
FIS-by-Step: Visualization of the Fast Index
Scan for Nearest Neighbor Queries

Elke Achtert, Dominik Schwald

Institute for Computer Science, University of Munich, Germany
{achtert,schwald}@dbs.ifi.lmu.de

Abstract. Many different index structures have been proposed for spa-
tial databases to support efficient query processing. However, most of
these index structures suffer from an exponential dependency in pro-
cessing time upon the dimensionality of the data objects. Due to this
fact, an alternative approach for query processing on high-dimensional
data is simply to perform a sequential scan over the entire data set. This
approach often yields in lower I/O costs than using a multi-dimensional
index. The Fast Index Scan combines these two techniques and optimizes
the number and order of blocks which are processed in a single chained
I/O operation. In this demonstration we present a tool called FIS-by-
Step which visualizes the single I/O operations during a Fast Index Scan
while processing a nearest neighbor query. FIS-by-Step assists the de-
velopment and evaluation of new cost models for the Fast Index Scan
by providing user significant information about the applied page access
strategy in each step of the algorithm.

1 Introduction

A large number of index structures for high-dimensional data have been proposed
in previous years, cf. [2] for details. However, for sufficiently high dimensional
data the complexity of similarity queries on multidimensional index structures
is still far away from being logarithmic. Moreover, simple query processing tech-
niques based on a sequential scan of the data are often able to outperform
approaches based on sophisticated index structures. This is due to fact that
usual index structures access data in too small portions and therefore cause lots
of I/O accesses. The Fast Index Scan proposed in [1] subsumes the advantages
of indexes and scan based methods in an optimal way. The algorithm collects
accesses to neighboring pages and performs chained I/O requests, where the
length of the chains are determined according to a cost model. The benefit of
this chained I/O processing is that the seek costs–the main part of the total I/O
costs–have to be paid only once. The authors have shown that the Fast Index
Scan clearly outperforms both, the sequential scan as well as the Hjaltason and
Samet algorithm which is typically used for processing nearest neighbor queries.

In this demonstration we present a tool called FIS-by-Step to visualize the
single chained I/O operations during a nearest neighbor query by applying the
Fast Index Scan on top of an R-Tree. FIS-by-Step displays the applied page



3 4 5 6 7 8 9 101 2

chunk
7 2

10

6 1
3

4

5

8

9

Priority List: 3, 8, 10, 5, 1, 4, 2, 7, 6, 9

Fig. 1. The Fast Index Scan for nearest neighbor queries

access strategy in each step of the algorithm and provides user significant statis-
tical information. The step-by-step visualization is very useful in a lot of cases,
e.g. for teaching and explaining the function of the Fast Index Scan, for visual
evaluation of the applied strategies or for development of new strategies.

The remainder of this paper is organized as follows: The concepts of the
Fast Index Scan are described in Sect. 2. In Sect. 3 we demonstrate our tool
FIS-by-Step for visualizing the I/O operations during a Fast Index Scan.

2 The Fast Index Scan

As the Fast Index Scan has been evaluated in [1] on top of the IQ-Tree, it can
be applied to any R-Tree like spatial index structure that consists of only one
directory level. Usually nearest neighbor queries are evaluated by the algorithm
of Hjaltason and Samet (HS) [3], which has been proven to be optimal w.r.t.
the number of accessed pages. Unlike the original HS algorithm which loads and
processes one page after the other, the Fast Index Scan adapts the HS algorithm
and tries to chain I/O operations for subsequent pages on disk and optimizes
the number and order of pages which are processed in a single I/O-operation.

The HS algorithm keeps a priority list of all data pages in increasing order
to their distance to the query point. For all pages pi in the priority queue there
exists a certain probability that pi has to be loaded to answer the query. The
idea of the Fast Index Scan is to load in each step a chunk of neighboring pages
with a sufficient high probability instead of loading only one page, as the HS
algorithm would do. In [1] the authors proposed a stochastic model to estimate
the probability of a page to be accessed during a nearest neighbor query. Based on
this access probability the cost balance of a page can be determined. A negative
cost balance indicates that it is likely to be “profitable” to load the page in
the current chunk additionally. This is given if the additional transfer costs to
read the page in the current chunk are less than the estimated costs to read the
page later in the algorithm. In Fig. 1 the page strategy of the Fast Index Scan
is visualized: starting with page 3 the Fast Index Scan extends the chunk and
reads page 4 and 5 additionally, because page 5 has a very high probability to
be necessary to answer the query. Thus, reading page 4 and 5 in the current



(a) Step 1

(b) Step 2

Fig. 2. Screenshots of the FIS-by-Step application

chunk is less expensive than loading page 5 in all probability later and causing
additional seek costs.

3 Visualization of the Fast Index Scan

The main purpose of the FIS-by-Step application is to show step-by-step how
the Fast Index Scan solves a nearest neighbor query. Figure 2 shows screenshots
of our application to explain how FIS-by-Step works.

Before running a query, it is possible to change some settings like the pagesize
in order to adjust the application to the data. After choosing a data file (a CSV
file of hyperpoints), the first line of black rectangles appears in the main window
of the application. Each of these rectangles represents a page on the disk, where
the order of the rectangles is identical with the order of the pages on disk. After
selecting the query point (which can be the first point of the data, a random
point of the data, or any given point) the second line of rectangles appears, again
showing all pages, but now there is one blue rectangle: This is the page that is
the nearest one to the query point.

The third line appears after using the “Next Step” button. This is the first
step of the Fast Index Scan: The access probability is calculated for all pages.
The different colors of the rectangles indicate the access probability of the pages:
Black indicates an access probability of 0%, i.e. these pages need not to be read.
Grey pages have been already processed and thus also have an access probability
of 0%. A blue page is the nearest unprocessed page to the query point and
therefore has an access probability of 100%. All other pages (with red to green



Fig. 3. Statistics about the solved query

color) have access probabilities between 0% and 100% and might have to be read
during the algorithm. As illustrated in Fig. 2(a), in this step of our example 7
pages (underlined magenta) are read by the Fast Index Scan.

After using the “Next Step” button again, two things can happen: Either
the query is solved and some statistics are displayed, or the query is not solved
yet, so it is necessary to read some more pages as shown in Fig. 2(b). Note that
all pages that have been read in the last step are now colored gray, as their
access probability is now 0%. A lot of red colored pages from the first step are
now black, since they have a larger distance to the query point than the nearest
point of the already processed pages. Also there is a new blue page, i.e. a page
with an access probability of 100%. This page is the one that is the nearest one
to the query point, as all already processed pages are ignored. After this step the
example query is solved, thus after using the “Next Step” button there does not
appear a new line of rectangles, but a popup window, showing some statistics
about the query (cf. Fig. 3). The statistical information consists of the number
of accessed pages and the I/O time for solving the query using the Fast Index
Scan in comparison to use the HS algorithm or the sequential scan of the data
set, respectively. As the statistic shows, the Fast Index Scan outperforms the HS
algorithm as well as the sequential scan.

As mentioned above, the primary objective of our FIS-by-Step application is
the step-by-step visualization of the Fast Index Scan. This stepwise visualization
is very useful in a lot of cases, e.g. for teaching and explaining the Fast Index
Scan. FIS-by-Step supports the visual evaluation, comparison and improvement
of strategies for building chunks for chained I/O operations, layout of pages
on disk, and ordering pages for processing in CPU. Furthermore, FIS-by-Step
assists the development of new strategies, as the advantages and disadvantages
of a strategy for a given data are shown directly.

References

1. S. Berchtold, C. Böhm, H. V. Jagadish, H.-P. Kriegel, and J. Sander. Independent
Quantization: An index compression technique for high-dimensional data spaces. In
Proc. ICDE, 2000.

2. C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional spaces:
Index structures for improving the performance of multimedia databases. ACM
Computing Surveys, 33(3), 2001.

3. G. R. Hjaltason and H. Samet. Ranking in spatial databases. In Proc. SSD, 1995.


	FIS-by-Step: Visualization of the Fast Index Scan for Nearest Neighbor Queries
	Elke Achtert, Dominik Schwald

