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ABSTRACT
In situations where class labels are known for a part of the
objects, a cluster analysis respecting this information, i.e.
semi-supervised clustering, can give insight into the class
and cluster structure of a data set. Several semi-supervised
clustering algorithms such as HMRF-K-Means [4], COP-K-
Means [26] and the CCL-algorithm [18] have recently been
proposed. Most of them extend well-known clustering meth-
ods (K-Means [22], Complete Link [17]) by enforcing two
types of constraints: must-links between objects of the same
class and cannot-links between objects of different classes.
In this paper, we propose HISSCLU, a hierarchical, density-
based method for semi-supervised clustering. Instead of de-
riving explicit constraints from the labeled objects, HISS-
CLU expands the clusters starting at all labeled objects
simultaneously. During the expansion, class labels are as-
signed to the unlabeled objects most consistently with the
cluster structure. Using this information the hierarchical
cluster structure is determined. The result is visualized in a
semi-supervised cluster diagram showing both cluster struc-
ture as well as class assignment. Compared to methods
based on must-links and cannot-links, our method allows
a better preservation of the actual cluster structure, partic-
ularly if the data set contains several distinct clusters of the
same class (i.e. the intra-class data distribution is multi-
modal). HISSCLU has a determinate result, is efficient and
robust against noise. The performance of our algorithm is
shown in an extensive experimental evaluation on synthetic
and real-world data sets.

1. INTRODUCTION
In many application domains, huge amounts of unlabeled

data are available, e.g. unfiltered emails or metabolite con-
centrations from blood samples of thousands of patients.
Labeling unlabeled data according to classes, e.g. regu-
lar - spam, healthy - disease A - disease B, is a complex
task often requiring domain knowledge by human experts.
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Therefore class labels are often only given for a part of the
objects. Consequently, semi-supervised learning, which con-
siders both, labeled and unlabeled data has attracted much
attention in the recent years [4, 13, 18, 26]. In this paper
we focus on semi-supervised clustering, i.e. the use of given
class labels (maybe only very few) to improve unsupervised
clustering. Most approaches, e.g. [18, 26] and also [4, 5] to
a certain extent, achieve this goal by enforcing two types of
constraints during the clustering process: Cannot-links are
applied to prevent objects with different labels from being
grouped together. Must-links between identically labeled
objects force them into a common cluster.

In this paper, we propose HISSCLU a hierarchical density-
based approach to semi-supervised clustering which avoids
the use of explicit constraints due to the following reasons:
To gain insight into the modality of the data set and to
be informed about previously unknown sub-classes, it is not
helpful to apply must-links forcing objects into the same
cluster which are actually dissimilar. As running example
consider the 2-d data set displayed in Figure 1 consisting
of four clusters of different object densities. In addition for
seven objects a class label is known. These labeled objects
from two different classes are marked by the symbols X and
�. Both classes are multimodal, i.e. they consist of different
sub-classes distributed over different clusters. In addition we
have one labeled object of class X which is an outlier. Must-
link constraints force this object into a common cluster with
the other labeled objects of its class. The information that
this object is completely different to all other objects in the
data set is lost.

Cannot-links remove any information about how similar
the objects of different classes actually are. In our exam-
ple one cluster is shared by three labeled objects of both
classes which are very similar. Taking more than two classes
into account, the important information that objects of some
classes A and B are more similar than objects of classes C
and D (indicating a hierarchical relationship of the classes
A and B) would be lost by the enforcement of cannot-links.
Instead of deriving constraints from the labeled objects, HISS-
CLU expands the clusters starting at all labeled objects si-
multaneously. As an additional value add over comparative
methods, HISSCLU assigns class labels to the unlabeled ob-
jects during the cluster expansion. The labeling is maxi-
mally consistent to both, the cluster structure of all objects
and the given class labels of the labeled objects. The re-
sult of HISSCLU is visualized in the semi-supervised clus-
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Figure 1: Running Example.

ter diagram giving a concise illustration of the hierarchical
class and cluster structure. The cluster diagram provides an-
swers to the following questions even for high-dimensional
and moderate to large scale data sets:

• Q1: Are there clusters shared by more than one class?

• Q2: Are there multi-modal classes distributed over
more than one cluster?

• Q3: Which are the most similar/dissimilar classes?

• Q4: Is there any class hierarchy and how well does it
correspond to the cluster hierarchy?

To determine the hierarchical class and cluster structure we
found our approach on a hierarchical density-based cluster-
ing notion ( [2, 14]). More specifically we give the following
problem specification for clustering.

Problem Specification. The objective of our method is
to determine a hierarchical clustering of the labeled and un-
labeled objects with maximally large class pure sub-clusters
of high density. We can identify the following two goals:

• G1: High density: Clusters are regions of high density
separated by regions of lower density.

• G2: Class-purity: As many clusters as possible are
uniformly labeled.

For a hierarchical clustering approach, G1 means that sub-
clusters have a higher density than the super-clusters in
which they are nested (cf. [2]). G2 means that maximally
large sub-clusters are uniformly labeled. In this paper, we
propose an efficient algorithm that exploits the concepts of
density-based clustering to address G1 and carefully applies
a local distance weighting technique to increase the class-
purity of clusters (G2).

Solution Overview. We can exploit the cluster hierarchy
for cluster expansion and labeling of the unlabeled objects:
Starting from each object O, we can go upwards in the clus-
ter hierarchy until we have reached an inner node n which
contains at least one labeled object in its subtree. In many
cases, the contained labeled objects are class-pure, and we
can safely assign O to this sub-cluster and assign the corre-
sponding class label to O. Whenever the subtree rooted by
n is class-impure, we additionally consider spatial coherency
for clustering and labeling thus assigning areas of neighbor-
ing objects to the same cluster. The border between two

areas of differently labeled objects should be positioned in
the area of least data density. Since in areas of a relatively
uniform data density the border is rather random, we pro-
pose the careful use of a local weighting function overriding
the random differences of inter-point distances but not over-
riding actual cluster-boundaries.

Notations. We are considering a database DB of objects
from an Euclidean vector space. In addition to d feature
attributes, for some of the objects a categorial class label
class(L) is given. We call them the pre-labeled objects
L ∈ L. During the run of the algorithm, also the previously
unlabeled objects U ∈ U obtain a class label. For distance
computation dist(P, Q) the Euclidean distance ||P −Q||2 of
the d feature attributes is used and we will also use the no-
tions of ε-neighborhood Nε(P ) = {Q ∈ DB | dist(P, Q) ≤ ε}
and the set of k-nearest neighbors of an object P , denoted
by NNk(P ). We use the notion nn-distk(P ) for the distance
of the k-nearest neighbor of an object P ∈ DB.

The paper is organized as follows: In Section 2 we briefly
survey related work and summarize our contributions. In
Section 3 we introduce our algorithm for cluster expansion
and elaborate on labeling of the unlabeled objects. In Sec-
tion 4 we propose a local weighting function to improve clus-
tering stability. Section 5 illustrates the visualization of the
result before we provide an extensive experimental evalua-
tion in Section 6. In Section 7 we summarize the benefits of
HISSCLU for data mining. Section 8 concludes the paper.

2. RELATED WORK
In this section we give a brief survey on related work on

semi-supervised clustering and label propagation. Since we
found our approach on the density-based clustering notion,
we also survey basic concepts of density-based clustering.

2.1 Semi-Supervised Clustering
Several constraint-based approaches in the field of semi-

supervised clustering have appeared. Most of them extend
existing clustering methods, such as Complete Link to incor-
porate constraints, e.g. [18] and [9] for numerical constraints.
In the CCL algorithm [18] complete-link clustering [17] is
applied after replacing the Euclidean distance by a shortest
path algorithm. The distance matrix is modified by setting
the distance of all pairs of labeled objects to zero and the dis-
tance between all pairs of labeled objects of different classes
to a value larger than the maximal distance appearing in the
data set. Due to this rigid and global transformation of the
data space, objects of the same class are forced to be in the
same cluster. COP-K-Means [26] is a K-Means [22] based
algorithm enforcing constraints. Must-link constraints are
established between all pairs of identically labeled objects
and cannot-links between all pairs of differently labeled ob-
jects. Objects are assigned to clusters without violating any
of the constraints.

Recently, constraints have been used in a softer way to
improve the clustering result, e.g. by using probabilistic
models [21] or fuzzy clustering [20]. In [5] the authors pro-
pose MPC-K-Means, a K-Means based algorithm that con-
siders both, constraints and the data distribution to assign
objects to clusters. A cost function for violating must-link
and cannot-link constraints is defined. The clustering ob-
jective function minimizes both, the link violation cost and
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the deviation of the objects from the cluster centers. In
addition a metric learning step is performed after each iter-
ation to globally adapt a weighted Euclidean distance. In [4]
the authors generalize this technique proposing a probabilis-
tic framework for semi-supervised clustering to additionally
support several non-Euclidean distance measures e.g. cosine
similarity for text data.

2.2 Label Propagation
The label propagation algorithm [27] is related to our ap-

proach since HISSCLU assigns class labels to the unlabeled
objects during the clustering process. Label propagation
first constructs an n × n similarity matrix T (n being the
number of all – labeled and unlabeled – objects) and a sec-
ond matrix Y (n×c, c being the number of classes) for fuzzy
class assignment with the information in Yi,j indicating to
what degree Object Pi belongs to Class cj . Then labels
are propagated by iteratively multiplying Y := T · Y un-
til matrix Y converges. This algorithm requires a storage
complexity of O(n2) and is, hence, not scalable to database
environments. Moreover, no clustering method and no visu-
alization technique is proposed, which is the main focus of
our approach.

2.3 Density Based Clustering
Density-based clustering algorithms, such as DBSCAN

[14], Single-Link [17] and OPTICS [2] find clusters of ar-
bitrary shape and number. Clusters are connected dense
regions in the feature space that are separated by regions
of lower density. In the algorithm DBSCAN [14] this idea
is formalized using two parameters, MinPts specifying a
minimum number of objects, and ε, the radius of a hyper-
sphere. These two parameters determine a density thresh-
old for clustering. An object is called a core object of an
(ε, MinPts)-cluster if there are at least MinPts objects in
the ε-neighborhood. If one object P is in the ε-neighborhood
of a core-object Q, then P is said to be directly density-
reachable from Q. The density-connectivity is the symmet-
ric, transitive closure of the direct density reachability, and a
density-based (ε, MinPts)-cluster is defined as a maximal set
of density-connected objects. DBSCAN determines a non-
hierarchical, disjoint partitioning of the data set. In con-
trast to many other partitioning clustering methods such as
K-Means and K-Medoid methods, DBSCAN is determinate
and robust against noise objects.

OPTICS [2] is a hierarchical extension of DBSCAN but
also related to Single-Link [17]. The main idea of OPTICS is
to compute a complex hierarchical cluster structure, i.e. all
possible clusterings with the parameter ε varying from 0 to
a given εmax simultaneously during a single traversal of the
data set. The output of OPTICS is a linear order of the data
objects according their hierarchical cluster structure which
is visualized in the reachability-plot. OPTICS is equivalent
to Single-Link if the MinPts-Parameter of OPTICS is set to
1. In this case, OPTICS has the same drawbacks like Single-
Link, i.e. missing stability with respect to noise objects and
the so-called Single-Link effect: Whenever two actual clus-
ters are connected by a small chain of equidistant objects,
the two clusters cannot be separated. OPTICS overcomes
this drawback if MinPts is set to higher values.

Compared to DBSCAN, OPTICS turns the definitions
of core-objects and density-connectivity around: Instead of
specifying a distance parameter and defining whether an ob-

ject is a core-object or two objects are density-connected,
OPTICS defines the core-distance of an object P as the min-
imal distance εP from which DBSCAN would consider P as
a core object. The reachability distance is analogously de-
fined as the minimal distance εP,Q between P and Q start-
ing from which DBSCAN would consider these objects as
directly density-connected. We summarize these two defini-
tions formally:

Definition 1. (Core Distance)
The core distance of object O ∈ DB w.r.t. MinPts ∈ N is
defined as

CoreMinPts(O) = nn-distMinPts(O).

The core distance of an object O measures the density
around O. It is defined as the MinPts-nearest neighbor
distance of O.

Definition 2. (Reachability Distance)
The reachability distance of an object P ∈ DB relative from
object O ∈ DB w.r.t. MinPts ∈ N is defined as

ReachMinPts(O, P ) = max{CoreMinPts,ε(O), dist(O,P).}
Let us note that the original definitions of OPTICS use an
additional parameter which is left out here for simplicity
reasons. This parameter specifies the maximum reachability
distance for cluster expansion and should be set to a high
value. The OPTICS algorithm operates on a seed list SL
which is initialized with an arbitrary, unprocessed object
whenever empty. The unprocessed objects are stored in the
seed list, ordered by a criterion which is described later. In
the main loop of the algorithm, the algorithm selects the top
(minimum) element T of SL and appends it to the output.
The ordering criterion for each object P in the seed list is
the minimum of all reachability distances from any of the
objects in the output to P :

P.order = min
Q∈ output

{ReachMinPts(P, Q).}

Consequently, the seed list is updated after each iteration
of the loop: Some new objects which are density-reachable
from T may be inserted, and P .order is updated for all those
objects for which ReachMinPts(T, P ) is less than the previ-
ously stored P .order.

2.4 Contributions
Our new method HISSCLU has the following main advan-

tages over previous methods:

• The result is determinate, robust against noise, and
the method does not favor clusters of convex shape.

• In contrast to constraint-based methods the original
cluster structure is preserved. Therefore, the result
gives valuable information about previously unknown
class and cluster hierarchies.

• Our method assigns class labels to the unlabeled ob-
jects in a way which is maximally consistent with the
cluster structure and observes spatial coherency of class
labeling.

• We propose a visualization method which allows a clear
and concise illustration of the semi-supervised cluster
structure even for moderate to high numbers of ob-
jects.
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3. CLUSTER EXPANSION
In this section we elaborate how our algorithm expands

the clusters starting at each of the pre-labeled objects si-
multaneously and how the class labels are naturally assigned
to the unlabeled objects during this process. Two objects
share a common density-based cluster if they are density-
connected, i.e. if there exists a path of core objects between
them and there is no higher distance between path-neighbors
than ε. For an unlabeled object P we consider the paths each
starting from one of the pre-labeled objects L ∈ L and end-
ing in P . The object P belongs to the cluster and adopts the
class label of that pre-labeled object L for which a path with
minimum ε exists. We define in the following the notions of a
path and the path reachability distance which corresponds to
the minimum ε in the DBSCAN algorithm. First of all, we
define a path to be an arbitrary sequence of objects starting
with a pre-labeled object and, apart from that, containing
only unlabeled objects, because we are only interested in
such sequences here.

Definition 3. (Path)
Let S = 〈P1, P2, ..., Pn〉 be a sequence of objects, where P1 is
a labeled object and P2, ..., Pn are distinct, unlabeled objects.
Then we call S a path from P1 to Pn.

We now have to define an ordering predicate denoted by
<

PRD
to compare two or more paths, deciding which of them

is shorter or better. The main criterion for the comparison is
the maximum distance between subsequent objects on the
path. If two paths share the same maximum distance we
consider the second largest distance on the path, and so on.
For simplicity reasons we assume for the following definitions
that the distance between every pair of objects is different,
i.e. dist(P, Q) = dist(R, Q) ⇒ P = R. In practice tie
situations can be solved in a nondeterministic way. Let also
ε ∈ R

+
0 , MinPts ∈ N.

Definition 4. (Restricted path reachability distance)
Let S = 〈P1, ..., Pn〉 be a path. Then I(ε) ⊆ {1, ..., n − 1} is
the index set such that i ∈ I(ε) :⇔ ReachMinPts(Pi, Pi+1) <
ε. The restricted path reachability distance of a path S w.r.t.
ε and MinPts, denoted by rPRDε,MinPts(S) is the maxi-
mum of those reachability distances of two adjacent objects
on S, less than ε. rPRDε,MinPts(S) ={

0 if I(ε) = ∅
maxi∈I(ε){ReachMinPts(Pi, Pi+1)} otherwise.

The above definition allows us to determine the actual maxi-
mum distance on the path by setting ε = ∞ or also to deter-
mine the maximum distance below some specified threshold
ε′. We now inductively define the ordering of paths.

Definition 5. (Ordering different paths)
Let S1 and S2 be two paths. We say that S1 is of less path
reachability distance (S1

<
rPRD(ε,MinPts)

S2) if one of the fol-

lowing conditions applies
1. rPRDε,MinPts(S1) < rPRDε,MinPts(S2)
2. rPRDε,MinPts(S1) = rPRDε,MinPts(S2) =:
ε′ ∧ S1

<
rPRD(ε′,MinPts)

S2.

The parameter ε is now omitted by setting
1. PRDMinPts(S) := rPRD∞,MinPts(S) and
2. S1

<
PRD(MinPts)

S2 :⇔ S1
<

rPRD(∞,MinPts)
S2.

We can now define the minimum path between two objects
as the minimum according to the <

PRD(MinPts)
relation.

L1

L2

P 4
3

2.5 3.5

1 2

Figure 2: Ordering Different Paths.

Definition 6. (Minimum path from L to P)
Let L be a pre-labeled object and P an unlabeled object. Let
Σ be the set of all paths from L to P . Then the minimum
path MinPathMinPts(L, P ) is the path S ∈ Σ for which the
following condition holds:

∀S′ ∈ (Σ \ {S}) : S
<

PRD(MinPts)
S′.

Finally, we define that P adopts the class label of that pre-
labeled object L ∈ L having the smallest (according to

<
PRD(MinPts)

) minimum path to P .

Definition 7. (Assignment of class labels to P)
Let P ∈ U. P is assigned to class C :⇔ ∃L ∈ L such that
1. C = class(L) and
2. ∀L′ ∈ L \ {L} :
MinPathMinPts(L, P ) <

PRD(MinPts)
MinPathMinPts(L

′, P ).

For simplicity we drop the index and write <
PRD

and MinPath
wherever non-ambiguous. An example of two minimum paths
is depicted in Figure 2, where we have an unlabeled object P ,
two pre-labeled objects L1 and L2. The maximum path seg-
ment (4) is shared by both paths. The second maximum (3
vs. 3.5) is applied, and, therefore, L1 is the winner: P adopts
the class label of L1. Before providing an efficient algorithm
for cluster expansion, we prove an interesting property, the
consistency of class labeling with the cluster structure:

Theorem 1. (Cluster consistency of object labeling)
Let K ⊆ L∪U be a cluster that can be detected by DBSCAN
with arbitrarily chosen parameters ε and MinPts. If K does
not contain any pre-labeled objects from two or more classes
then all objects of K obtain uniform labels.

Proof. (1) Let K ∩ L �= ∅.
(a) Since all objects in cluster K are density-connected we
know that the path reachability distance of the minimum
path between any unlabeled objects and any pre-labeled
objects is less or equal ε. (b) As K is the maximum set
of density-connected objects we know further that all path
reachability distances between unlabeled objects in the clus-
ter and pre-labeled objects outside the cluster are larger than
ε. From (a) and (b) it follows that the smallest minimum
path from any object P ∈ K ∩ U goes to one of the pre-
labeled objects L ∈ K ∩ L of the cluster. All objects adopt
the same label.
(2) Let K ∩ L = ∅.
Assume we have two different objects P, Q ∈ (U∩K) which
obtain different labels by Definition 7. Then P and Q must
have different MinPaths SP , SQ to different winner objects
LP and LQ. SP and SQ must particularly be different in the
larger subsequences S′

P and S′
Q outside the cluster. W.l.o.g.

let S′
P

<
PRD

S′
Q. Then we could replace SQ by some path

〈SP , P, ..., Q〉 for which we know 〈SP , P, ..., Q〉 <
PRD

SQ which
is a contradiction to the minimality of SQ.
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algorithm expansion(DB, L, MinPts, ε, )

List seedList;
forall L ∈ L

L.reachDist:= UNDEFINED;
neighbors :=Nε(L);
updateSeedList(neighbors, L);

end for
while not seedList.empty() do

currentObject = seedList.getMin();
seedList.deleteMin();
currentObject.setCoreDist(ε, MinPts);
neighbors :=Nε(currentObject);
seedList.update(neighbors, currentObject);

end while
end expansion

procedure updateSeedList(objects neighbors, object P );
core:= P .CoreDist;
forall N ∈ neighbors do

rd: = max(core, dist(P, N);
if not N ∈ seedList

N .reachDist := rd;
N .label := P .label;
seedList.add(N);

else
if rd < N .reachDist

N .reachDist: = rd;
N .label: = P .label;

end for
end updateSeedList

Figure 3: Cluster Expansion Algorithm.

Our algorithm (cf. Figure 3) expands clusters starting from
all pre-labeled objects simultaneously. In the first step, all
objects in the ε-neighborhood of the pre-labeled objects are
added to the seedList. This is implemented by the method
updateSeedList. The seedList is an ordered list of objects
according their minimum reachability distance w.r.t. any
object processed before. Objects which have not been in the
seedList before are inserted and get the class label of the ob-
ject from which they are density reachable. For objects that
are already in the seedList the algorithm determines if they
are density reachable with a smaller distance ε now. If this
is the case, their reachability distance and class label are
updated. In each iteration the algorithm removes and pro-
cesses that object from the seedList which has the smallest
reachability distance from all previously considered objects.
Our algorithm is efficient with a worst-case time complex-
ity in O(n2). Finally we prove that our algorithm assigns
exactly the same label to each data object as provided by
Definition 7. The completeness property of labeling follows
directly from Lemma 2.

Theorem 2. (Correctness of labeling)
An unlabeled object P which is a successor of a pre-labeled
object L in the cluster expansion algorithm has minimum
path reachability distance to L.

Proof. Assume there exists an object L′ with
MinPath(P, L′) <

PRD
MinPath(P, L). Then, by definition

of <
PRD

, we know that either (1) the maximum segment on
MinPath(P, L) is larger than that on MinPath(P, L′) or
(2) ∃i ∈ N that the first, second, ..., (i − 1) maximal seg-
ments are identical and the i-maximal segment is larger on
MinPath(P, L) than on MinPath(P, L′). In case (1) we
know that the maximum segment on MinPath(P, L′) has

= 1.0 = 0.1=10.0
1

0

2

0.5 1

3 3

2

1

0
0.5 1

0

1

2

3

0.5 1

Figure 4: Different Values for ξ.

been expanded before the maximum segment on MinPath(P, L).
As all other segments on MinPath(P, L′) have smaller reach-
ability distance than the maximum segment on MinPath(P, L),
P must be assigned to L′ which is a contradiction. In case
(2) we know that the identical maximum segments are ex-
panded by the algorithm after the distinguishing segment
(i-maximum). Analogously to (1) the object P must be as-
signed to L′ which is a contradiction to the assumption.

4. LOCAL LABEL-BASED
DISTANCE WEIGHTING

If there are differently pre-labeled objects inside a cluster
our cluster expansion algorithm assigns class labels in a way
which is geometrically contiguous. The border line between
the areas of different label assignments, however, is in this
case rather random and the small, accidental variance of the
distances decides about the border between regions of differ-
ent class labels. In this section, we propose a weighting func-
tion to clear situations where no natural boundaries of low
density between differently pre-labeled objects exist. Our
idea is to define a continuous (smooth) weighting function
which has a user-defined maximum (ρ) at the perpendicular
bisector plane between differently pre-labeled objects and
monotonically decreases with increasing distance from the
bisector. The weighting function is 1.0 at the pre-labeled
objects and in the areas between pre-labeled objects of the
same class. Let A and B ∈ L be two differently pre-labeled
objects that define a perpendicular bisector and one object
P which defines the position for which the weight wA,B(P )
should be determined. The distance of P to the bisector
plane can be computed by the projection P ′ of object P
onto the line between A and B. The distance dAB(A, P ) be-
tween P ′ and A is given by the absolute value of the scalar
product dAB(A, P ) = |〈A − P, A−B

||A−B|| 〉|, and the distance

between P ′ and B equals dAB(B, P ) = |〈B − P, A−B
||A−B|| 〉|.

By comparing dAB(A, P ) and dAB(B, P ) we can define an
auxiliary function h which equals 1 at the bisector plane
where dAB(A, P ) = dAB(B, P ) and which equals 0 at the
two planes parallel to the bisector passing through A and
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Figure 5: Weighting on Running Example.

B, respectively:

hA,B(P ) =
dAB(A, P ) · dAB(B, P )

1
4
(dAB(A, P ) + dAB(B, P ))2

We can easily substitute h to obtain our weight function
with the above mentioned value range [1..ρ]:

wA,B(P ) = (hA,B(P ))ξ · (ρ − 1) + 1

In this formula, ρ ≥ 1 is a parameter controlling the maxi-
mum of the weight function. The exponent ξ ∈ R

+ controls
how fast the weight decreases with increasing distance from
the perpendicular plane: ξ = 1 corresponds to a parabolic
decrease, whereas ξ > 1 facilitates a faster decrease (i.e.
the perpendicular plane becomes sharper) and 0 < ξ < 1
a slower decrease. Figure 4 shows an example in 2-d space
with different ξ settings (ξ ∈ {0.1, 1.0, 10.0}).

Given the object P at which the weighting function has to
be evaluated, we now determine the suitable pair (A, B) ∈
L × L of pre-labeled objects which has to be applied in the
formula above. Intuitively, we have to apply that pair (A, B)
where A and B have different labels and which defines that
perpendicular bisector plane to which P is closest (among
all such pairs). We have an additional side condition that
P is between A and B when projected onto line AB, and
not beyond A or beyond B. One of the objects (say A) is
the nearest neighbor of P in the set of pre-labeled objects L,
because no planes can be closer to P than those which border
the Voronoi cell in which P is positioned. This Voronoi cell
is defined by the nearest neighbor of P . To determine the
second object B we have to obey the side condition. B
must be searched such that the projected P is between A
and B.

See the illustration on the left

P

A=NN1(P)

Areas excluded for B

for two different loci which are
excluded for B: If B is taken
from the semi-space right from
the perpendicular plane passing
through A, then the projection
of P is beyond A. And if B
is taken from the inside of the

sphere between P and A (which actually corresponds to a
Thales’ circle) then the projection of P will be beyond B.
The latter situation (object B inside the small sphere) can-
not occur anyway, because A is the nearest neighbor of P
in L, and therefore, there cannot be any other object in-
side the larger dotted sphere (the nearest neighbor sphere)
which completely encloses the Thales’ circle. The first side

condition can be checked by the sign of the scalar prod-
uct 〈P − A, B − A〉 which is negative in the excluded semi-
space. To select B we have to remove A and all objects in
the excluded semi-space from L. We have to select that of
the remaining objects which maximizes the weight function
wA,B(P ):

B = argmax
L∈L\{A},〈P−A,L−A〉>0

{
dAL(A, P ) · dAL(L, P )

1
4
· (dAL(A, P ) + dAL(L, P ))2

}
.

Figure 5 visualizes the overall weight function w(P ) = wA,B(P )
on our 2-d running example first presented in Figure 1. The
weight function w(P ) is applied for weighting the distance
between two different objects Pi and Pj . To obtain a stable
and consistent result we have to use the maximum weight
when substituting every point x on the line segment [Pi, Pj ]
in w(x). Due to monotonicity we can derive the following:
1. If Pi and Pj have different nearest neighbors in L with
different class labels, then the line segment crosses one of the
perpendicular bisector planes, and therefore, the maximum
weight corresponds to ρ.
2. Otherwise, the maximum weight function must be at ei-
ther of the two end points Pi or Pj because inside the same
Voronoi cell, the weight function is monotonic.
We define the following weighting function for a pair of ob-
jects:

w(Pi, Pj) =

{
ρ if class (NN(Pi)) �= class (NN(Pj))

max {w(Pi), w(Pj)} otherwise.

5. VISUALIZATION
For visualization we merge the |L| different cluster order

lists into a common one. Some of them have to be par-
tially reordered because the start object changes from the
pre-labeled object into that object which is closest to the
previous cluster in the overall order. This does not affect
the overall runtime complexity of O(n2).

In the semi-supervised cluster diagram each object is rep-
resented by a histogram bin with a length corresponding to
the reachability distance of the object in the final (merged)
cluster order. Therefore, clusters of the data set can be
recognized as valleys in the reachability area of the cluster
diagram. Hierarchically nested clusters correspond to sub-
valleys in a common valley delimited by higher peaks than
those between the sub-valleys. The class labeling is coded in
different colors. Therefore, the consistence between cluster
and class structure can be easily recognized in the cluster
diagram. To mark the pre-labeled objects in the diagram,
we stretch the corresponding bins slightly below the x-axis
of the diagram. To facilitate the evaluation of our tech-

Reachability area

Evaluation area

Pre-labeled objects k- clusters

c1 c2 c3 c4 c5

Figure 6: Cluster Diagram of Running Example.
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(a) OPTICS Reachability-plot.
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(b) 20 pre-labeled objects (random).
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(c) 8 pre-labeled objects (one per
class).

Figure 7: Visualizing Semi-supervised Class- and Cluster-hierarchies: Results on Ecoli Data.

(a) OPTICS Reachability-plot.

a b c

(b) 100 pre-labeled objects (random).

b c da1 a2

(c) 500 pre-labeled objects (random).

Figure 8: Visualizing Semi-supervised Class- and Cluster-hierarchies: Results on Yeast Data.

nique we extract clusters using one certain density threshold
ε = k ·maxRd (where maxRd denotes the maximum reach-
ability distance) which we call k-clusters. The k-clusters are
depicted as horizontal lines underneath the diagram. We
also draw the histogram bars in the color coding the true
class label of the objects in the evaluation area below the
cluster diagram, if this information is available.

In Figure 6 the annotated cluster diagram of our running
example with 5 extracted clusters is depicted. The cluster
diagram shows interesting properties of the data set: Both
classes are multimodal, one class is distributed over the clus-
ters c1 and c5, the other class over c2, c3, c4. The clusters
c1 and c2 are the most similar clusters among all extracted
clusters, i.e. separated by the smallest reachability distance
and contain differently pre-labeled objects. For comparison
see also Figure 1 depicting the data set.

6. EXPERIMENTAL EVALUATION
For evaluation and for comparison with partitioning meth-

ods we extract clusters form the cluster diagram using a
certain density threshold. To automatically extract clus-
ters from the OPTICS reachability-plot, the algorithms ξ-
cluster [2] and cluster-tree [25] have been proposed. These
algorithms can also be applied to a cluster diagram but they
do not extract a flat cluster structure. Therefore, we just
horizontally cut the reachability-plot and the cluster dia-
gram. Let dmax be the maximum reachability distance. We
require that clusters are separated by a distance of at least
dsep = k · dmax, with k ∈ [0..1]. In addition, we require that
each cluster has at least MinPts objects.

Definition 8. (k-clustering)
Let DB be a set of objects and dmax be their maximum

reachability distance k, n, MinPts ∈ N and n ≥ MinPts.
A sequence S =< S1, ...Sn > in the reachability-plot or the
cluster diagram of DB is called a k-cluster if
1. Reach(S1) ≥ k · dmax.
2. Reach(S2), ...Reach(Sn) < k · dmax.
Let K = {k1, ..., kn} be the set of all k-clusters in DB. All
objects o ∈ DB with o �∈ ki are called noise objects. Let N
be the set of noise objects. We call K ∪ N a k-clustering.

For comparison with partitioning methods we compute the
Mutual Information of the k-clustering [11].

Definition 9. (Mutual Information of the k-clustering)
Let C = {c1, ...ci} be the set of classes, K = {k1, ...kj} be
the set of k-clusters and Ok be the set of cluster objects, i.
e Ok = {o ∈ DB|o ∈ ki}. Let (h(ci, kj)) be the number
of objects of class ci assigned to cluster kj, h(kj) the total
number of objects assigned to cluster kj and h(ci) the total
number of objects belonging to class ci.

MI = −
|C|∑
i=1

h(ci)

|Ok| ·log2

h(ci)

|Ok| +

|C|∑
i=1

|K|∑
j=1

h(ci, kj)

|Ok| ·log2

h(ci, kj)

h(kj)
.

The Mutual Information MI ∈ R
+ reflects to which degree a

k-clustering corresponds to the class label distribution. We
scale this quality measure in the range of [0..1].

In the following, we present results on synthetic data, various
data sets obtained from the UCI machine learning reposi-
tory [6] (Ecoli, Yeast, Glass, Liver) and on high dimensional
metabolic data. In Section 6.1 we demonstrate that the
cluster diagram provides valuable information on the hier-
archical class and cluster structure. We compare the cluster
diagram with the OPTICS reachability plot here, since no
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Figure 9: Results on Glass, Metabolic and Liver Data.
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Figure 10: OPTICS reachability-plot of Glass, Metabolic and Liver Data.

semi-supervised clustering method offers a visualization. In
Section 6.2 and 6.3 we compare the performance of HISS-
CLU with COP-K-Means and MPC-K-Means in terms of
clustering quality and in Section 6.4 we give hints on pa-
rameter selection.

6.1 Visualizing Class- and Cluster-Hierarchies

6.1.1 Ecoli Data
In Figure 7 the OPTICS reachability-plot and 2 cluster

diagrams generated by HISSCLU of the Ecoli data set are
depicted (MinPts = 5, ρ = 2, ξ = 0.5). We extracted clus-
ters for k = 0.2. This 7-dimensional data set on predicting
protein localization sites with 336 data objects and 8 classes
is highly unbalanced having from 2 to 142 objects per class.
The unsupervised reachability-plot in Figure 7(a) shows 2
k-clusters each containing objects of mainly two classes and
a large amount of noise. In Figure 7(b) the cluster diagram
using 20 randomly sampled objects as pre-labeled objects
is shown. We extracted 5 clusters corresponding to the 5
largest classes. It can be seen that some of the classes are
multimodal, e.g. the class of periplasm proteins forming
cluster (a). The classes of inner membrane proteins without
signal sequence (cluster (c1)) and inner membrane proteins
with an uncleavable signal sequence (cluster (c2)) are the
most similar classes in this data set. The maximum separat-
ing reachability distance between these classes is the small-
est one among all clusters. In fact these classes share the
common cluster (c) at a higher level of the cluster hierarchy.
This corresponds well to the biological ground truth since
the presence or absence of an uncleavable signal sequence is
somewhat arbitrary [23].

Figure 7(c) shows the cluster diagram using one object per
class as pre-labeled object (7 k-clusters for k = 0.15). Sup-

plied with this supervision, HISSCLU provides interesting
information on the rare classes. The class of outer membrane
lipoprotein consisting of 5 instances (cluster (d)) shows the
maximal difference to all other classes. The two instances of
inner membrane proteins with cleavable signal sequence are
quite similar to periplasm proteins, forming together cluster
(a). Already with this minimal amount of supervision HISS-
CLU archieves to determine the correct class hierarchy, cf.
clusters (c1), (c2) and (c).

6.1.2 Yeast Data
The Yeast data set is a 9 dimensional data set consist-

ing of 1448 instances belonging to 10 classes. Similar to
Ecoli, this data set on predicting protein localization sites
is highly unbalanced (5 to 423 objects per class) but much
more challenging for classification [23]. The OPTICS reach-
ability plot of this data set shows no cluster structure at
all (cf. Figure 8(a)). In the cluster diagram (MinPts = 5,
ρ = 5.0, ξ = 5.0) already for 100 pre-labeled objects several
distinct clusters (extracted for k = 0.2) can be observed (cf.
Figure 8(b)). Cluster (a) consists predominately of objects
from three classes: cytosolic, nuclear and mitochondiral pro-
teins. Cluster (b) represents membrane proteins without N-
terminal signal. Cluster (c) with two sub-clusters represents
the classes of membrane proteins with uncleaved and cleaved
signal. For 500 pre-labeled objects the cluster purity in-
creases, as expected (cf. Figure 8(c)). The two sub-clusters
of cluster (c) get more separated forming clusters (c) and
(d). For cluster (a) two sub-clusters can now be observed:
Cluster (a2) predominately consists of objects of class cy-
tosolic proteins, whereas cluster (a1) is mainly shared by
mitochandrial and nuclear proteins. This reflects a funda-
mental difficulty in identifying nuclear proteins which can
also be observed for most classification methods [24] and
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Figure 11: Cluster Assignment.

has a biological reason. The nuclear localization signal is
not limited to one portion of a proteins primary sequence.
In some cases a protein without a nuclear localization signal
may be transported to the nucleus. [16]. However cluster
(a1) contains several class-pure sub-clusters of nuclear pro-
teins extracted for k = 0.05.

6.1.3 Glass Data
The glass data comprises 9 numerical attributes represent-

ing different physical and chemical properties. 214 instances
are labeled to 7 classes representing various types of glass.
Two clusters have been extracted from the OPTICS reach-
ability plot for k = 0.2, cf. Figure 10(a). Only the class
”tableware” is well separated forming a distinct cluster (d),
the other cluster (a) consists of objects of all other classes.
In the cluster diagram (cf. Figure 9(a) the cluster hierarchy
becomes obvious. Instances of the classes ”building windows
float processed” and ”building windows non float processed”
and ”vehicle windows float processed”are very similar, form-
ing together one cluster of objects of type window glass (a).
This cluster contains four sub-clusters for k = 0.2: Clusters
(a1) and (a2) mainly represent objects of the class ”build-
ing window float processed” and (a4) ”building window non
float processed”, whereas (a3) contains objects of all three
classes. Objects of the class ”container” forming cluster (b)
are more similar to the objects of type window glass (cluster
(a)) than to the other two clusters representing the classes
”headlamps” (cluster (c)) and ”tableware” (cluster (d)).

6.1.4 Metabolic Data
Figure 9(b) shows the cluster diagram of a metabolic data

set for MinPts = 3, ρ = 4, ξ = 0.5. This 41-dimensional
data set (132 instances) was produced by modern screening
methodologies and represents cases of phenylalanine hydrox-
ylase deficiency (PAHD) consisting of two different expres-
sions of this metabolic disorder, the milder form called HPA,
PKU, the stronger expression, and a control group [3]. We
used 15 sample points as pre-labeled objects. For both di-
agrams, we extracted k-clusters for k = 0.2. Most of the
instances of class HPA are in cluster (b) which is more sim-
ilar to the class-pure cluster (c) representing the healthy
control group than to cluster (a) comprising predominantly
instances of class PKU. Both, PKU and even more HPA
form different sub-clusters corresponding to different sub-
stages of the disease with blurred borders. For class HPA
there are two distinct sub-clusters marked by (b1) and (b2).
In the OPTICS reachability plot (for comparison depicted

in Figure 10(b)) there is only one distinct cluster(c) repre-
senting the control group.

6.2 Spatial- and Class-Coherent Cluster
Assignment.

Due to simultaneous cluster expansion and careful local
distance weighting HISSCLU preserves the original cluster
structure much better than comparative methods. Figure
11 shows the cluster assignment for COP-K-Means [26] and
MPC-K-Means [4] for k = 2 (number of classes) and k = 5
(number of clusters extracted of the cluster diagram) on
our running example with constraints generated between
all pairs of pre-labeled objects. Not violating any of the
constraints, COP-K-Means obtains an unnatural clustering
result where even pre-labeled objects situated in the cen-
ter of dense clusters are assigned to a different clusters (cf.
Figure 11(a)). MPC-K-Means performs better (cf. Figure
11(b)) considering both, constraints and the data distribu-
tion when assigning objects to clusters. Due to this there
are pre-labeled objects of both classes assigned to one clus-
ter. For k = 5 COP-K-Means does not perform better (not
depicted) and MPC-K-Means (cf. Figure 11(c)) splits up
the cluster on top although there are must-linked objects
inside. This reflects the inherent tendency of K-means to
detect spatially compact clusters. HISSCLU achieves to as-
sign objects to clusters in the best coherent way with class
labels and local cluster structure (cf. Figure 11(d)).

6.3 Making Use of Supervision
In cases when no natural spatial cluster boundaries exist

the information provided by the pre-labeled objects should
be used to improve the clustering. To examine how effi-
cient and effective the algorithms make use of the supervi-
sion in this case we compared their performance w.r.t. Mu-
tual Information [11] on the liver data set (351 instances,
7 attributes, 2 classes). We selected a two-class data set
showing no cluster structure at all in the reachability plot
(cf. Figure 10(c)). We used MinPts = 5 and generated
cluster diagrams with ρ = 20 and ξ = 10. This strong dis-
tance weighting is applied in order to obtain k-clusterings
with two clusters without noise (always done for k = 0.9)
which are directly comparable to the partitionings into two
clusters generated by MPC-K-Means and COP-K-Means (cf.
Figure 9(c)). The task here is to achieve a clustering max-
imally respecting the class structure with as less supervi-
sion as possible. To provide to all algorithms the same
amount of supervision, we randomly sampled objects out
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(a) Reachability-plot. (b) ρ = 5. (c) ρ = 50.

Figure 13: Parameter Selection.

of the data set, which we directly used as pre-labeled ob-
jects for HISSCLU. For the other algorithms we generated
all possible constraints between all pairs of these objects.
MPC-K-Means has been parameterized as described in [4],
for COP-K-Means no advanced parameter settings are pos-
sible. The Mutual Information reflects to which extend a
clustering corresponds to the class labels. Figure 12 shows
the Mutual Information on the whole data set and on the
unlabeled data w.r.t. the number of pre-labeled objects.
MPC-K-Means does not succeed in making use of the con-
straints due to global distance weighting. More constraints
can even be misleading for global weighting in the situa-
tion of no natural spatial cluster borders. COP-K-Means
performs quite good since the algorithm enforces the con-
straints without caring about the data distribution. HISS-
CLU performs even better in spite of not using any explicit
constraints. This demonstrates the usability of our local
weighting technique.
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Figure 12: Comparison of Class Purity w.r.t Various
Amounts of Supervision on Liver Data.

6.4 Parameter selection
From hierarchical density based clustering we have inher-

ited the parameters ε and MinPts, which can be set as
suggested in [2]. In addition HISSCLU uses the parameter
ρ and ξ to establish borders between classes when there are
no clear natural cluster boundaries. In order to maximally
preserve the original cluster structure it is recommended to
start with ρ = 1.0..1.5, ξ = 0.5 and to increase it if better
separation of classes is desired.

Figure 13 illustrates the impact of the parameter ρ on clus-
ter separation. The reachability plot of 2-d synthetic data
set (600 points, two classes which 300 points each) shows
no distinct cluster structure (cf. Figure 13(a)). There are
no obvious spatial cluster boundaries. We generated cluster
diagrams using 200 randomly sampled pre-labeled objects

for a fixed ξ = 5.0 and varying ρ. Already for ρ = 5 the
cluster order corresponds well to the class labels. A separa-
tion into two large clusters, each containing mainly objects
of one class becomes evident. Besides this, small class-pure
sub-clusters of both classes can be observed. For ρ = 50 the
separation is further improved. A distinct cluster bound-
ary well separating the objects of both classes from each
other with a mutual information between class labels and
cluster-ids of 0.59 (on all data) is established. As illustrated
in Figure 4, the parameter ξ additionally allows to adjust
the sharpness of the cluster boundaries, which causes only
minor changes in the cluster order in this example.

7. BENEFITS OF HISSCLU FOR DATA
MINING

In this section, we demonstrate the main benefits of HISS-
CLU for data exploration and classification. In particular
we focus on three aspects which can be best illustrated all
together using a synthetic data set. Besides this, we demon-
strate single aspects on real world data. HISSCLU may be
applied as a preprocessing step for classification. To evalu-
ate the classification accuracy we used a linear support vec-
tor machine with standard settings as implemented in the
WEKA machine learning toolkit [1]. Let us consider a syn-
thetic data set with 1300 objects belonging to three classes,
among them 780 objects for which the class label is known.
The classification accuracy with linear SVM using the pre-
labeled objects as training data is 80.2%. Most errors occur
due to mixing up the classes 1 and 2 and also for class 3
precision and recall can be improved. The cluster diagram
of this data set using ρ and ξ = 5.0 is depicted in Figure
14(a). HISSCLU achieves to assign correct class labels to
95.4% of the test objects.

7.1 Spotting Outliers in the Training Set
For the performance of most classifiers it is beneficial to

identify and remove outliers from the training set [19]. HISS-
CLU provides a simple but effective automatic way to re-
move outliers. In our example the cluster diagram shows
three clusters c1, c2, c3 (extracted for k = 0.2) whereas c1
and c2 are class pure clusters consisting of objects of the
classes 3 and 1, respectively. The cluster c3 is composed of
objects of the classes 1 and 2. Some of the training objects
do not belong to any of these clusters. It is also evident
from the cluster diagram that most of these outliers belong
to class 3. Removing the outliers from the training set re-
sults in a refined training set with 750 objects. A linear
SVM trained with this training data set achieves a signifi-
cantly higher accuracy of 85.4% on the test data.

449



7.2 Identifying Multimodal and Similar Classes
For classification also the information on the multi-modality

of classes is very useful. In our example, class 1 is clearly
2-modal. Closely related to multi-modality is the similarity
of classes. Some of the objects of class 1 are very similar to
the objects of class 2, as they form together cluster c3. The
other part of the objects of class 1 which can be found in
cluster c2 are very dissimilar to the objects of class 2. To
use this information for classification, we internally split up
the training objects of class 1 into the classes 1.1, consisting
of training objects of class 1 in cluster c3 and 1.2, contain-
ing the objects of class 1 in cluster c2. We now have four
classes in total on which the classifier is trained. Test ob-
jects which have been assigned to the labels 1.1. or 1.2 by
the classifier are in a postprocessing step assigned to class
1. By doing so we can increase the classification accuracy to
90.4%. Roughly speaking, multi-modality of classes can be
interpreted as a too coarse scale in labeling.

The application of HISSCLU to identify similar classes on
real world data has been discussed in Section 6. For the data
sets on protein localization biological meaningful similarities
among classes have been detected. Similarity of classes can
be regarded as a too fine scale in labeling, as the classes are
not well separable in the data space. On the ecoli data set
for example, a classification accuracy of 84.2% is obtained
with linear SVM and 10-fold cross-validation, whereas most
of the classification errors occur due to mixing up two sub-
types of inner membrane proteins. In the cluster diagram
these are the most similar classes (cf. Section 6) which also
corresponds well to the classification results reported in liter-
ature [23,24]. Merging the two subtypes of inner membrane
proteins into one common class increases the classification
accuracy to 92.2%.

If a separation of similar classes is desired, additional in-
formation is required. Feature selection or feature transfor-
mation methods, e.g. suitable kernel functions can be used
to modify the data space in a way that improves the sepa-
rability. The cluster diagram can be used to determine for
which classes further steps are necessary.

7.3 Using Class Hierarchies for Classification
Many classifiers, e.g. SVM have been originally designed

for two-class-problems. In order to apply such binary classi-
fiers in a multi-class setting, the multi-class problem has to
be reduced to several binary ones. A common way to achieve
this is to build one classifier for each pair of classes as imple-
mented in WEKA. An alternative for adapting binary clas-
sifiers to multi-class-problems are Nested Dichotomies [15].
The classes are split into two subsets which are recursively
further split. In [12] Dong et al. proposed ensembles of
Nested Dichotomies for multi-class classification. For multi-
class problems, an ensemble of balanced classification trees
has shown superior performance in terms of classification ac-
curacy and efficiency. In presence of a clear class hierarchy,
it has been demonstrated in [28] that classification trees re-
specting this hierarchy perform better than arbitrarily con-
structed balanced trees. Building only hierarchies which re-
spect the fact classes 1.1 and 2 are the most similar ones in
our example data set, the classification accuracy with SVM
can be slightly further increased to 91.5%. The improve-
ment is rather small compared with ordinary SVM. This is
due to the fact, that the data set shows no clear hierarchy
besides the similarity of the classes 1.1 and 2. In presence

c1 c2 c3

outliers

(a) Synthetic Example.

control

HPA

PKU

(b) Metabolic Example.

Figure 14: Application of HISSCLU - Examples.

of a distinct class hierarchy the benefits can be much larger.
The authors propose in [28] to use domain knowledge to

specify appropriate class hierarchies, but this is difficult in
many applications. Consider a 14-dimensional metabolic
data set with three classes representing a healthy control
group (class 1), a group of patients with the metabolic dis-
order HPA (class 2) and a group of patients suffering from
the more severe disorder PKU (class 3). It is a nontrivial
question to rate how similar these classes actually are. The
HISSCLU cluster diagram depicted in Figure 14(b) clearly
shows that the instances of class HPA are more similar to
the healthy control group than to the instances of class
PKU. Giving this hierarchy as an input to the approach [28],
a classification accuracy of 97.0% is obtained with linear
SVM, compared to 93.5% when using an ordinary pair-wise
trained SVM. All other possible hierarchies lead to worse
results than the one extracted of the cluster diagram. There
are many other approaches aiming at using the informa-
tion of class hierarchies to improve the classification result,
e.g. [7, 8, 10]. The cluster hierarchy can be automatically
extracted of the cluster diagram by considering the reach-
ability distances between class pure clusters. However, dif-
ferent approaches may require class hierarchies of different
resolutions.

8. CONCLUSIONS
In this paper, we have proposed HISSCLU, a novel method

for semi-supervised clustering. Our method founded on a hi-
erarchical, density-based cluster notion with the advantage
of a determinate clustering result, high robustness with re-
spect to noise and no favor for clusters of a particular shape
(e.g. convex). HISSCLU consists of a method for cluster-
consistent assignment of class labels to previously unlabeled
objects and a method for the determination of the overall
cluster structure of the data set in a way which is consis-
tent to original and obtained class labels. In contrast to
most previous methods, HISSCLU avoids the use of con-
straints in order to preserve the original cluster structure.
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In a broad experimental evaluation we demonstrated that
HISSCLU has the following advantages over state of the art
semi-supervised clustering methods:

• Making use of multimodal class information in the
clustering process,

• Detecting and visualizing hierarchical class and cluster
structures,

• Spacial and class coherent data partitioning.

The HISSCLU cluster diagram offers the user more insight
into the class and cluster structure. It provides answers to
important questions, e. g. which classes are most similar?
They may have a common superclass. Or, are there any
multimodal classes? Classes may be distributed over sev-
eral clusters in the cluster diagram. Moreover, our method
is robust in terms of parameter settings. With a runtime
complexity of O(n2) and memory usage of O(n) HISSCLU is
scalable to be used on top of moderate to large size databases.
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