i

2
(2)

(for 1 ≤ i ≤ d − 1). The Cartesian coordinates are given as
in Definition 1 by

xi = r ·

i−1∏

j=1

sin(αj )


 · cos(αi). (3)

The normal vector n is then completed to an orthonormal
basis by adding d − 1 linear independent arbitrary basis
vectors (which is generally possible in a d-dimensional
space). The corresponding orthonormal matrix N facili-
tates the transformation of the parameterization functions
from the d-dimensional space into the (d − 1)-dimensional
subspace by multiplication with N and projection onto
the space given by N \ n. This way, a new, (d − 1)-
dimensional subspace is defined. The dataset corresponding
to this subspace contains only the parameterization func-
tions intersecting the hypercuboid g. For the next step,
CASH is applied to the points of the cluster represented by
g transformed into the new (d − 1)-dimensional subspace.
In each next step the search space is therefore reduced in
dimensionality and at least not increased with respect to the
number of database objects.
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3.6. Deriving a Hierarchy of Subspace Clusters

By means of the recursive descent, CASH directly yields
a hierarchy of arbitrarily oriented subspace clusters. All
points belonging to a dense (d − 1)-dimensional grid cell
also belong to the d-dimensional grid cell that has been
previously analyzed in order to find lower-dimensional clus-
ters. Thus, when recursively descending after identifying a
cluster, we simply have to store a pointer from the higher-
dimensional cluster to the lower-dimensional cluster. As
a result, we get a containment hierarchy of clusters and
their corresponding subspaces. This hierarchy displays an
important relationship among clusters. If any l-dimensional
cluster A is contained in a k-dimensional cluster B (l < k)
according to this relationship, this means that all points of
cluster A are not only located on a common l-dimensional
cluster hyperplane but also located on the k-dimensional
cluster hyperplane that is shared by the points in B. Cluster
B can thus be regarded as a superset of A. A higher-
dimensional superset B of a cluster A can be regarded as
an interesting cluster itself, if |B − A| ≥ m.

From the point of view of a hierarchy of subspaces, the
difference between the points in B − A and the points in
B is that points in B − A exhibit a correlation not only
among the l attributes that are correlated for the points
in B, but also among k − l additional attributes. Knowing
these relationships is quite interesting when evaluating and
interpreting the reported clusters in order to find hidden
causalities in the data.

The hierarchy can be visualized as a tree. Each node
of a tree represents a cluster. The root node (level 0) of
the tree represents the entire database forming a ‘dummy’
d-dimensional cluster in which all other ‘true’ clusters
are contained. A node at level k represents a (d − k)-
dimensional cluster. An edge between a k- and an l-
dimensional cluster (l < k) represents the containment of
the l-dimensional cluster within the k-dimensional one.
Finally, any node on level l ≥ 1 without a parent node is
linked to the root.

3.7. Deriving a Cluster Model

In [29] a PCA-based method for deriving quantitative
models of correlation clusters is proposed. The presented
model of a cluster mainly consists of an equation system
that quantitatively reveals the relationships between the
participating attributes. This model is derived by applying
PCA to the points in the cluster and then identifying the
major and minor principal axis of the point set using some
thresholds.

Applying the method proposed in [29] is of course
generally possible, but our algorithm CASH provides such
a model implicitly. In particular, the model is defined by

means of the subspace that is specified by the corresponding
grid cell as discussed in Section 3.5. As a consequence,
rather than applying a complex (and possibly misleading)
extra procedure, we can directly derive for each cluster
found a model describing the subspace accommodating the
cluster. This is a clear benefit because the method in [29]
relies on a completely different concept (i.e. PCA) and
employs some heuristic thresholds. Thus, it may produce
a model that represents a subspace different from that
represented by the grid cell found by CASH.

As explained above, the subspace of a cluster (i.e. the
cluster hyperplane) is represented by a hypercuboid g. This
hypercuboid represents the spherical coordinates of the nor-
mal vector of the cluster hyperplane. The transformations
performed for the recursive descent (cf. Section 3.5) are
injective operations followed by a projection. The projec-
tion results in an error of a predefined maximal margin
(given by the perimeter of the corresponding grid cell in
angles and radius). Thus, performing the inverse opera-
tions results in a simplified but concise model describing
the orientation, affinity, and dimensionality of the subspace
accommodating the cluster members. In order to derive an
equation system similar to the cluster model proposed in
[29], we have to transform the spherical coordinates of all
normal vectors that have been generated during the recur-
sive descent into Cartesian coordinates. For a l-dimensional
cluster we thereby obtain (d − l) normal vectors and, con-
sequently, a system of (d − l) equations.

In order to exemplify these ideas, assume that we have
obtained a (d − 1)-dimensional cluster C in the first step of
CASH by identifying a dense grid cell gC . As mentioned
earlier, the hypercuboid gC defines a subspace by means of
the Hessian normal form with a certain error (as defined
by the intervals of angles [α̌, α̂) for each axis and the
interval of distances [δmin, δmax] from the origin spanned by
gC). The corresponding hyperplane (a d − 1-dimensional
affine subspace) is given by spherical coordinates of the
normal vector nC that can again be derived as defined
in Eqs. 1 and 2. As described above, we can transform
these coordinates into Cartesian coordinates [cf. Eq. 3] and
derive an equation system with (d − 1) free attributes, i.e.
the equation system provides one equation for each normal
vector, e.g.

a1x1 + · · · + ad−1xd−1 + adxd = 0.

In this equation, the coefficients ai are the Cartesian coor-
dinates of the normal vectors. In our example, this would
provide a quantitative model describing a correlation clus-
ter of correlation dimensionality (d − 1) (corresponding
to the number of free attributes). The usefulness of such
models for the interpretation of correlation clusters has
been demonstrated in [29]. In particular, the quantities
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of the relationships can directly be derived by the coeffi-
cients a1, . . . , ad . In addition, in this example, we can also
directly deduce that all attributes with ai 	= 0 are involved
in the correlation.

3.8. Properties of the Algorithm

The algorithm CASH transforms the data objects from
D ⊆ R

d into a corresponding parameter space (based on
radius and angles) P = [δmin, δmax] × [0, π)d−1. After that,
CASH identifies dense regions in that parameter space
using the search strategy proposed above. These dense
regions represent arbitrarily oriented subspace clusters in
the data space. For each dense region, a recursive descent
is initialized. The resulting hierarchy of subspace clusters is
visualized by a tree structure placing the complete database
in the root of the tree representing the entire database.

3.8.1. Complexity.

Let N be the number of data points in a d-dimensional
data space. When bisecting the parameter space of αi and
δ, we need to determine those database points, whose
parameter functions intersect with the generated cells in
the parameter space. This is done by the maximization
and minimization of δ given the constraints on αi (i.e.
α̌i ≤ αi < α̂i for all 1 ≤ i ≤ d − 1) requiring O(d3) time
per object and cell.

The CASH algorithm performs a recursive bisection of
the data space where all bisections with fewer than m asso-
ciated database points are discarded. Since bisection cells
which do not belong to any cluster are only randomly asso-
ciated with a few arbitrary points, the bisection process
for those cells stops at a high level of the bisection tree.
Only cells belonging to actual subspace clusters are bisected
until the defined maximum number s of bisection levels is
reached. Therefore, for a dataset containing c clusters, a
number O(s · c) of nodes in the bisection tree are encoun-
tered, each causing O(N · d3) work to find all subspace
clusters. Together, we have an average time complexity in
O(s · c · N · d3). Let us note, though, that the performance
can deteriorate considerably in the worst case. If all cells
are dense on all but the last level, all paths have to be
searched and the complexity is essentially the same as the
complexity of a complete enumeration approach, O(2d).

3.8.2. Input parameters.

CASH requires the user to specify two input parameters:
The first parameter m specifies the minimum number of
sinusoidal curves that need to intersect a hypercuboid in
the parameter space such that this hypercuboid is regarded
as a dense area. Obviously, this parameter represents the

minimum number of points in a cluster, and thus, is very
intuitive. The second parameter s specifies the maximal
number of splits along a search path (split-level). Thus, it
controls the maximal allowed deviation from the hyperplane
of the cluster in terms of orientation and jitter. We show in
our experiments, that CASH is rather robust with respect
to s. Since CASH does not require parameters that are
hard to guess like the number of clusters, the average
dimensionality of the subspace clusters, or the size of the
Euclidean neighborhood based on which the similarity of
the subspace clusters is learned, it is much more usable and
stable than its competitors.

3.8.3. Alternative parameterization.

It is also possible to treat the split-level for the radius
and the angles separately. This increases the number of
parameters by 1, but allows to treat different kinds of devi-
ations from the idealized cluster hyperplane differently: The
allowed variance in the radius corresponds to the allowed
thickness of the hyperplane, i.e. the tolerated deviation of
cluster members orthogonally from the hyperplane. This
kind of error is usually encountered in real-world datasets.
The tolerated variance in the angles corresponds to the toler-
ated variance in the orientation of the hyperplane. A larger
allowance here makes it possible to grasp clusters where
the members do not follow a perfectly linear correlation.

4. EVALUATION

4.1. Efficiency

To evaluate the scalability of CASH with respect to the
size of the dataset, we created 10 datasets containing 4,
equally sized one-dimensional clusters in a five-dimensional
data space with an increasing number of points ranging
from 10 000 to 100 000. CASH performs comparably well
to ORCLUS. Both outperform 4C significantly (cf. Fig. 6).
As a fair setting, we gave as parameter k to ORCLUS
the exact number of clusters in the dataset (i.e. k = 4),
and parameter l has been set to the correct correlation
dimensionality of the clusters (i.e. l = 1). For 4C, the
parameters have been set to k = µ = 100, ε = 0.1, λ = 1,
and δ = 0.01, reflecting the actual cluster structure in the
synthetic datasets. The parameter setting for CASH was
s = 40 and m = 2500.

To assess the impact of the dimensionality of the data
space on the runtime of CASH, we created 10 datasets
ranging in dimensionality from 5 to 50, each dataset con-
taining a one-dimensional cluster of 10,000 points. The
parameters were set to s = 50 and m = 5000. Figure 7
shows the scalability of CASH logarithmically on both
axes, dimensionality and runtime. The graph is a line with
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Fig. 7 Scalability of CASH with respect to dimensionality.

slope 3.14, approximately corresponding to the expected
runtime behavior.

In both test scenarios, the objective was to find one-
dimensional clusters in a d-dimensional data space, since
this is the most complex task for CASH, requiring a max-
imal recursive descent from d − 1 until subspace dimen-
sionality 1 is reached.

4.2. Effectiveness

The parameter s clearly influences the runtime behav-
ior to a certain degree. However, CASH reaches satisfying
behavior in terms of effectiveness for even relatively low
values for s. Figure 8 illustrates the effect of s on runtime
and effectiveness simultaneously. On a five-dimensional
dataset containing two one-dimensional clusters, each con-
taining 500 points, and 500 points of noise, CASH reaches
an F -measure of 100% already for s = 35, while the run-
time remains relatively low with 3.29% compared to the
maximum runtime for s = 75.

To assess the robustness of CASH against noise, we
created ten datasets consisting of correlation clusters based
on linear dependencies among subsets of attributes. As
discussed in [29], linear dependencies among subsets
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Fig. 8 F-measure and runtime of CASH with respect to maximum
split-level.

of attributes are characteristic of correlation clusters. The
datasets contain an increasing level of noise objects ranging
from 0 to 90% of the complete dataset. Thus, for these
datasets, each point belongs to a predefined cluster or noise.
The clusters and the noise set can be regarded as classes.
The algorithms can thus be evaluated in a supervised
setting.

Figure 9 shows the comparison in robustness with
ORCLUS and 4C. The parameter setting for ORCLUS has
been l = 1 and k = 2, reflecting the true number of clusters
and their dimensionality. For 4C, the optimal parameter set-
ting has been used with k = µ = 5, ε = 0.12, λ = 1, and
δ = 0.01. For CASH, the parameters have been chosen as
s = 30 and m = 50. Let us note that CASH did not require
any efforts for optimization of parameter settings. While
both 4C and ORCLUS performed relatively well for very
low levels of noise objects, their performance deteriorates
for a higher degree of noise. CASH remains constantly on
an F -measure of 100% up to a noise level of 80%. Even for
an extremely high level of noise (90%), CASH still reaches
an F -measure of 94%.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90

level of noise objects [%]

F
-M

ea
su

re
 [

%
]

CASH
4C
ORCLUS

Fig. 9 F-Measure with respect to noise level.
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(a) Synthetic data set DS1. (b) CASH - Clustering.

(c) ORCLUS - Cluster 1. (d) ORCLUS - Cluster 2.

Fig. 10 Clustering synthetic dataset DS1.

We illustrate the robustness of CASH against noise on an
exemplary three-dimensional dataset depicted in Fig. 10(a).
CASH finds the two one-dimensional subspace clusters
(each of size 50) embedded in 500 noise points exactly
(cf. Fig. 10(b)). The results of ORCLUS (with optimal
parameter setting l = 1 and k = 2) are shown in Figs 10(c)
and 10(d). As it can be seen, the clusters found by ORCLUS
do not reflect the real cluster structure at all. For 4C,
we tried several parameter settings. Unfortunately, 4C was
never able to find a meaningful cluster structure at all.

Further experiments on high-dimensional datasets have
been performed with CASH, 4C, and ORCLUS. The
datasets contained complex subspace cluster structures
with sparse clusters, including subspace clusters of signifi-
cantly differing dimensionality, subspace clusters hierarchi-
cally embedded in higher-dimensional subspaces, and noise
objects. In none of the performed experiments were 4C or
ORCLUS able to find meaningful clusters, while CASH
exactly detected the cluster structures in most cases. As
an example, we present the results on a complex three-
dimensional dataset shown in Fig. 11(a), containing three
one-dimensional clusters each of 500 points, two two-
dimensional planes each containing 500 points, and 500
points of noise. One of the planes is intersected by two
lines, the other plane is intersected by one line. Here,
CASH is able to identify the cluster structure of all five
clusters exactly (Fig.11(b)). In contrast, 4C (cf. Fig.11(c),

parameters optimized to k = µ = 20, ε = 0.1, λ = 2, and
δ = 0.01) and ORCLUS (cf. Fig.11(d), parameters k = 5
and l = 2 reflect the cluster structure exactly) could not
compete. Both missed very large and important parts of
the clustering structure. This bad behavior of the two com-
petitors can partly be explained by the high degree of noise
present in the dataset. The influence of noise on the existing
approaches can be observed in Fig. 12. Omitting the noise
points, 4C is able to detect the cluster structure relatively
well (cf. Fig. 12(a)) but cannot handle intersecting clusters.
Even on the dataset without noise points, ORCLUS was not
able to identify the five clusters correctly (cf. Fig. 12(b)).
This again illustrates the superiority of CASH over existing
methods especially in terms of noise robustness.

4.3. Real-world Data

We applied CASH on the Wages dataset1, a dataset
containing average career statistics of current and former
NBA players2 and a gene expression dataset [30]. The
Wages data consist of 4D observations (A = age, YE =
years of education, YW = years of work experience, and W
= wage) numbering 534 from the 1985 Current Population
Survey. As parameters for CASH we used m = 70 and s =

1 http://lib.stat.cmu.edu/datasets/CPS 85 Wages.
2 obtained from http://www.nba.com.
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(d) ORCLUS – Cluster 1 - 5.(c) 4C – Cluster 1 - 8.

(b) CASH – Cluster 1 - 5.(a) Data set DS2.

Fig. 11 Clustering results on synthetic dataset DS2.

(a) 4C – Cluster 1 - 8. (b) ORCLUS – Cluster 1 - 5.

Fig. 12 Clustering results on DS2 after noise removal.

40. The results are summarized in Table 1: CASH detected
three pure subspace clusters in this dataset, of which two
data objects have been identified as noise objects. The first
cluster consists only of people having 12 years of education
and having started their working life at the age of 18 years.
The second cluster consists only of people having 16 years
of education and having started their working life at the
age of 22 years. In the third cluster, only those employees
are grouped, who started school at the age of 6 years, and
began working immediately after graduation. Thus, the sum
of years of education and work experience is equal to the
age minus 6.

Table 1. CASH clustering on wages data.

c ID dim # objects Description

1 2 215 YE = 12; A - YW = 18
2 2 70 YE = 16; A - YW = 22
3 3 247 YE + YW = A − 6

The NBA data contains 15 statistical measures such as
‘games played’ (G), ‘games started’ (GS), ‘minutes played
per game’ (MPG), ‘points per game’ (PPG), etc. for 413 for-
mer and current NBA players. As parameters for CASH, we
used m = 30 and s = 45. CASH detected nine interesting
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Table 2. CASH clustering on NBA data.

c ID dim Description

1 1 ‘Go-to-guys’
2 2 Shooting guards
3 2 Point guards
4 2 Starting centers
5 8 Point guards
6 9 Power forwards
7 9 Small forwards
8 10 Well-known rebounder
9 12 Role players/reserves

clusters of very different dimensionality each containing
players of similar characteristics (cf. Table 2). In addition,
several players are classified as noise. The detected corre-
lations confirmed basketball fundamentals. For example, in
cluster 1 containing superstars like Michael Jordan, Larry
Bird, Shaquile O’Neal, and James Worthy, PPG of all play-
ers were negatively dependent on G and MPG. On the other
hand, the more games (G) the players were in, the higher
the number of starting line-up appearances (GS). Let us
note that this cluster also contains less well-known play-
ers that had similar characteristics such as Rik Smits, Dan
Majerle, and Rick Fox. The three clusters containing guards
all showed correlations between G and MPG on the one
hand, and the number of assists and steals per game on the
other hand. For the guards in cluster 3, this correlation was
positive, whereas for the guards in cluster 5, this correlation
was negative. On the other hand, cluster 3 exhibits a posi-
tive correlation between the G and GS. In cluster 5, these
two attributes are also correlated but in a negative manner.
This indicates that the coaches in the NBA usually decided
to start with the better point guards.

In the gene expression dataset (24 dimensions, 4000
genes) CASH found several clusters of functionally related
genes that are biologically interesting and relevant accord-
ing to three biologically proven criteria including (i) known
direct interactions of the genes or the according gene
products, (ii) known common complexes of the genes or

the according gene products, and (iii) participation of the
according gene products in common pathways.

Neither ORCLUS nor 4C were able to detect meaningful
clusters in our real-world datasets. One reason for this may
be that the found clusters are highly overlapping. Thus,
neither ORCLUS nor 4C can learn the appropriate similarity
measure capturing the subspaces of the clusters from the
local neighborhood.

4.4. Alternative Parameterization and Cluster
Hierarchies

Last but not least, we investigated the possibilities of
our novel method to produce a hierarchy of correlation
clusters. We applied CASH on a three-dimensional dataset
‘DS3’ shown in Fig. 13(a). The dataset contains several
correlation clusters including four one-dimensional clus-
ters, a two-dimensional cluster with two embedded one-
dimensional clusters, and a two-dimensional cluster with
one embedded one-dimensional cluster. Some noise points
are also added. Not all clusters exhibit a perfect correla-
tion, i.e. the points of the cluster deviate from the common
cluster hyperplane by a small degree. In this experiment
we used the alternative parameterization as described in
Section 3.8 where the allowed deviation of the hyperplane
can be specified independently from the allowed variance of
the orientation of the cluster hyperplane. Parameters were
s = 8, δ jitter = 0.0011 (specifying the allowed deviation
from the cluster hyperplane), and m = 90. With this alterna-
tive parameterization, CASH had no problems in recogniz-
ing the true cluster structure. In contrast, using the original
parameterization, we could not find a parameter setting for
which CASH achieved 100% accuracy. In summary, our
experiments indicate that generally, the alternative param-
eterization achieves a similar accuracy compared to the
original parameterization.

In addition, the correct relationships between all cor-
relation clusters have been detected. The resulting hierar-
chy among the clusters reported by CASH is displayed in
Fig.13(b). The root (level 0) of the hierarchy represents

[c1_0]

[c2_0]

[c1_3] [c1_1]

[all]

[c1_2]

[c2_1]

(a) Data set DS3. (b) Hierarchy detected by CASH.

Fig. 13 Hierarchies found on synthetic dataset DS3.
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a three-dimensional ‘dummy cluster’ containing the entire
database denoted by ‘all’. All other clusters are obviously
contained in this ‘cluster’. On level 1, we have the two two-
dimensional clusters ‘c2 0’ and ‘c2 1’. On level 2 we have
the four one-dimensional clusters. The edges indicate that
clusters ‘c1 0’ and ‘c1 3’ are contained in cluster ‘c2 0’,
cluster ‘c1 1’ is contained in cluster ‘c2 1’, and cluster
‘c1 2’ is not contained in any higher-dimensional cluster
(except the root).

5. CONCLUSIONS

Existing subspace-clustering methods only find clusters
that are dense and not noisy in the original feature space.
In this article, we overcome this severe limitation by intro-
ducing CASH, a novel approach for detecting any oriented
subspace cluster regardless of its density even in a very
noisy environment. CASH also features the illustration of
containment-relationships among the correlation clusters,
and the derivation of a quantitative model for a user-friendly
explanation of the detected clusters. Our experimental eval-
uation confirms that CASH significantly outperforms com-
peting approaches in terms of robustness and effectiveness.
Although CASH can only be regarded as a first step in
the direction of a global correlation clustering due to its
rather high time and space complexity, it overcomes the
fundamental limitation of existing approaches to correla-
tion clustering, the locality assumption. We therefore hope
to stimulate further research in the direction of global cor-
relation clustering.

APPENDIX

In the following, a detailed formalization of the computational steps
for identifying the extrema of a parameterization function fp are given.
First (A), the determination of the global extremum of a parameterization
function fp in the interval [0, π)d−1 is described. Then (B), based on
this derivation, it is specified how to identify the minimum of fp in a
given interval [α̌, α̂) ⊆ [0, π)d−1. The maximum of fp in a given interval
[α̌, α̂) ⊆ [0, π)d−1 can be determined analogously.

A. GLOBAL EXTREMUM

Each parameterization function fp is a sinusoid with a period of 2π .
Thus, any fp has exactly one global extremum in the interval [0, π)d−1.
To find the global extremum of fp , those angles α1, . . . , αd−1 need to
be determined where all the first-order derivatives of fp are zero, and
the Hessian matrix is either positive or negative definite. The first-order
partial derivatives of the parameterization function fp are given by:

∂fp

∂αn

(α) =
n−1∏
i=1

sin(αi)

·

−pn · sin(αn) +

d∑
j=n+1

pj · cos(αn)

·

 j−1∏

k=n+1

sin(αk)


 · cos(αj )




For any first-order partial derivative
∂fp
∂αn

(α̃)
.= 0, (1 ≤ n ≤ d − 1), one

of the following conditions holds:

sin(α̃1) = 0

.

.

.

sin(α̃n−1) = 0

tan(α̃n) =

d∑
j=n+1

pj ·
[

j−1∏
k=n+1

sin(α̃k)

]
· cos(α̃j )

pn

Since the first n − 1 conditions yield an indefinite Hessian matrix,
according to the last condition, a point α̃ = (α̃1, . . . , α̃d−1) can be an
extremum point of parameterization function fp only if

α̃n = arctan




d∑
j=n+1

pj ·
[

j−1∏
k=n+1

sin(α̃k)

]
· cos(α̃j )

pn




As noted above, fp is guaranteed to have exactly one global extremum
fp(α̃1, . . . , α̃d−1) in [0, π)d−1. The values for the angles α̃n, n =
1, . . . , d − 1 of the global extremum are provided by the equation given
above.

B. MINIMUM AND MAXIMUM VALUE

Let α̌ = (α̌1, . . . , α̌d−1) and α̂ = (α̂1, . . . , α̂d−1) for a given inter-
val [α̌, α̂) ⊆ [0, π)d−1, 1 ≤ i ≤ d − 1. To determine the point αmin =
(αmin

1 , . . . , αmin
d−1) where the parameterization function fp has a minimum

in interval [α̌, α̂) the following steps for each dimension n = d − 1, . . . , 1
have to be performed:

1. Let

αn = arctan




d∑
j=n+1

pj ·
[

j−1∏
k=n+1

sin(αmin
k )

]
· cos(αmin

j )

pn




be the value where fp has an extremum on the n-th axis under the
constraint of known minimum angles αmin

n+1, . . . , αmin
d−1.

2. Given α = (c1, . . . , cn−1, αn, α
min
n+1, . . . , αmin

d−1) ∈ [α̌, α̂)n−1 × [0, π) ×
[α̌, α̂)d−1−n, where ci are arbitrarily chosen values in [α̌, α̂), we
differentiate the following cases:
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Fig. 14 Different cases for finding the minimum of a parameter-
ization function in a given interval.

i. fp has a maximum in α:

A. α̌n ≤ αn ≤ α̂n:

A1. αn − α̌n ≤ α̂n − αn: αmin
n → α̂n.

A2. αn − α̌n > α̂n − αn: αmin
n = α̌n.

B. αn < α̌n: αmin
n → α̂n.

C. αn > α̂n: αmin
n = α̌n.

As illustrated in Fig. 14, if αn is inside the interval and
nearer to the left boundary (A1), the minimum value αmin

n

is located at the right boundary and vice versa (A2). If αn

is outside the interval (B and C), the minimum value αmin
n

is located at the opposite boundary.

ii. fp has a minimum in α: The same principle of reasoning
has to be applied contrarilywise.

A. α̌n ≤ αn ≤ α̂n: αmin
n = αn.

B. αn < α̌n: αmin
n = α̌n.

C. αn > α̂n: αmin
n → α̂n.

The maximum αmax = (αmax
1 , . . . , αmax

d−1) of fp in a given interval
[α̌, α̂) ⊆ [0, π)d−1 can be determined analogously.
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hierarchies of correlation clusters, In Proceedings of the
18th International Conference on Scientific and Statistical
Database Management (SSDBM), Vienna, 2006.
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