
Data Mining Using Graphics Processing Units

Christian Böhm1, Robert Noll1, Claudia Plant2,
Bianca Wackersreuther1, and Andrew Zherdin2

1 University of Munich, Germany
{boehm,noll,wackersreuther}@dbs.ifi.lmu.de

2 Technische Universität München, Germany
{plant,zherdin}@lrz.tum.de

Abstract. During the last few years, Graphics Processing Units (GPU)
have evolved from simple devices for the display signal preparation into
powerful coprocessors that do not only support typical computer graph-
ics tasks such as rendering of 3D scenarios but can also be used for
general numeric and symbolic computation tasks such as simulation and
optimization. As major advantage, GPUs provide extremely high paral-
lelism (with several hundred simple programmable processors) combined
with a high bandwidth in memory transfer at low cost. In this paper,
we propose several algorithms for computationally expensive data min-
ing tasks like similarity search and clustering which are designed for the
highly parallel environment of a GPU. We define a multidimensional in-
dex structure which is particularly suited to support similarity queries
under the restricted programming model of a GPU, and define a sim-
ilarity join method. Moreover, we define highly parallel algorithms for
density-based and partitioning clustering. In an extensive experimental
evaluation, we demonstrate the superiority of our algorithms running on
GPU over their conventional counterparts in CPU.

1 Introduction

In recent years, Graphics Processing Units (GPUs) have evolved from simple
devices for the display signal preparation into powerful coprocessors supporting
the CPU in various ways. Graphics applications such as realistic 3D games are
computationally demanding and require a large number of complex algebraic op-
erations for each update of the display image. Therefore, today’s graphics hard-
ware contains a large number of programmable processors which are optimized
to cope with this high workload of vector, matrix, and symbolic computations
in a highly parallel way. In terms of peak performance, the graphics hardware
has outperformed state-of-the-art multi-core CPUs by a large margin.

The amount of scientific data is approximately doubling every year [26]. To
keep pace with the exponential data explosion, there is a great effort in many
research communities such as life sciences [20,22], mechanical simulation [27],
cryptographic computing [2], or machine learning [7] to use the computational
capabilities of GPUs even for purposes which are not at all related to computer

A. Hameurlain et al. (Eds.): Trans. on Large-Scale Data- & Knowl.-Cent. Syst. I, LNCS 5740, pp. 63–90, 2009.

� Springer-Verlag Berlin Heidelberg 2009

64 C. Böhm et al.

graphics. The corresponding research area is called General Processing-Graphics
Processing Units (GP-GPU).

In this paper, we focus on exploiting the computational power of GPUs for
data mining. Data Mining consists of ’applying data analysis algorithms, that,
under acceptable efficiency limitations, produce a particular enumeration of pat-
terns over the data’ [9]. The exponential increase in data does not necessarily
come along with a correspondingly large gain in knowledge. The evolving re-
search area of data mining proposes techniques to support transforming the
raw data into useful knowledge. Data mining has a wide range of scientific and
commercial applications, for example in neuroscience, astronomy, biology, mar-
keting, and fraud detection. The basic data mining tasks include classification,
regression, clustering, outlier identification, as well as frequent itemset and as-
sociation rule mining. Classification and regression are called supervised data
mining tasks, because the aim is to learn a model for predicting a predefined
variable. The other techniques are called unsupervised, because the user does not
previously identify any of the variables to be learned. Instead, the algorithms
have to automatically identify any interesting regularities and patterns in the
data. Clustering probably is the most common unsupervised data mining task.
The goal of clustering is to find a natural grouping of a data set such that data
objects assigned to a common group called cluster are as similar as possible and
objects assigned to different clusters differ as much as possible. Consider for
example the set of objects visualized in Figure 1. A natural grouping would be
assigning the objects to two different clusters. Two outliers not fitting well to
any of the clusters should be left unassigned. Like most data mining algorithms,
the definition of clustering requires specifying some notion of similarity among
objects. In most cases, the similarity is expressed in a vector space, called the
feature space. In Figure 1, we indicate the similarity among objects by represent-
ing each object by a vector in two dimensional space. Characterizing numerical
properties (from a continuous space) are extracted from the objects, and taken
together to a vector x ∈ R

d where d is the dimensionality of the space, and
the number of properties which have been extracted, respectively. For instance,
Figure 2 shows a feature transformation where the object is a certain kind of
an orchid. The phenotype of orchids can be characterized using the lengths and
widths of the two petal and the three sepal leaves, of the form (curvature) of
the labellum, and of the colors of the different compartments. In this example, 5

Fig. 1. Example for Clustering

Data Mining Using Graphics Processing Units 65

Fig. 2. The Feature Transformation

features are measured, and each object is thus transformed into a 5-dimensional
vector space. To measure the similarity between two feature vectors, usually a
distance function like the Euclidean metric is used. To search in a large database
for objects which are similar to a given query objects (for instance to search for
a number k of nearest neighbors, or for those objects having a distance that
does not exceed a threshold ε), usually multidimensional index structures are
applied. By a hierarchical organization of the data set, the search is made effi-
cient. The well-known indexing methods (like e.g. the R-tree [13]) are designed
and optimized for secondary storage (hard disks) or for main memory. For the
use in the GPU specialized indexing methods are required because of the highly
parallel but restricted programming environment. In this paper, we propose such
an indexing method.

It has been shown that many data mining algorithms, including clustering
can be supported by a powerful database primitive: The similarity join [3]. This
operator yields as result all pairs of objects in the database having a distance
of less than some predefined threshold ε. To show that also the more complex
basic operations of similarity search and data mining can be supported by novel
parallel algorithms specially designed for the GPU, we propose two algorithms
for the similarity join, one being a nested block loop join, and one being an
indexed loop join, utilizing the aforementioned indexing structure.

Finally, to demonstrate that highly complex data mining tasks can be effi-
ciently implemented using novel parallel algorithms, we propose parallel versions
of two widespread clustering algorithms. We demonstrate how the density-based
clustering algorithm DBSCAN [8] can be effectively supported by the parallel
similarity join. In addition, we introduce a parallel version of K-means clustering
[21] which follows an algorithmic paradigm which is very different from density-
based clustering. We demonstrate the superiority of our approaches over the
corresponding sequential algorithms on CPU.

All algorithms for GPU have been implemented using NVIDIA’s technology
Compute Unified Device Architecture (CUDA) [1]. Vendors of graphics hardware
have recently anticipated the trend towards general purpose computing on GPU
and developed libraries, pre-compilers and application programming interfaces
to support GP-GPU applications. CUDA offers a programming interface for the

66 C. Böhm et al.

C programming language in which both the host program as well as the kernel
functions are assembled in a single program [1]. The host program is the main
program, executed on the CPU. In contrast, the so-called kernel functions are
executed in a massively parallel fashion on the (hundreds of) processors in the
GPU. An analogous technique is also offered by ATI using the brand names
Close-to-Metal, Stream SDK, and Brook-GP.

The remainder of this paper is organized as follows: Section 2 reviews the
related work in GPU processing in general with particular focus on database
management and data mining. Section 3 explains the graphics hardware and
the CUDA programming model. Section 4 develops an multidimensional index
structure for similarity queries on the GPU. Section 5 presents the non-indexed
and indexed join on graphics hardware. Section 6 and Section 7 are dedicated to
GPU-capable algorithms for density-based and partitioning clustering. Section 8
contains an extensive experimental evaluation of our techniques, and Section 9
summarizes the paper and provides directions for future research.

2 Related Work

In this section, we survey the related research in general purpose computations
using GPUs with particular focus on database management and data mining.

General Processing-Graphics Processing Units. Theoretically, GPUs are
capable of performing any computation that can be transformed to the model
of parallelism and that allow for the specific architecture of the GPU. This
model has been exploited for multiple research areas. Liu et al. [20] present a
new approach to high performance molecular dynamics simulations on graphics
processing units by the use of CUDA to design and implement a new parallel
algorithm. Their results indicate a significant performance improvement on an
NVIDIA GeForce 8800 GTX graphics card over sequential processing on CPU.
Another paper on computations from the field of life sciences has been published
by Manavski and Valle [22]. The authors propose an extremely fast solution
of the Smith-Waterman algorithm, a procedure for searching for similarities in
protein and DNA databases, running on GPU and implemented in the CUDA
programming environment. Significant speedups are achieved on a workstation
running two GeForce 8800 GTX.

Another widespread application area that uses the processing power of the
GPU is mechanical simulation. One example is the work by Tascora et al. [27],
that presents a novel method for solving large cone complementarity problems
by means of a fixed-point iteration algorithm, in the context of simulating the
frictional contact dynamics of large systems of rigid bodies. As the afore reviewed
approaches in the field of life sciences, the algorithm is also implemented in
CUDA for a GeForce 8800 GTX to simulate the dynamics of complex systems.

To demonstrate the nearly boundless possibilities of performing computations
on the GPU, we introduce one more example, namely cryptographic comput-
ing [2]. In this paper, the authors present a record-breaking performance for

Data Mining Using Graphics Processing Units 67

the elliptic curve method (ECM) of integer factorization. The speedup takes
advantage of two NVIDIA GTX 295 graphics cards, using a new ECM imple-
mentation relying on new parallel addition formulas and functions that are made
available by CUDA.

Database Management Using GPUs. Some papers propose techniques to
speed up relational database operations on GPU. In [14] some algorithms for the
relational join on an NVIDIA G80 GPU using CUDA are presented.

Two recent papers [19,4] address the topic of similarity join in feature space
which determines all pairs of objects from two different sets R and S fulfilling a
certain join predicate.The most common join predicate is the ε-join which deter-
mines all pairs of objects having a distance of less than a predefined threshold
ε. The authors of [19] propose an algorithm based on the concept of space filling
curves, e.g. the z-order, for pruning of the search space, running on an NVIDIA
GeForce 8800 GTX using the CUDA toolkit. The z-order of a set of objects
can be determined very efficiently on GPU by highly parallelized sorting. Their
algorithm operates on a set of z-lists of different granularity for efficient prun-
ing. However, since all dimensions are treated equally, performance degrades in
higher dimensions. In addition, due to uniform space partitioning in all areas
of the data space, space filling curves are not suitable for clustered data. An
approach that overcomes that kind of problem is presented in [4]. Here the au-
thors parallelize the baseline technique underlying any join operation with an
arbitrary join predicate, namely the nested loop join (NLJ), a powerful database
primitive that can be used to support many applications including data mining.
All experiments are performed on NVIDIA 8500GT graphics processors by the
use of a CUDA-supported implementation.

Govindaraju et al. [10,11] demonstrate that important building blocks for
query processing in databases, e.g. sorting, conjunctive selections, aggregations,
and semi-linear queries can be significantly speed up by the use of GPUs.

Data Mining Using GPUs. Recent approaches concerning data mining using
the GPU are two papers on clustering on GPU, that pass on the use of CUDA.
In [6] a clustering approach on a NVIDIA GeForce 6800 GT graphics card is
presented, that extends the basic idea of K-means by calculating the distances
from a single input centroid to all objects at one time that can be done simul-
taneously on GPU. Thus the authors are able to exploit the high computational
power and pipeline of GPUs, especially for core operations, like distance com-
putations and comparisons. An additional efficient method that is designed to
execute clustering on data streams confirms a wide practical field of clustering
on GPU.

The paper [25] parallelizes the K-means algorithm for use of a GPU by using
multi-pass rendering and multi shader program constants. The implementation
on NVIDIA 5900 and NVIDIA 8500 graphics processors achieves significant in-
creasing performances for both various data sizes and cluster sizes. However
the algorithms of both papers are not portable to different GPU models, like
CUDA-approaches are.

68 C. Böhm et al.

3 Architecture of the GPU

Graphics Processing Units (GPUs) of the newest generation are powerful copro-
cessors, not only designed for games and other graphics-intensive applications,
but also for general-purpose computing (in this case, we call them GP-GPUs).
From the hardware perspective, a GPU consists of a number of multiprocessors,
each of which consists of a set of simple processors which operate in a SIMD
fashion, i.e. all processors of one multiprocessor execute in a synchronized way
the same arithmetic or logic operation at the same time, potentially operating
on different data. For instance, the GPU of the newest generation GT200 (e.g.
on the graphics card Geforce GTX280) has 30 multiprocessors, each consisting
of 8 SIMD-processors, summarizing to a total amount of 240 processors inside
one GPU. The computational power sums up to a peak performance of 933
GFLOP/s.

3.1 The Memory Model

Apart from some memory units with special purpose in the context of graphics
processing (e.g. texture memory), we have three important types of memory, as
visualized in Figure 3. The shared memory (SM) is a memory unit with fast
access (at the speed of register access, i.e. no delay). SM is shared among all
processors of a multiprocessor. It can be used for local variables but also to
exchange information between threads on different processors of the same mul-
tiprocessor. It cannot be used for information which is shared among threads
on different multiprocessors. SM is fast but very limited in capacity (16 KBytes
per multiprocessor). The second kind of memory is the so-called device mem-
ory (DM), which is the actual video RAM of the graphics card (also used for
frame buffers etc.). DM is physically located on the graphics card (but not in-
side the GPU), is significantly larger than SM (typically up to some hundreds
of MBytes), but also significantly slower. In particular, memory accesses to DM
cause a typical latency delay of 400-600 clock cycles (on G200-GPU, correspond-
ing to 300-500ns). The bandwidth for transferring data between DM and GPU
(141.7 GB/s on G200) is higher than that of CPU and main memory (about 10
GB/s on current CPUs). DM can be used to share information between threads

Fig. 3. Architecture of a GPU

Data Mining Using Graphics Processing Units 69

on different multiprocessors. If some threads schedule memory accesses from con-
tiguous addresses, these accesses can be coalesced, i.e. taken together to improve
the access speed. A typical cooperation pattern for DM and SM is to copy the
required information from DM to SM simultaneously from different threads (if
possible, considering coalesced accesses), then to let each thread compute the
result on SM, and finally, to copy the result back to DM. The third kind of
memory considered here is the main memory which is not part of the graphics
card. The GPU has no access to the address space of the CPU. The CPU can
only write to or read from DM using specialized API functions. In this case, the
data packets have to be transferred via the Front Side Bus and the PCI-Express
Bus. The bandwidth of these bus systems is strictly limited, and therefore, these
special transfer operations are considerably more expensive than direct accesses
of the GPU to DM or direct accesses of the CPU to main memory.

3.2 The Programming Model

The basis of the programming model of GPUs are threads. Threads are
lightweight processes which are easy to create and to synchronize. In contrast to
CPU processes, the generation and termination of GPU threads as well as con-
text switches between different threads do not cause any considerable overhead
either. In typical applications, thousands or even millions of threads are created,
for instance one thread per pixel in gaming applications. It is recommended
to create a number of threads which is even much higher than the number of
available SIMD-processors because context switches are also used to hide the
latency delay of memory accesses: Particularly an access to the DM may cause
a latency delay of 400-600 clock cycles, and during that time, a multiprocessor
may continue its work with other threads. The CUDA programming library [1]
contains API functions to create a large number of threads on the GPU, each of
which executes a function called kernel function. The kernel functions (which are
executed in parallel on the GPU) as well as the host program (which is executed
sequentially on the CPU) are defined in an extended syntax of the C program-
ming language. The kernel functions are restricted with respect to functionality
(e.g. no recursion).

On GPUs the threads do not even have an individual instruction pointer. An
instruction pointer is rather shared by several threads. For this purpose, threads
are grouped into so-called warps (typically 32 threads per warp). One warp is
processed simultaneously on the 8 processors of a single multiprocessor (SIMD)
using 4-fold pipelining (totalling in 32 threads executed fully synchronously). If
not all threads in a warp follow the same execution path, the different execution
paths are executed in a serialized way. The number (8) of SIMD-processors per
multiprocessor as well as the concept of 4-fold pipelining is constant on all current
CUDA-capable GPUs.

Multiple warps are grouped into thread groups (TG). It is recommended [1]
to use multiples of 64 threads per TG. The different warps in a TG (as well
as different warps of different TGs) are executed independently. The threads in
one thread group use the same shared memory and may thus communicate and

70 C. Böhm et al.

share data via the SM. The threads in one thread group can be synchronized
(let all threads wait until all warps of the same group have reached that point
of execution). The latency delay of the DM can be hidden by scheduling other
warps of the same or a different thread group whenever one warp waits for an
access to DM. To allow switching between warps of different thread groups on
a multiprocessor, it is recommended that each thread uses only a small fraction
of the shared memory and registers of the multiprocessor [1].

3.3 Atomic Operations

In order to synchronize parallel processes and to ensure the correctness of paral-
lel algorithms, CUDA offers atomic operations such as increment, decrement, or
exchange (to name just those out of the large number of atomic operations, which
will be needed by our algorithms). Most of the atomic operations work on integer
data types in Device Memory. However, the newest version of CUDA (Compute
Capability 1.3 of the GPU GT200) allows even atomic operations in SM. If, for
instance, some parallel processes share a list as a common resource with concur-
rent reading and writing from/to the list, it may be necessary to (atomically)
increment a counter for the number of list entries (which is in most cases also
used as the pointer to the first free list element). Atomicity implies in this case
the following two requirements: If two or more threads increment the list counter,
then (1) the value counter after all concurrent increments must be equivalent to
the value before plus the number of concurrent increment operations. And, (2),
each of the concurrent threads must obtain a separate result of the increment
operation which indicates the index of the empty list element to which the thread
can write its information. Therefore, most atomic operations return a result after
their execution. For instance the operation atomicInc has two parameters, the
address of the counter to be incremented, and an optional threshold value which
must not be exceeded by the operation. The operation works as follows: The
counter value at the address is read, and incremented (provided that the thresh-
old is not exceeded). Finally, the old value of the counter (before incrementing) is
returned to the kernel method which invoked atomicInc. If two or more threads
(of the same or different thread groups) call some atomic operations simulta-
neously, the result of these operations is that of an arbitrary sequentialization
of the concurrent operations. The operation atomicDec works in an analogous
way. The operation atomicCAS performs a Compare-and-Swap operation. It has
three parameters, an address, a compare value and a swap value. If the value
at the address equals the compare value, the value at the address is replaced by
the swap value. In every case, the old value at the address (before swapping) is
returned to the invoking kernel method.

4 An Index Structure for Similarity Queries on GPU

Many data mining algorithms for problems like classification, regression, clus-
tering, and outlier detection use similarity queries as a building block. In many

Data Mining Using Graphics Processing Units 71

cases, these similarity queries even represent the largest part of the computa-
tional effort of the data mining tasks, and, therefore, efficiency is of high im-
portance here. Similarity queries are defined as follows: Given is a database
D = {x1, ...xn} ⊆ R

d of a number n of vectors from a d-dimensional space, and
a query object q ∈ R

d. We distinguish between two different kinds of similarity
queries, the range queries and the nearest neighbor-queries:

Definition 1 (Range Query)
Let ε ∈ R

+
0 be a threshold value. The result of the range query is the set of the

following objects:
Nε(q) = {x ∈ D : ||x − q|| ≤ ε}.

where ||x − q|| is an arbitrary distance function between two feature vectors x
and q, e.g. the Euclidean distance.

Definition 2 (Nearest Neighbor Query)
The result of a nearest neighbor query is the set:

NN(q) = {x ∈ D : ∀x′ ∈ D : ||x − q|| ≤ ||x′ − q||}.

Definition 2 can also be generalized for the case of the k-nearest neighbor query
(NNk(q)), where a number k of nearest neighbors of the query object q is re-
trieved.

The performance of similarity queries can be greatly improved if a multi-
dimensional index structure supporting the similarity search is available. Our
index structure needs to be traversed in parallel for many search objects using
the kernel function. Since kernel functions do not allow any recursion, and as
they need to have small storage overhead by local variables etc., the index struc-
ture must be kept very simple as well. To achieve a good compromise between
simplicity and selectivity of the index, we propose a data partitioning method
with a constant number of directory levels. The first level partitions the data set
D according to the first dimension of the data space, the second level accord-
ing to the second dimension, and so on. Therefore, before starting the actual
data mining method, some transformation technique should be applied which
guarantees a high selectivity in the first dimensions (e.g. Principal Component
Analysis, Fast Fourier Transform, Discrete Wavelet Transform, etc.). Figure 4
shows a simple, 2-dimensional example of a 2-level directory (plus the root node
which is considered as level-0), similar to [16,18]. The fanout of each node is 8.
In our experiments in Section 8, we used a 3-level directory with fanout 16.

Before starting the actual data mining task, our simple index structure must
be constructed in a bottom-up way by fractionated sorting of the data: First,
the data set is sorted according to the first dimension, and partitioned into the
specified number of quantile partitions. Then, each of the partitions is sorted
individually according to the second dimension, and so on. The boundaries are
stored using simple arrays which can be easily accessed in the subsequent kernel
functions. In principle, this index construction can already be done on the GPU,
because efficient sorting methods for GPU have been proposed [10]. Since bottom

72 C. Böhm et al.

Fig. 4. Index Structure for GPU

up index construction is typically not very costly compared to the data mining
algorithm, our method performs this preprocessing step on CPU.

When transferring the data set from the main memory into the device mem-
ory in the initialization step of the data mining method, our new method has
additionally to transfer the directory (i.e. the arrays in which the coordinates
of the page boundaries are stored). Compared to the complete data set, the
directory is always small.

The most important change in the kernel functions in our data mining meth-
ods regards the determination of the ε-neighborhood of some given seed object
q, which is done by exploiting SIMD-parallelism inside a multiprocessor. In the
non-indexed version, this is done by a set of threads (inside a thread group) each
of which iterates over a different part of the (complete) data set. In the indexed
version, one of the threads iterates in a set of nested loops (one loop for each level
of the directory) over those nodes of the index structure which represent regions
of the data space which are intersected by the neighborhood-sphere of Nε(q). In
the innermost loop, we have one set of points (corresponding to a data page of
the index structure) which is processed by exploiting the SIMD-parallelism, like
in the non-indexed version.

5 The Similarity Join

The similarity join is a basic operation of a database system designed for sim-
ilarity search and data mining on feature vectors. In such applications, we are
given a database D of objects which are associated with a vector from a mul-
tidimensional space, the feature space. The similarity join determines pairs of
objects which are similar to each other. The most widespread form is the ε-join
which determines those pairs from D×D which have a Euclidean distance of no
more than a user-defined radius ε:

Definition 3 (Similarity Join). Let D ⊆ R
d be a set of feature vectors of a

d-dimensional vector space and ε ∈ R
+
0 be a threshold. Then the similarity join

is the following set of pairs:

SimJoin(D, ε) = {(x, x′) ∈ (D ×D) : ||x − x′|| ≤ ε} ,

Data Mining Using Graphics Processing Units 73

If x and x′ are elements of the same set, the join is a similarity self-join. Most
algorithms including the method proposed in this paper can also be generalized
to the more general case of non-self-joins in a straightforward way. Algorithms
for a similarity join with nearest neighbor predicates have also been proposed.
The similarity join is a powerful building block for similarity search and data
mining. It has been shown that important data mining methods such as cluster-
ing and classification can be based on the similarity join. Using a similarity join
instead of single similarity queries can accelerate data mining algorithms by a
high factor [3].

5.1 Similarity Join without Index Support

The baseline technique to process any join operation with an arbitrary join
predicate is the nested loop join (NLJ) which performs two nested loops, each
enumerating all points of the data set. For each pair of points, the distance is
calculated and compared to ε. The pseudocode of the sequential version of NLJ
is given in Figure 5.

algorithm sequentialNLJ(data set D)
for each q ∈ D do // outer loop

for each x ∈ D do // inner loop: search all points x which are similar to q
if dist(x, q) ≤ ε then

report (x, q) as a result pair or do some further processing on (x, q)
end

Fig. 5. Sequential Algorithm for the Nested Loop Join

It is easily possible to parallelize the NLJ, e.g. by creating an individual thread
for each iteration of the outer loop. The kernel function then contains the inner
loop, the distance calculation and the comparison. During the complete run of
the kernel function, the current point of the outer loop is constant, and we call
this point the query point q of the thread, because the thread operates like a
similarity query, in which all database points with a distance of no more than
ε from q are searched. The query point q is always held in a register of the
processor.

Our GPU allows a truly parallel execution of a number m of incarnations
of the outer loop, where m is the total number of ALUs of all multiprocessors
(i.e. the warp size 32 times the number of multiprocessors). Moreover, all the
different warps are processed in a quasi-parallel fashion, which allows to operate
on one warp of threads (which is ready-to-run) while another warp is blocked
due to the latency delay of a DM access of one of its threads.

The threads are grouped into thread groups, which share the SM. In our
case, the SM is particularly used to physically store for each thread group the
current point x of the inner loop. Therefore, a kernel function first copies the
current point x from the DM into the SM, and then determines the distance
of x to the query point q. The threads of the same warp are running perfectly

74 C. Böhm et al.

simultaneously, i.e. if these threads are copying the same point from DM to SM,
this needs to be done only once (but all threads of the warp have to wait until
this relatively costly copy operation is performed). However, a thread group may
(and should) consist of multiple warps. To ensure that the copy operation is only
performed once per thread group, it is necessary to synchronize the threads of
the thread group before and after the copy operation using the API function
synchronize(). This API function blocks all threads in the same TG until all
other threads (of other warps) have reached the same point of execution. The
pseudocode for this algorithm is presented in Figure 6.

algorithm GPUsimpleNLJ(data set D) // host program executed on CPU
deviceMem float D′[][] := D[][]; // allocate memory in DM for the data set D
#threads := n; // number of points in D
#threadsPerGroup := 64;
startThreads (simpleNLJKernel, #threads, #threadsPerGroup); // one thread per point
waitForThreadsToFinish();

end.

kernel simpleNLJKernel (int threadID)
register float q[] := D′[threadID][]; // copy the point from DM into the register

// and use it as query point q
// index is determined by the threadID

for i := 0 ... n − 1 do // this used to be the inner loop in Figure 5
synchronizeThreadGroup();
shared float x[] := D′[i][]; // copy the current point x from DM to SM
synchronizeThreadGroup(); // Now all threads of the thread group can work with x
if dist(x, q) ≤ ε then

report (x, q) as a result pair using synchronized writing
or do some further processing on (x, q) directly in kernel

end.

Fig. 6. Parallel Algorithm for the Nested Loop Join on the GPU

If the data set does not fit into DM, a simple partitioning strategy can be
applied. It must be ensured that the potential join partners of an object are
within the same partition as the object itself. Therefore, overlapping partitions
of size 2 · ε can be created.

5.2 An Indexed Parallel Similarity Join Algorithm on GPU

The performance of the NLJ can be greatly improved if an index structure is
available as proposed in Section 4. On sequential processing architectures, the
indexed NLJ leaves the outer loop unchanged. The inner loop is replaced by an
index-based search retrieving candidates that may be join partners of the current
object of the outer loop. The effort of finding these candidates and refining them
is often orders of magnitude smaller compared to the non-indexed NLJ.

When parallelizing the indexed NLJ for the GPU, we follow the same paradigm
as in the last section, to create an individual thread for each point of the outer
loop. It is beneficial to the performance, if points having a small distance to each
other are collected in the same warp and thread group, because for those points,
similar paths in the index structure are relevant.

Data Mining Using Graphics Processing Units 75

After index construction, we have not only a directory in which the points
are organized in a way that facilitates search. Moreover, the points are now
clustered in the array, i.e. points which have neighboring addresses are also
likely to be close together in the data space (at least when projecting on the
first few dimensions). Both effects are exploited by our join algorithm displayed
in Figure 7.

algorithm GPUindexedJoin(data set D)
deviceMem index idx := makeIndexAndSortData(D); // changes ordering of data points
int #threads := |D|, #threadsPerGroup := 64;
for i = 1 ... (#threads/#threadsPerGroup) do

deviceMem float blockbounds[i][] := calcBlockBounds(D, blockindex);
deviceMem float D′[][] := D[][];
startThreads (indexedJoinKernel, #threads, #threadsPerGroup); // one thread per data point
waitForThreadsToFinish ();

end.

algorithm indexedJoinKernel (int threadID, int blockID)
register float q[] := D′[threadID][]; // copy the point from DM into the register
shared float myblockbounds[] := blockbounds[blockID][];
for xi := 0 ... indexsize.x do

if IndexPageIntersectsBoundsDim1(idx,myblockbounds,xi) then
for yi := 0 ... indexsize.y do

if IndexPageIntersectsBoundsDim2(idx,myblockbounds,xi, yi) then
for zi := 0 ... indexsize.z do

if IndexPageIntersectsBoundsDim3(idx,myblockbounds,xi, yi, zi) then
for w := 0 ... IndexPageSize do

synchronizeThreadGroup();
shared float p[] :=GetPointFromIndexPage(idx,D′ , xi, yi, zi, w);
synchronizeThreadGroup();
if dist(p, q) ≤ ε then

report (p, q) as a result pair using synchronized writing
end.

Fig. 7. Algorithm for Similarity Join on GPU with Index Support

Instead of performing an outer loop like in a sequential indexed NLJ, our
algorithm now generates a large number of threads: One thread for each iteration
of the outer loop (i.e. for each query point q). Since the points in the array
are clustered, the corresponding query points are close to each other, and the
join partners of all query points in a thread group are likely to reside in the
same branches of the index as well. Our kernel method now iterates over three
loops, each loop for one index level, and determines for each partition if the
point is inside the partition or, at least no more distant to its boundary than ε.
The corresponding subnode is accessed if the corresponding partition is able to
contain join partners of the current point of the thread. When considering the
warps which operate in a fully synchronized way, a node is accessed, whenever
at least one of the query points of the warps is close enough to (or inside) the
corresponding partition.

For both methods, indexed and non-indexed nested loop join on GPU, we
need to address the question how the resulting pairs are processed. Often, for
example to support density-based clustering (cf. Section 6), it is sufficient to
return a counter with the number of join partners. If the application requires to

76 C. Böhm et al.

report the pairs themselves, this is easily possible by a buffer in DM which can
be copied to the CPU after the termination of all kernel threads. The result pairs
must be written into this buffer in a synchronized way to avoid that two threads
write simultaneously to the same buffer area. The CUDA API provides atomic
operations (such as atomic increment of a buffer pointer) to guarantee this kind
of synchronized writing. Buffer overflows are also handled by our similarity join
methods. If the buffer is full, all threads terminate and the work is resumed after
the buffer is emptied by the CPU.

6 Similarity Join to Support Density-Based Clustering

As mentioned in Section 5, the similarity join is an important building block to
support a wide range of data mining tasks, including classification [24], outlier
detection [5] association rule mining [17] and clustering [8], [12]. In this section,
we illustrate how to effectively support the density-based clustering algorithm
DBSCAN [8] with the similarity join on GPU.

6.1 Basic Definitions and Sequential DBSCAN

The idea of density-based clustering is that clusters are areas of high point
density, separated by areas of significantly lower point density. The point density
can be formalized using two parameters, called ε ∈ R

+ and MinPts ∈ N
+. The

central notion is the core object. A data object x is called a core object of a
cluster, if at least MinPts objects (including x itself) are in its ε-neighborhood
Nε(x), which corresponds to a sphere of radius ε. Formally:

Definition 4. (Core Object)
Let D be a set of n objects from R

d, ε ∈ R
+ and MinPts ∈ N

+. An object x ∈ D
is a core object, if and only if

|Nε(x)| ≥ MinPts, where Nε(x) = {x′ ∈ D : ||x′ − x|| ≤ ε}.

Note that this definition is equivalent to Definition 1. Two objects may be as-
signed to a common cluster. In density-based clustering this is formalized by the
notions direct density reachability, and density connectedness.

Definition 5. (Direct Density Reachability)
Let x, x′ ∈ D. x′ is called directly density reachable from x (in symbols: x � x′)
if and only if

1. x is a core object in D, and
2. x′ ∈ Nε(x).

If x and x′ are both core objects, then x� x′ is equivalent with x� x′. The den-
sity connectedness is the transitive and symmetric closure of the direct density
reachability:

Data Mining Using Graphics Processing Units 77

Definition 6. (Density Connectedness)
Two objects x and x′ are called density connected (in symbols: x �� x′) if and
only if there is a sequence of core objects (x1, ..., xm) of arbitrary length m such
that

x � x1 � ... � xm � x′.

In density-based clustering, a cluster is defined as a maximal set of density
connected objects:

Definition 7. (Density-based Cluster)
A subset C ⊆ D is called a cluster if and only if the following two conditions
hold:

1. Density connectedness: ∀x, x′ ∈ C : x �� x′.
2. Maximality: ∀x ∈ C, ∀x′ ∈ D \ C : ¬x �� x′.

The algorithm DBSCAN [8] implements the cluster notion of Definition 7 using
a data structure called seed list S containing a set of seed objects for cluster
expansion. More precisely, the algorithm proceeds as follows:

1. Mark all objects as unprocessed.
2. Consider an arbitrary unprocessed object x ∈ D.
3. If x is a core object, assign a new cluster ID C, and do step (4) for all

elements x′ ∈ Nε(x) which do not yet have a cluster ID:
4. (a) mark the element x′ with the cluster ID C and

(b) insert the object x′ into the seed list S.
5. While S is not empty repeat step 6 for all elements s ∈ S:
6. If s is a core object, do step (7) for all elements x′ ∈ Nε(s) which do not yet

have any cluster ID:
7. (a) mark the element x′ with the cluster ID C and

(b) insert the object x′ into the seed list S.
8. If there are still unprocessed objects in the database, continue with step (2).

To illustrate the algorithmic paradigm, Figure 8 displays a snapshot of DBSCAN
during cluster expansion. The light grey cluster on the left side has been pro-
cessed already. The algorithm currently expands the dark grey cluster on the
right side. The seedlist S currently contains one object, the object x. x is a
core object since there are more than MinPts = 3 objects in its ε-neighborhood
(|Nε(x)| = 6, including x itself). Two of these objects, x′ and x′′ have not been
processed so far and are therefore inserted into S. This way, the cluster is itera-
tively expanded until the seed list is empty. After that, the algorithm continues
with an arbitrary unprocessed object until all objects have been processed.

Since every object of the database is considered only once in Step 2 or 6
(exclusively), we have a complexity which is n times the complexity of Nε(x)
(which is linear in n if there is no index structure, and sublinear or even O(log(n))
in the presence of a multidimensional index structure. The result of DBSCAN
is determinate.

78 C. Böhm et al.

Fig. 8. Sequential Density-based Clustering

algorithm GPUdbscanNLJ(data set D) // host program executed on CPU
deviceMem float D′[][] := D[][]; // allocate memory in DM for the data set D
deviceMem int counter [n]; // allocate memory in DM for counter
#threads := n; // number of points in D
#threadsPerGroup := 64;
startThreads (GPUdbscanKernel, #threads, #threadsPerGroup); // one thread per point
waitForThreadsToFinish();
copy counter from DM to main memory ;

end.

kernel GPUdbscanKernel (int threadID)
register float q[] := D′[threadID][]; // copy the point from DM into the register

// and use it as query point q
// index is determined by the threadID

for i := 0 ... threadID do // option 1 OR
for i := 0 ... n − 1 do // option 2

synchronizeThreadGroup();
shared float x[] := D′[i][]; // copy the current point x from DM to SM
synchronizeThreadGroup(); // Now all threads of the thread group can work with x
if dist(x, q) ≤ ε then

atomicInc (counter[i]); atomicInc (counter[threadID]); // option 1 OR
inc counter[threadID]; // option 2

end.

Fig. 9. Parallel Algorithm for the Nested Loop Join to Support DBSCAN on GPU

6.2 GPU-Supported DBSCAN

To effectively support DBSCAN on GPU we first identify the two major stages
of the algorithm requiring most of the processing time:

1. Determination of the core object property.
2. Cluster expansion by computing the transitive closure of the direct density

reachability relation.

The first stage can be effectively supported by the similarity join. To check the
core object property, we need to count the number of objects which are within
the ε-neighborhood of each point. Basically, this can be implemented by a self
join. However, the algorithm for self-join described in Section 5 needs to be
modified to be suitable to support this task. The classical self-join only counts
the total number of pairs of data objects with distance less or equal than ε.
For the core object property, we need a self-join with a counter associated to

Data Mining Using Graphics Processing Units 79

each object. Each time when the algorithm detects a new pair fulfilling the join
condition, the counter of both objects needs to be incremented.

We propose two different variants to implement the self-join to support DB-
SCAN on GPU which are displayed in pseudocode in Figure 9. Modifications
over the basic algorithm for nested loop join (cf. Figure 6) are displayed in
darker color. As in the simple algorithm for nested loop join, for each point q
of the outer loop a separate thread with a unique threadID is created. Both
variants of the self-join for DBSCAN operate on a array counter which stores
the number of neighbors for each object. We have two options how to increment
the counters of the objects when a pair of objects (x, q) fulfills the join condi-
tion. Option 1 is first to add the counter of x and then the counter of q using
the atomic operation atomicInc() (cf. Section 3). The operation atomicInc()
involves synchronization of all threads. The atomic operations are required to
assure the correctness of the result, since it is possible that different threads try
to increment the counters of objects simultaneously.

In clustering, we typically have many core objects which causes a large num-
ber of synchronized operations which limit parallelism. Therefore, we also imple-
mented option 2 which guarantees correctness without synchronized operations.
Whenever a pair of objects (x, q) fulfills the join condition, we only increment
the counter of point q. Point q is that point of the outer loop for which the thread
has been generated, which means q is exclusively associated with the threadID.
Therefore, the cell counter[threadID] can be safely incremented with the ordi-
nary, non-synchronized operation inc(). Since no other point is associated with
the same threadID as q no collision can occur. However, note that in contrast
to option 1, for each point of the outer loop, the inner loop needs to consider
all other points. Otherwise results are missed. Recall that for the conventional
sequential nested loop join (cf. Figure 5) it is sufficient to consider in the inner
loop only those points which have not been processed so far. Already processed
points can be excluded because if they are join partners of the current point, this
has already been detected. The same holds for option 1. Because of parallelism,
we can not state which objects have been already processed. However, it is still
sufficient when each object searches in the inner loop for join partners among
those objects which would appear later in the sequential processing order. This
is because all other object are addressed by different threads. Option 2 requires
checking all objects since only one counter is incremented. With sequential pro-
cessing, option 2 would thus duplicate the workload. However, as our results
in Section 8 demonstrate, option 2 can pay-off under certain conditions since
parallelism is not limited by synchronization.

After determination of the core object property, clusters can be expanded
starting from the core objects. Also this second stage of DBSCAN can be effec-
tively supported on the GPU. For cluster expansion, it is required to compute
the transitive closure of the direct density reachability relation. Recall that this is
closely connected to the core object property as all objects within the ε range of
a core object x are directly density reachable from x. To compute the transitive
closure, standard algorithms are available. The most well-known among them is

80 C. Böhm et al.

the algorithm of Floyd-Warshall. A highly parallel variant of the Floyd-Warshall
algorithm on GPU has been recently proposed [15], but this is beyond the scope
of this paper.

7 K-Means Clustering on GPU

7.1 The Algorithm K-Means

A well-established partitioning clustering method is the K-means clustering al-
gorithm [21]. K-means requires a metric distance function in vector space. In
addition, the user has to specify the number of desired clusters k as an input
parameter. Usually K-means starts with an arbitrary partitioning of the objects
into k clusters. After this initialization, the algorithm iteratively performs the
following two steps until convergence: (1) Update centers: For each cluster, com-
pute the mean vector of its assigned objects. (2). Re-assign objects: Assign each
object to its closest center. The algorithm converges as soon as no object changes
its cluster assignment during two subsequent iterations.

Figure 10 illustrates an example run of K-means for k = 3 clusters. Fig-
ure 10(a) shows the situation after random initialization. In the next step, every
data point is associated with the closest cluster center (cf. Figure 10(b)). The
resulting partitions represent the Voronoi cells generated by the centers. In the
following step of the algorithm, the center of each of the k clusters is updated, as
shown in Figure 10(c). Finally, assignment and update steps are repeated until
convergence.

In most cases, fast convergence can be observed. The optimization function of
K-means is well defined. The algorithm minimizes the sum of squared distances
of the objects to their cluster centers. However, K-means is only guaranteed
to converge towards a local minimum of the objective function. The quality of
the result strongly depends on the initialization. Finding that clustering with
k clusters minimizing the objective function actually is a NP-hard problem, for
details see e.g. [23]. In practice, it is therefore recommended to run the algorithm
several times with different random initializations and keep the best result. For
large data sets, however, often only a very limited number of trials is feasible.
Parallelizing K-means in GPU allows for a more comprehensive exploration of

(a) Initialization (b) Assignment (c) Recalculation (d) Termination

Fig. 10. Sequential Partitioning Clustering by the K-means Algorithm

Data Mining Using Graphics Processing Units 81

the search space of all potential clusterings and thus provides the potential to
obtain a good and reliable clustering even for very large data sets.

7.2 CUDA-K-Means

In K-means, most computing power is spent in step (2) of the algorithm, i.e.
re-assignment which involves distance computation and comparison. The num-
ber of distance computations and comparisons in K-means is O(k · i · n), where
i denotes the number of iterations and n is the number of data points.

The CUDA-K-meansKernel. In K-means clustering, the cluster assignment
of each data point is determined by comparing the distances between that point
and each cluster center. This work is performed in parallel by the CUDA-K-
meansKernel. The idea is, instead of (sequentially) performing cluster assignment
of one single data point, we start many different cluster assignments at the
same time for different data points. In detail, one single thread per data point
is generated, all executing the CUDA-K-meansKernel. Every thread which is
generated from the CUDA-K-meansKernel (cf. Figure 11) starts with the ID of
a data point x which is going to be processed. Its main tasks are, to determine
the distance to the next center and the ID of the corresponding cluster.

algorithm CUDA-K-means(data set D, int k) // host program executed on CPU
deviceMem float D′[][] := D[][]; // allocate memory in DM for the data set D
#threads := |D|; // number of points in D
#threadsPerGroup := 64;
deviceMem float Centroids[][] := initCentroids(); // allocate memory in DM for the

// initial centroids
double actCosts := ∞; // initial costs of the clustering

repeat
prevCost := actCost;
startThreads (CUDA-K-meansKernel, #threads, #threadsPerGroup); // one thread per point
waitForThreadsToFinish();
float minDist := minDistances[threadID]; // copy the distance to the nearest

// centroid from DM into MM
float cluster := clusters[threadID]; // copy the assigned cluster from DM into MM
double actCosts := calculateCosts(); // update costs of the clustering
deviceMem float Centroids[][] := calculateCentroids(); // copy updated centroids to DM

until |actCost − prevCost| < threshold // convergence
end.

kernel CUDA-K-meansKernel (int threadID)
register float x[] := D′[threadID][]; // copy the point from DM into the register
float minDist := ∞; // distance of x to the next centroid
int cluster := null; // ID of the next centroid (cluster)
for i := 1 ... k do // process each cluster

register float c[] := Centroids[i][] // copy the actual centroid from DM into the register
double dist := distance(x,c);
if dist < minDist then

minDist := dist;
cluster := i;

report(minDist, cluster); // report assigned cluster and distance using synchronized writing
end.

Fig. 11. Parallel Algorithm for K-means on the GPU

82 C. Böhm et al.

A thread starts by reading the coordinates of the data point x into the regis-
ter. The distance of x to its closest center is initialized by ∞ and the assigned
cluster is therefore set to null. Then a loop encounters all c1, c2, . . . , ck centers
and considers them as potential clusters for x. This is done by all threads in the
thread group allowing a maximum degree of intra-group parallelism. Finally, the
cluster whose center has the minimum distance to the data point x is reported
together with the corresponding distance value using synchronized writing.

The Main Program for CPU. Apart from initialization and data transfer
from main memory (MM) to DM, the main program consists of a loop starting
the CUDA-K-meansKernel on the GPU until the clustering converges. After the
parallel operations are completed by all threads of the group, the following steps
are executed in each cycle of the loop:

1. Copy distance of processed point x to the nearest center from DM into MM.
2. Copy cluster, x is assigned to, from DM into MM.
3. Update centers.
4. Copy updated centers to DM.

A pseudocode of these procedures is illustrated in Figure 11.

8 Experimental Evaluation

To evaluate the performance of data mining on the GPU, we performed various
experiments on synthetic data sets. The implementation for all variants is written
in C and all experiments are performed on a workstation with Intel Core 2 Duo
CPU E4500 2.2 GHz and 2 GB RAM which is supplied with a Gainward NVIDIA
GeForce GTX280 GPU (240 SIMD-processors) with 1GB GDDR3 SDRAM.

8.1 Evaluation of Similarity Join on the GPU

The performance of similarity join on the GPU, is validated by the comparison
of four different variants for executing similarity join:

1. Nested loop join (NLJ) on the CPU
2. NLJ on the CPU with index support (as described in Section 4)
3. NLJ on the GPU
4. NLJ on the GPU with index support (as described in Section 4)

For each version we determine the speedup factor by the ratio of CPU runtime
and GPU runtime. For this purpose we generated three 8-dimensional synthetic
data sets of various sizes (up to 10 million (m) points) with different data distri-
butions, as summarized in Table 1. Data set DS1 contains uniformly distributed
data. DS2 consists of five Gaussian clusters which are randomly distributed in
feature space (see Figure 12(a)). Similar to DS2, DS3 is also composed of five
Gaussian clusters, but the clusters are correlated. An illustration of data set

Data Mining Using Graphics Processing Units 83

(a) Random
Clusters

(b) Linear
Clusters

Fig. 12. Illustration of the
data sets DS2 and DS3

Table 1. Data Sets for the Evaluation of the
Similarity Join on the GPU

Name Size Distribution

DS1 3m - 10m points uniform distribution

DS2 250k - 1m points normal distribution,
gaussian clusters

DS3 250k - 1m points normal distribution,
gaussian clusters

DS3 is given in Figure 12(b). The threshold ε was selected to obtain a join re-
sult where each point was combined with one or two join partners on average.

Evaluation of the Size of the Data Sets. Figure 13 displays the runtime in
seconds and the corresponding speedup factors of NLJ on the CPU with/without
index support and NLJ on the GPU with/without index support in logarithmic
scale for all three data sets DS1, DS2 and DS3. The time needed for data transfer
from CPU to the GPU and back as well as the (negligible) index construction
time has been included. The tests on data set DS1 were performed with a join
selectivity of ε = 0.125, and ε = 0.588 on DS2 and DS3 respectively.

NLJ on the GPU with index support performs best in all experiments, in-
dependent of the data distribution or size of the data set. Note that, due to
massive parallelization, NLJ on the GPU without index support outperforms
CPU without index by a large factor (e.g. 120 on 1m points of normal dis-
tributed data with gaussian clusters). The GPU algorithm with index support
outperforms the corresponding CPU algorithm (with index) by a factor of 25 on
data set DS2. Remark that for example the overall improvement of the indexed
GPU algorithm on data set DS2 over the non-indexed CPU version is more
than 6,000. This results demonstrate the potential of boosting performance of
database operations with designing specialized index structures and algorithms
for the GPU.

Evaluation of the Join Selectivity. In these experiments we test the impact
of the parameter ε on the performance of NLJ on GPU with index support
and use the indexed implementation of NLJ on the CPU as benchmark. All
experiments are performed on data set DS2 with a fixed size of 500k data points.
The parameter ε is evaluated in a range from 0.125 to 0.333.

Figure 14(a) shows that the runtime of NLJ on GPU with index support
increases for larger ε values. However, the GPU version outperforms the CPU
implementation by a large factor (cf. Figure 14(b)), that is proportional to the
value of ε. In this evaluation the speedup ranges from 20 for a join selectivity of
0.125 to almost 60 for ε = 0.333.

84 C. Böhm et al.

10000000.0

100000.0
1000000.0

10000.0
100000.0

(s
ec
)

CPU
CPU indexed

100.0
1000.0

m
e
(CPU indexed

GPU

10.0
100.0

Ti
m

GPU indexed

1.0

2 4 6 8 10 122 4 6 8 10 12
Size (m)

(a) Runtime on Data Set DS1

130 0
150.0

or

110.0
130.0

Fa
ct
o

70.0
90.0

up
F

Without index
50.0
70.0

pe
ed

Without index
With index

10.0
30.0Sp

10.0

2 4 6 8 10 12

Size (m)

(b) Speedup on Data Set DS1

100000.0

10000.0

1000.0

se
c) CPU

CPU i d d100.0

m
e
(s CPU indexed

GPU

1 0

10.0Ti
m

GPU indexed

0 1

1.0

100 400 700 10000.1 100 400 700 1000

Size (k)

(c) Runtime on Data Set DS2

70.0
90.0
110.0
130.0
150.0

du
p
Fa
ct
or

Without index

10.0
30.0
50.0
70.0

100 400 700 1000

Sp
ee
d

Size (k)

Without index
With index

(d) Speedup on Data Set DS2

1000.0

10000.0

100000.0

se
c) CPU

CPU indexed

0.1

1.0

10.0

100.0

100 400 700 1000

Ti
m
e
(

Size (k)

CPU indexed
GPU
GPU indexed

(e) Runtime on Data Set DS3

70.0
90.0
110.0
130.0
150.0

du
p
Fa
ct
or

Without index

10.0
30.0
50.0
70.0

100 400 700 1000

Sp
ee
d

Size (k)

Without index
With index

(f) Speedup on Data Set DS3

Fig. 13. Evaluation of the NLJ on CPU and GPU with and without Index Support
w.r.t. the Size of Different Data Sets

Evaluation of the Dimensionality. These experiments provide an evaluation
with respect to the dimensionality of the data. As in the experiments for the
evaluation of the join selectivity, we use again the indexed implementations both
on CPU and GPU and perform all tests on data set DS2 with a fixed number
of 500k data objects. The dimensionality is evaluated in a range from 8 to 32.
We also performed these experiments with two different settings for the join
selectivity, namely ε = 0.588 and ε = 1.429.

Figure 15 illustrates that NLJ on GPU outperforms the benchmark method
on CPU by factors of about 20 for ε = 0.588 to approximately 70 for ε = 1.429.
This order of magnitude is relatively independent of the data dimensionality.
As in our implementation the dimensionality is already known at compile time,
optimization techniques of the compiler have an impact on the performance of

Data Mining Using Graphics Processing Units 85

1000.0

100.0ec
)

100.0

m
e
(s
e

CPU10.0

Ti
m CPU

GPU

1.0

0.10 0.15 0.20 0.25 0.30 0.35

epsilon

(a) Runtime on Data Set DS2

30.0
40.0
50.0
60.0
70.0

du
p
Fa
ct
or

0.0
10.0
20.0
30.0

0.10 0.15 0.20 0.25 0.30 0.35

Sp
ee
d

epsilon

(b) Speedup on Data Set DS2

Fig. 14. Impact of the Join Selectivity on the NLJ on GPU with Index Support

the CPU version as can be seen especially in Figure 15(c). However the dimen-
sionality also affects the implementation on GPU, because higher dimensional
data come along with a higher demand of shared memory. This overhead affects
the number of threads that can be executed in parallel on the GPU.

8.2 Evaluation of GPU-Supported DBSCAN

As described in Section 6.2, we suggest two different variants to implement the
self-join to support DBSCAN on GPU, whose characteristic are briefly reviewed
in the following:

1000.0

100 0ec
)

100.0

e
(s
e

CPU10.0

Ti
m CPU

GPU

1.0

2 6 10 14 18 22 26 30

Dimensionality

(a) Runtime on Data Set D2 (ε = 0.588)

40 0

60.0

80.0

100.0

du
p
Fa
ct
or

0.0

20.0

40.0

2 6 10 14 18 22 26 30

Sp
ee
d

Dimensionality

(b) Speedup on Data Set D2 (ε = 0.588)

10.0

100.0

e
(s
ec
)

CPU

1.0

2 6 10 14 18 22 26 30

Ti
m

Dimensionality

CPU
GPU

(c) Speedup on Data Set D2 (ε = 1.429)

40 0

60.0

80.0

100.0

du
p
Fa
ct
or

0.0

20.0

40.0

2 6 10 14 18 22 26 30

Sp
ee
d

Dimensionality

(d) Speedup on Data Set D2 (ε = 1.429)

Fig. 15. Impact of the Dimensionality on the NLJ on GPU with Index Support

86 C. Böhm et al.

1000.0

100.0ec
)

m
e
(s
e

Synchronization

10.0

Ti
m

no

1.0
Synchronization

0.10 0.35 0.60 0.85 1.10

epsilon

Fig. 16. Evaluation of two versions for the self-join on GPU w.r.t. the join selectivity

1. Increment of the counters regarding a pair of objects (x, q) that fulfills the
join condition is done by the use of an atomic operation that involves syn-
chronization of all threads.

2. Increment of the counters can be performed without synchronization but
with duplicated workload instead.

We evaluate both options on a synthetic data set with 500k points generated
as specified as DS1 in Table 1. Figure 16 displays the runtime of both options.
For ε ≤ 0.6, the runtime is in the same order of magnitude, the synchronized
variant 1 being slightly more efficient. From this point on, the non-synchronized
variant 2 is clearly outperforming variant 1 since parallelism is not limited by
synchronization.

8.3 Evaluation of CUDA-K-Means

To analyze the efficiency of K-means clustering on the GPU, we present exper-
iments with respect to different data set sizes, number of clusters and dimen-
sionality of the data. As benchmark we apply a single-threaded implementation
of K-means on the CPU to determine the speedup of the implementation of
K-means on the GPU. As the number of iterations may vary in each run of the
experiments, all results are normalized by a number of 50 iterations both on the
GPU and the CPU implementation of K-means. All experiments are performed
on synthetic data sets as described in detail in each of the following settings.

Evaluation of the Size of the Data Set. For these experiments we created
8-dimensional synthetic data sets of different size, ranging from 32k to 2m data
points. The data sets consist of different numbers of random clusters, generated
as as specified as DS1 in Table 1.

Figure 17 displays the runtime in seconds in logarithmic scale and the corre-
sponding speedup factors of CUDA-K-means and the benchmark method on the
CPU for different number of clusters. The time needed for data transfer from
CPU to GPU and back has been included. The corresponding speedup factors
are given in Figure 17(d). Once again, these experiments support the evidence
that the performance of data mining approaches on GPU outperform classic

Data Mining Using Graphics Processing Units 87

10 0

100.0

1000.0
(s
ec
)

CPU

0.1

1.0

10.0

0 1000 2000

Ti
m
e

Size (k)

CPU
GPU

(a) Runtime for 32 clusters

10 0

100.0

1000.0

(s
ec
)

CPU

0.1

1.0

10.0

0 1000 2000

Ti
m
e

Size (k)

CPU
GPU

(b) Runtime for 64 clusters

100 0

1000.0

10000.0

100000.0

(s
ec
)

CPU

0.1

1.0

10.0

100.0

0 1000 2000

Ti
m
e

Size (k)

CPU
GPU

(c) Runtime for 256 clusters

1000 0

1200.0

or

800.0

1000.0

Fa
ct
o

600.0up
F

k = 256

200 0

400.0

pe
ed k = 64

k 32

0.0

200.0Sp k = 32

0.0

0 1000 2000

Size (k)

(d) Speedup for 32, 64 and 256 clusters

Fig. 17. Evaluation of CUDA-K-means w.r.t. the Size of the Data Set

CPU versions by significant factors. Whereas a speedup of approximately 10 to
100 can be achieved for relatively small number of clusters, we obtain a speedup
of about 1000 for 256 clusters, that is even increasing with the number of data
objects.

Evaluation of the Impact of the Number of Clusters. We performed
several experiments to validate CUDA-K-means with respect to the number of
clusters K. Figure 18 shows the runtime in seconds of CUDA-K-means compared
with the implementation of K-means on the CPU on 8-dimensional synthetic
data sets that contain different number of clusters, ranging from 32 to 256,
again together with the corresponding speedup factors in Figure 18(d).

The experimental evaluation of K on a data set that consists of 32k points
results in a maximum performance benefit of more than 800 compared to the
benchmark implementation. For 2m points the speedup ranges from nearly 100
up to even more than 1,000 for a data set that comprises 256 clusters. In this
case the calculation on the GPU takes approximately 5 seconds, compared to
almost 3 hours on the CPU. Therefore, we determine that due to massive par-
allelization, CUDA-K-means outperforms CPU by large factors, that are even
growing with K and the number of data objects n.

Evaluation of the Dimensionality. These experiments provide an evaluation
with respect to the dimensionality of the data. We perform all tests on synthetic

88 C. Böhm et al.

10 0

100.0

1000.0
(s
ec
)

CPU

0.1

1.0

10.0

0 64 128 192 256

Ti
m
e

k

CPU
GPU

(a) Runtime for 32k points

100.0

1000.0

10000.0

m
e
(s
ec
)

CPU

1.0

10.0

0 64 128 192 256

Ti
m

k

CPU
GPU

(b) Runtime for 500k points

100.0

1000.0

10000.0

m
e
(s
ec
)

CPU

1.0

10.0

0 64 128 192 256

Ti
m

k

CPU
GPU

(c) Runtime for 2m points

600.0

800.0

1000.0

1200.0

du
p
Fa
ct
or

2m points

0.0

200.0

400.0

0 64 128 192 256

Sp
ee
d

k

500k points
32k points

(d) Speedup for 32k, 500k and 2m points

Fig. 18. Evaluation of CUDA-K-means w.r.t. the number of clusters K

data consisting of 16k data objects. The dimensionality of the test data sets
vary in a range from 4 to 256. Figure 19(b) illustrates that CUDA-K-means
outperforms the benchmark method K-means on the CPU by factors of 230 for
128-dimensional data to almost 500 for 8-dimensional data. On the GPU and
the CPU, the dimensionality affects possible compiler optimization techniques,
like loop unrolling as already shown in the experiments for the evaluation of the
similarity join on the GPU.

In summary, the results of this section demonstrate the high potential of
boosting performance of complex data mining techniques by designing special-
ized index structures and algorithms for the GPU.

10000.0

1000.0

)

100.0(s
ec
)

CPU
10.0im

e CPU
GPU

1.0

Ti

0 1
0 64 128 192 256

0.1
Dimensionality

(a) Runtime

700.0

or

500 0

600.0

Fa
ct
o

400 0

500.0

up
F

300 0

400.0

pe
ed

200.0

300.0

Sp

200.0

0 64 128 192 256

Dimensionality

(b) Speedup

Fig. 19. Impact of the Dimensionality of the Data Set on CUDA-K-means

Data Mining Using Graphics Processing Units 89

9 Conclusions

In this paper, we demonstrated how Graphics processing Units (GPU) can ef-
fectively support highly complex data mining tasks. In particular, we focussed
on clustering. With the aim of finding a natural grouping of an unknown data
set, clustering certainly is among the most wide spread data mining tasks with
countless applications in various domains. We selected two well-known clustering
algorithms, the density-based algorithm DBSCAN and the iterative algorithm K-
means and proposed algorithms illustrating how to effectively support clustering
on GPU. Our proposed algorithms are accustomed to the special environment
of the GPU which is most importantly characterized by extreme parallelism at
low cost. A single GPU consists of a large number of processors. As buildings
blocks for effective support of DBSCAN, we proposed a parallel version of the
similarity join and an index structure for efficient similarity search. Going be-
yond the primary scope of this paper, these building blocks are applicable to
support a wide range of data mining tasks, including outlier detection, associa-
tion rule mining and classification. To illustrate that not only local density-based
clustering can be efficiently performed on GPU, we additionally proposed a par-
allelized version of K-means clustering. Our extensive experimental evaluation
emphasizes the potential of the GPU for high-performance data mining. In our
ongoing work, we develop further algorithms to support more specialized data
mining tasks on GPU, including for example subspace and correlation clustering
and medical image processing.

References

1. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide
(2007)

2. Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: Ecm on graph-
ics cards. In: Soux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 483–501.
Springer, Heidelberg (2009)

3. Böhm, C., Braunmüller, B., Breunig, M.M., Kriegel, H.-P.: High performance clus-
tering based on the similarity join. In: CIKM, pp. 298–305 (2000)

4. Böhm, C., Noll, R., Plant, C., Zherdin, A.: Indexsupported similarity join on graph-
ics processors. In: BTW, pp. 57–66 (2009)

5. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: Identifying density-based
local outliers. In: SIGMOD Conference, pp. 93–104 (2000)

6. Cao, F., Tung, A.K.H., Zhou, A.: Scalable clustering using graphics processors. In:
Yu, J.X., Kitsuregawa, M., Leong, H.-V. (eds.) WAIM 2006. LNCS, vol. 4016, pp.
372–384. Springer, Heidelberg (2006)

7. Catanzaro, B.C., Sundaram, N., Keutzer, K.: Fast support vector machine training
and classification on graphics processors. In: ICML, pp. 104–111 (2008)

8. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

9. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Knowledge discovery and data
mining: Towards a unifying framework. In: KDD, pp. 82–88 (1996)

90 C. Böhm et al.

10. Govindaraju, N.K., Gray, J., Kumar, R., Manocha, D.: Gputerasort: high perfor-
mance graphics co-processor sorting for large database management. In: SIGMOD
Conference, pp. 325–336 (2006)

11. Govindaraju, N.K., Lloyd, B., Wang, W., Lin, M.C., Manocha, D.: Fast compu-
tation of database operations using graphics processors. In: SIGMOD Conference,
pp. 215–226 (2004)

12. Guha, S., Rastogi, R., Shim, K.: Cure: An efficient clustering algorithm for large
databases. In: SIGMOD Conference, pp. 73–84 (1998)

13. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIG-
MOD Conference, pp. 47–57 (1984)

14. He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N.K., Luo, Q., Sander, P.V.:
Relational joins on graphics processors. In: SIGMOD, pp. 511–524 (2008)

15. Katz, G.J., Kider, J.T.: All-pairs shortest-paths for large graphs on the gpu. In:
Graphics Hardware, pp. 47–55 (2008)

16. Kitsuregawa, M., Harada, L., Takagi, M.: Join strategies on kd-tree indexed rela-
tions. In: ICDE, pp. 85–93 (1989)

17. Koperski, K., Han, J.: Discovery of spatial association rules in geographic informa-
tion databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951,
pp. 47–66. Springer, Heidelberg (1995)

18. Leutenegger, S.T., Edgington, J.M., Lopez, M.A.: Str: A simple and efficient algo-
rithm for r-tree packing. In: ICDE, pp. 497–506 (1997)

19. Lieberman, M.D., Sankaranarayanan, J., Samet, H.: A fast similarity join algorithm
using graphics processing units. In: ICDE, pp. 1111–1120 (2008)

20. Liu, W., Schmidt, B., Voss, G., Müller-Wittig, W.: Molecular dynamics simula-
tions on commodity gpus with cuda. In: Aluru, S., Parashar, M., Badrinath, R.,
Prasanna, V.K. (eds.) HiPC 2007. LNCS, vol. 4873, pp. 185–196. Springer, Heidel-
berg (2007)

21. Macqueen, J.B.: Some methods of classification and analysis of multivariate obser-
vations. In: Fifth Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–297 (1967)

22. Manavski, S., Valle, G.: Cuda compatible gpu cards as efficient hardware acceler-
ators for smith-waterman sequence alignment. BMC Bioinformatics 9 (2008)

23. Meila, M.: The uniqueness of a good optimum for k-means. In: ICML, pp. 625–632
(2006)

24. Plant, C., Böhm, C., Tilg, B., Baumgartner, C.: Enhancing instance-based classi-
fication with local density: a new algorithm for classifying unbalanced biomedical
data. Bioinformatics 22(8), 981–988 (2006)

25. Shalom, S.A.A., Dash, M., Tue, M.: Efficient k-means clustering using accelerated
graphics processors. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008.
LNCS, vol. 5182, pp. 166–175. Springer, Heidelberg (2008)

26. Szalay, A., Gray, J.: 2020 computing: Science in an exponential world. Nature 440,
413–414 (2006)

27. Tasora, A., Negrut, D., Anitescu, M.: Large-scale parallel multi-body dynamics
with frictional contact on the graphical processing unit. Proc. of Inst. Mech. Eng.
Journal of Multi-body Dynamics 222(4), 315–326

	Data Mining Using Graphics Processing Units
	Introduction
	Related Work
	Architecture of the GPU
	The Memory Model
	The Programming Model
	Atomic Operations

	An Index Structure for Similarity Queries on GPU
	The Similarity Join
	Similarity Join without Index Support
	An Indexed Parallel Similarity Join Algorithm on GPU

	Similarity Join to Support Density-Based Clustering
	Basic Definitions and Sequential DBSCAN
	GPU-Supported DBSCAN

	K-Means Clustering on GPU
	The Algorithm K-Means
	CUDA-K-Means

	Experimental Evaluation
	Evaluation of Similarity Join on the GPU
	Evaluation of GPU-Supported DBSCAN
	Evaluation of CUDA-K-Means

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

