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Abstract
Data integration and selecting only the relevant information
for solving biological and environmental problems is one of
the most important challenges in today’s data mining. One
urgent problem in the medical community is to support the
classification of dementia caused by Alzheimer’s disease and
even its detection in the predementia phase to optimize the
medical treatment of a disease that accounts for 60 to 80 per-
cent of dementia cases and affects more than 35 million peo-
ple world-wide. In this paper we present IDEA, a fully au-
tomated, easy-to-use and clinically interpretable diagnostic
software for early-stage Alzheimer’s. The main contribution
of our framework is that it allows for a combined analysis
of various feature types such as neuroimaging data sourcing
from different modalities, and non-image data that consist of
numerical and categorical values, resulting in high classifi-
cation accuracy results. Using advanced information theory,
we select only subsets out of the rich pool of information that
build high-predictive feature combinations. In an extensive
medical case-study on a large real-world data set, we show
that already small feature subsets are adequate to derive sig-
nificant classification accuracies. And, as IDEA usually de-
termines more than one suitable feature set, it even can be
used for an optimized analysis process by selecting the as-
sessment tools that produce minimal cost (in terms of money
or stress for the patients) without loosing accuracy.

1 Introduction
Analyzing mixed-type attributes or also known as integra-
tive data mining is among the top 10 challenging problems
in data mining research identified in panel discussions [19]
and position papers [25]. Moreover, it is essential for solving
many of the other top 10 challenges, including data mining
in social networks and data mining for biological and en-
vironmental problems. In this paper, we address the appli-
cation of integrative data mining for the detection of early-
stage patterns for Alzheimers’s disease (AD) dementia, by a
combined analysis of different medical imaging modalities
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together with multiple numerical and categorical attributes,
resulting from neuropsychological tests or genetic and bio-
chemical screenings.

AD is the most common form of dementia, that usu-
ally develops slowly and includes gradual onset of cogni-
tive impairment in episodic memory and at least one other
domain [16]. Although, there is currently no cure for
Alzheimer’s that stops the disease from progressing, medi-
cal treatment can temporarily slow down the worsening of
dementia symptoms. However, the benefit of this treat-
ment strongly correlates with a reliable early detection of
AD in predementia stages such as mild cognitive impairment
(MCI). But, cerebral or cognitive changes are only of subtle
degree at MCI stages, and therefore much harder to detect.

Usually AD is diagnosed on the basis of a patient’s med-
ical history and a variety of cognitive tests. Most of these
tests produce sets of continuous numerical values or catego-
rize a certain screening result in predefined bins. In order
to exclude other cerebral pathology or subtypes of demen-
tia, advanced medical imaging techniques, like initially com-
puted tomography (CT) and then magnetic resonance imag-
ing (MRI), are often used. Structural MRI detects tissue
changes in the grey and white matter of the human brain.
Cognitive task-related changes in brain activity and basal
brain activity during resting state are assessed by functional
MRI (fMRI). The positron emission tomography (PET) vi-
sualizes and quantifies abnormal structures called plaques
caused by the protein amyloid-beta (Aβ) in the brains of pa-
tients with AD, even in stages of MCI or complete presymp-
tomatic states. Figure 1 shows a hypothetical model of the
predicted utility during the progression of AD for different
biomarkers, following the studies of Jack et al. [14].

Consequently, we do not rely on single test modes in this
project, but rather combine different sources to determine in-
dividual risk profiles. We develop IDEA, a new Integrative
Detection framework for Early-stage AD patterns. We ex-
ploit an unprecedented amount of heterogeneous knowledge
sources, including multimodal neuroimaging, biochemical
markers and neuropsychological tests. However, the essen-
tial effort (in terms of money, time and stress factor for the
patients) for collecting the data strongly depends on the dif-
ferent data acquisition tools. Consequently, we select a set of
relevant key features yielding best possible classification re-
sults concerning both accuracy and cost-effectiveness based
on an information-theoretic driven feature selection, and pro-



Figure 1: Predicted utility of various biomarkers during the pro-
gression of Alzheimer’s.

vide a suggestion for the most promising association of dif-
ferent assessment tools. Therefore, IDEA provides two main
contributions.

1. A combined analysis of image and non-image data
achieves more accurate prediction results.

2. Unavailable measures (due to any reason) can be re-
placed by equivalent sets of feature combinations.

The rest of this paper is organized as follows: Section 2
gives a brief survey of the large previous work on integra-
tive data mining and related research for early-stage detec-
tion of Alzheimer’s disease. Section 3 presents our new di-
agnosis framework which performs heterogeneous data min-
ing for image, numerical and categorical data to achieve
high accurate risk profiles for Alzheimer’s disease. Sec-
tion 4 documents a medical case-study, where we present
each processing step on a real-world data set provided by
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(http://adni.loni.usc.edu/). Finally, Section 5
summarizes the paper.

2 Related Work
In this section, we survey relevant research in the field
of data integration and describe related classification ap-
proaches for neuroscience application.

Integrative Data Mining. Several papers address the prob-
lem of finding dependencies among heterogeneous data.
Most integrative clustering approaches, as for instance the
algorithms K-Prototypes [13], CFIKP [26], CAVE [12], and
K-means-mixed [1] rely on the basic algorithmic paradigm
of K-means [11]. While K-means focuses on clustering nu-
merical data, the aforementioned approaches typically use
several different optimization goals, one for each data type.
Whenever these goals disagree, a manually chosen weight-
ing factor has to decide how to resolve this tie situation.

But, it is not trivial to select a suitable weighting factor
that is valid for different clusters or for a complete clus-
tering process (while the clusters evolve). Moreover, such
approaches implicitly assume the independence between at-
tributes of different types. More advanced solutions, like
INTEGRATE [2] or INCONCO [20], consider the task of
learning weighting factors and even the number of expected
clusters K to detect dependencies between attributes (of the
same or different type) as part of the overall clustering pro-
cess.

The proposed ideas for integrative clustering can
be easily applied for a classification scenario. But none
of these approaches are suitable for the combination of
numerical, categorical and imaging data. Rather, we present
a solution for this clinically relevant task without the
need of challenging parameter settings by using advanced
information-theoretic techniques.

Classification of Neuroimaging Data for Early Stage AD
Detection. Pattern classifiction methods on the basis of high-
dimensional neuroimaging data sets are promising tools to
aid the clinical diagnosis of Alzheimer’s fully automatically.
Support vector machines (SVM) have been applied in a num-
ber of studies to exploit structual or functional MRI and PET
images for the early diagnosis of AD in MCI and healthy
controls [7, 15] and also have been applied to multicenter
MRI data sets [5]. However, the cross-validation results of
SVM derived patterns show only limited robustness for the
prediction of clinical progression in MCI. Other classifica-
tion algorithms such as Bayes statistics and voting feature in-
tervals show clinically acceptable accuracy (> 85%) for the
detection of AD dementia, but insufficient accuracy for the
prediction of AD dementia at the MCI stage [21, 3]. A major
reason for the limited clinical applicability for the early de-
tection is the inherent heterogeneity of brain changes that are
characteristic of AD. In keeping with the diagnostic guide-
lines, we propose here to source different types of measures
including neuroimaging, biochemical markers, genetic fea-
tures and neuropsychological tests.

The most related approach is the work by Shuo Xiang
et al. [24], that examines AD prediction on the basis of het-
erogeneous data with the focus on missing values. However,
besides balancing missing attributes, IDEA tries to find an
optimal set of independent features by identifying redundant
information sources.

3 Integrative Detection of Early-stage AD Patterns
The first step of the integrative diagnosis framework IDEA is
selecting the most informative features of each data modality
(neuroimaging, numerical or categorical). This step deserves
high diligence, because selecting subsets of strong discrimi-
nating features is indispensable for reliable classification re-
sults.
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Figure 2: Example for a 3-dimensional DBSCAN used for density-
based clustering of neuroimaging data to find brain regions with
high-discriminatory power.

3.1 Feature Selection
With the Information Gain (IG) [22, 10], we perform class

separation based on the concept of entropy, as IG rates the
interestingness of a specific attribute (e.g. one voxel of
neuroimage scan) for the separation. To formalize the IG,
first the definition of the entropy of the class distribution is
needed.

DEFINITION 3.1. (ENTROPY OF CLASS DISTRIBUTION)
Given a class ci (e.g. AD patients) and its corresponding
class probability p(ci), the entropy of the class distribution
is defined as follows:

H(C) = −
∑
ci∈C

p(ci) · log2(p(ci)).

H(C) corresponds to the required amount of bits to predict
the class of an unknown subject and scales between 0 and 1.

The entropy of the class distribution before and after observ-
ing an attribute a refers to the information gain (IG) of a and
is formally defined as follows:

DEFINITION 3.2. (INFORMATION GAIN) Given an at-
tribute a (e.g. a voxel), the information gain of a is:

IG(a) = H(C)−H(C|a).

In the case of k = 2 (e.g. if we consider the classes MCI
and AD), IG scales between 0 and 1, where 0 means that
the attribute a provides no information on class label of the
subject. An IG of 1 means that the class label of all subjects
can be derived from the corresponding attribute a without
any error.

We can compute the IG for each attribute type, regard-
less of being an image, numerical or categorical attribute.
For features with continuous values (e.g. voxel intensi-
ties), we apply the discretization algorithm by Fayyad and
Irani [8], which divides the attribute range into class pure in-
tervals, where the IG of the split defines the cut points. To
avoid a disproportional high number of cut points, the MDL
principle is used to determine the optimal number and loca-
tion of the cut points. For all attributes, regardless of arising

in an image data or not, we hereby calculate class-separation
information without the need for data format transforma-
tions, which means that we combine the different data types
without loss. Only features that have an IG value above a
specified threshold IGopt are kept for further processing.

However, the huge amount of information present espe-
cially in the neuroimaging data (each image consists of more
than two million voxels) poses a major problem for the auto-
mated analysis including noisy data and replicability, irrele-
vant information, and costs in terms of data acquisition and
processing time. For this purpose, we apply a density-based
clustering approach on the spatially complex imaging data.
Thereby, we receive connected brain regions which are much
more informative for further processing than single voxels.

3.2 Clustering of Neuroimaging Data
In general, clustering algorithms aim at deriving a partition-

ing of the data into groups (clusters) such that similar objects
are grouped together. To identify groups of adjacent voxels
that commonly share high IG values, and to remove noise
in the imaging data, we use a variant of the well-established
density-based clustering approach DBSCAN [6] as recom-
mended in the paper of Plant et al. [21]. Density-based clus-
tering algorithms are designed to find clusters of arbitrary
shape in noisy data.

The notion of the original DBSCAN algorithm, which
was designed for clustering data objects represented by
feature vectors, is defined as follows. An object O is
called core object if it has at least MinPts objects in
its ε-range, i.e. |Nε(O) ≥ MinPts|, where Nε(O) =
{O′|dist(O,O′) ≤ ε}. An object O is directly density
reachable from another object P w.r.t. ε and MinPts if
P is a core object and O ∈ Nε(P ). An object O is density-
reachable from an object P w.r.t. ε and MinPts if there
exists a sequence of objects O1, · · · , On such that O1 = P
and On = O and Oi+1 is directly density-reachable w.r.t. ε
and MinPts from Oi for 1 ≤ i ≤ n. Two objects O and P
are density-connected w.r.t. ε andMinPts if there exists an
object Q such that both O and P are density-reachable from
Q. A density-based cluster is the maximum set of density-
connected objects, i.e. the transitive closure of the density
reachability relation.

To adapt this algorithm to the setting of neuroimage
data, where each object is represented by 3-dimensional
voxels, a core voxel is a voxel, which is surrounded by at
least six voxels that commonly share an IG value higher
than IGopt. Figure 2 illustrates an example. It shows three
sequent slices in the brain, each of which contains 6 × 6
voxels. Colored voxels (red, blue or green) indicate voxels
with high IG-values. The red voxels are core voxels w.r.t.
ε = 1 and MinPts = 6. The blue voxels are noise and the
green voxels are density-reachable w.r.t. to the given values
of ε and MinPts.
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Figure 3: Data analysis stream from heterogeneous data sources to the visualization of optimal feature sets. Input of the combined
analysis are the IG values of numerical and categorical non-image data and a representative IG-value per informative voxel cluster for
each neuroimage modality. The calculation of the pairwise mutual information leads to feature subsets that provide maximum information
for the classification process, visualized by multidimensional scaling. The feature sets, determined by partitioning clustering, serve as
input for the classification algorithms.

After selecting single informative features, IDEA com-
putes dependencies among all possible pairs of attributes re-
gardless of being a clustered neuroimaging feature or being a
numerical or categorical non-image assessment value in the
next step.

3.3 Calculating Dependencies Among Features
To build sets of informative features, we use the concept of

mutual information (MI) as suggested by Peng et al. [17].
Hereby, IDEA rates the information dependencies among
the different attributes. Informative brain regions that re-
sult from the aforementioned feature selection step are repre-
sented by the mean values of the corresponding voxels. MI is
not limited to real-valued random variables like the correla-
tion coefficient, but rather MI is more general and determines

how similar the joint distribution of two random variables x
and y is.

DEFINITION 3.3. (MUTUAL INFORMATION) Given two
random variables x and y, their mutual information is
defined in terms of their probabilistic density functions p(x),
p(y) and p(x, y):

MI(x; y) =

∫ ∫
p(x, y)log

p(x, y)

p(x)p(y)
dxdy.

The resulting MI-matrix forms a metric space, which enables
us to determine irrelevant or redundant information sourcing
from the various analysis methods for the clinical diagnosis
of AD. This means, that the clinician might chose only one
assessment modality out of multiple redundant features to



reduce cost, or receives a recommendation for further tests
that maximize the accuracy of the classification.

3.4 Visualization of Feature Subsets
Finally, the results of the MI-matrix are representable in 2-

dimensional space to facilitate the application of our hetero-
geneous data mining approach in the clinical environment.
For this purpose, we use a standard technique in statistics
called multidimensional scaling (MDS) [4]. For a measure of
the global similarity among a set of features (in our case the
MI matrix), MDS provides a spatial configuration, in which
the distances between the objects match their proximities as
closely as possible. Each object in the spatial configuration
(each point in the visual mapping) is one assessable attribute,
its radius visualizes its IG, which is an additional criterion
for an optimal subset configuration. The smaller the distance
between two objects is, the higher is the amount of redun-
dant information. Therefore, an optimal subset of measures
consists of attributes with large radius and high distance to
each other.

In order to build sets of informative features, IDEA per-
forms partitioning clustering (e.g. K-means [11]), where
each cluster represents one source of independent informa-
tion. As each cluster usually contains several attributes, we
select the features of one cluster according their IG-values.
If one attribute can not be assessed (due to expensive costs
or accessability) a feature in its direct neigborhood is chosen
instead.

3.5 Summary and Implementation Details
Figure 3 summarizes the overall workflow for our integra-

tive diagnosis tool IDEA. After identifying the most infor-
mative voxels in all imaging modalities in step (a), a clus-
tering algorithm groups these voxels into areas of interest
in step (b) that can be mapped to real anatomical brain re-
gions, e.g. ’Left Cuneus’. Together with the non-image data
(e.g. the FDG-value and the sex of the subject), the pair-
wise mutual information is calculated in step (c). By use of
multidimensional scaling, the pairwise dependencies are vi-
sualized. This can be used to decide which measure should
be assessed to achieve best accuracy with minimal number
of tests. In our example, ’Left Cuneus’ (feature A) and the
FDG-value (feature D) provide the highest IG (radius sizes
of the circles correspond to IG values) and therefore should
be favored. However, if A is not an option for any reason,
feature E is closest to A and thus the best alternative, as E
and A share a lot of common information, while C (higher
IG) is redundant to D. The detected feature sets are the input
data for the classification algorithms.

The implementation of IDEA roughly consists of three
parts. Part (1) determines the best IG threshold value for
each fold of image data. Part (2) is dedicated to masking
the training data and test data in each fold, and part (3)

integrates data from different sources. For the first step, we
store the candidate IG threshold values in a vector t, and
select the optimal value by 10-fold cross validation. For
part (2), we perform an IG-based feature selection on the
training data and mask the test data in each fold, i.e. we keep
voxels in the test data which have the same positions as those
kept in the training data. Part (3) is the core part of IDEA.
Here, each image cluster is represented by its mean image
intensity value. We combine the mean value matrix with
non-image data and compute pairwise MI. After applying
partitioning clustering in the space returned by MDS on MI-
matrix, each cluster is represented by the feature with highest
IG value. Finally, IDEA performs Support Vector Machine
(SVM) classification with polynomial kernel [23] on selected
features.

4 Experimental Evaluation
In this section, we present our medical case-study for early-
stage AD pattern detection on an open-source data set.

4.1 The Data
We evaluate IDEA on a study that was conducted

in the years 2005 to 2007 and attended by 395 par-
ticipants. The corresponding data set is obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(http://adni.loni.usc.edu/). It includes scans
for 98 healthy control subjects (HC), 201 patients with MCI
(amnestic w.r.t. the study by Petersen et al. [18]) and 96
patients with clinically probable AD dementia (referring to
McKhann et al. [16]). All subjects underwent volumetric
MRI (performed on a T1 MRI scanner) and PET, resulting
in 121 × 145 × 121 voxels per scan. In addition, the data
set provides information for multiple clinical examinations.
Table 1 summarizes eight non-image attributes we used for
further processing, including demographic variables (e.g.
age and sex), biochemical measures (e.g. FDG), genetics
(e.g. ApoE genotype) and neuropsychological test scores
(e.g. MMSE). The epsilon 4 allele of APOE is the strongest
known genetic risk factor for AD with a two- to three-fold
increased risk for AD in people with one allele of this kind,
rising up to approximately 12-fold in those with two alleles.

4.2 IG-based Feature Selection
Our medical case-study includes three different settings,

namely AD vs. HC, AD vs. MCI and HC vs. MCI. To
process the neuroimaging data, all scans were randomly di-
vided and stratified w.r.t. the diagnosis into ten folds us-
ing 10-fold cross-validation. For each experiment, we also
used 10-fold cross-validation on the training data to select
a suitable information gain threshold IGopt in a range of
0.02, 0.04, · · · , 0.5. To determine relevant brain regions,
IDEA performs density-based clustering (cf. Section 3.2)



Table 1: Demographic, biochemical, genetic and neuropsychological variables for the different groups. For each numerical attribute, we
report mean and standard deviation of the underlying values. For each categorical variable, we specify the number of subjects in each
category.

Attribute Type HC MCI AD
Age numerical µAge = 74.75 µAge = 75.50 µAge = 75.30

σAge = 6.90 σAge = 6.60 σAge = 6.61

Sex categorical female: 37 (37.76 %) female: 64 (31.84 %) female: 38 (39.58 %)
male: 61 (62.24 %) male: 137 (68.16 %) male: 58 (60.42 %)

Years of numerical µEducation = 15.95 µEducation = 15.76 µEducation = 14.61
education σEducation = 3.02 σEducation = 2.87 σEducation = 3.20

Race categorical white: 90 (91.84 %) white: 187 (93.03 %) white: 89 (92.71 %)
black: 7 (7.14 %) black: 10 (4.98 %) black: 5 (5.21 %)
asian: 1 (1.02 %) asian: 4 (1.99 %) asian: 2 (2.08 %)

Marital status categorical never married: 6 (6.12 %) never married: 3 (1.49 %) never married: 3 (3.13 %)
married: 71 (72.45 %) married: 151 (75.12 %) married: 83 (86.46 %)
divorced: 8 (8.16 %) divorced: 18 (8.96 %) divorced: 4 (4.17 %)
widowed: 13 (13.27 %) widowed: (14.43 %) widowed: 6 (6.25 %)

Number of categorical 0: 73 (74.49 %) 0: 94 (46.77 %) 0: 33 (34.38 %)
ApoE4 alleles 1: 23 (23.47 %) 1: 81 (40.30 %) 1: 48 (50.00 %)

2: 2 (2.04 %) 2: 26 (12.94 %) 2: 15 (15.63 %)
FDG value numerical µFDG = 6.09 µFDG = 5.85 µFDG = 6.06

σFGD = 0.76 σFDG = 0.76 σFDG = 0.64

MMSE-Score categorical none: 90 (91.84 %) none: 92 (45.77 %) none: 0 (0.00 %)
(28 ≤MMSE ≤ 30)
mild: 8 (8.16 %) mild: 93 (46.27 %) mild: 39 (40.63 %)
(25 ≤MMSE ≤ 27)
moderate: 0 (0.00 %) moderate: 16 (9.96 %) moderate: 56 (58.33 %)
(20 ≤MMSE ≤ 24)
severe: 0(0.00 %) severe: 0 (0.00 %) severe: 1 (1.04 %)
(MMSE < 20)

MMSE: The Mini Mental State Examination (also known as Folstein test is a 30-point neuropsychological questionnaire, used in clinical and research
settings to measure general cognitive impairment [9].

with a parametrization of MinPts = 4 voxels and ε = 1
voxel. We only keep robust clusters that are detected across
all folds. Figure 4a shows ten robust clusters detected in MRI
data for the setting AD vs. HC. The two identified clusters of
the PET data are illustrated in Figure 4b, respectively. Sin-
gle informative voxels, which distinguish AD patients from
HC are spread all over the brain (162,532 voxels in MRI and
110,117 voxels in PET). To interpret the detected clusters,
we map them to real brain regions according their anatom-
ical location information using the Talairach Daemon soft-
ware available at http://www.talairach.org. This
mapping is presented in Table 2.

Only a few features (49 voxels in MRI and 675 voxels
in PET) classify HC from MCI. For AD vs. MCI, 64,265
voxels in MRI and 37 voxels in PET have an IG value above
IGopt. Consequently, IDEA did not detect any informative
neuroimaging clusters for AD vs. MCI and HC vs. MCI.

Finally, Table 3 summarizes the IG values of each
attribute for the non-image data (cf. Table 1). For further
processing, IDEA selects all attributes with an IG value
higher than zero.

Table 3: IG values for each attribute of the non-image data for the
settings AD vs. HC, AD vs. MCI and HC vs. MCI, respectively.

AD vs. AD vs. HC vs.
HC MCI MCI

Age 0.06 0.00 0.05
Sex 0.00 0.00 0.00
Years of 0.00 0.00 0.00
education
Race 0.00 0.00 0.00
Marital status 0.00 0.00 0.00
Number of 0.12 0.00 0.15
ApoE4 alleles
FDG value 0.41 0.15 0.07
MMSE-Score 0.83 0.49 0.20

4.3 Dependencies among Features
For all features identified in the aforementioned section and

each experimental setting, we calculate the pairwise MI and
visualize it using MDS, as described in Sections 3.3 and 3.4.
Figure 5a shows the MI-matrix of informative attributes
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Figure 4: Selected informative clusters appearing in all folds
of MRI and PET data for the AD vs. HC study.

Cluster Cluster Brain region
ID size

MRI data
1 4 Left Cerebellar Tonsil
2 4 Left Cingulate Gyrus
3 4 Right Precuneus
4 36 Right Medial Frontal Gyrus
5 51 Right Precentral Gyrus
6 66 Left Parahippocampal Gyrus
7 236 Right Cerebellar Tonsil
8 355 Right Superior Parietal Lobule
9 576 Left Cuneus

10 161,200 Right Middle Temporal Gyrus
PET data

1 37,197 Left Precuneus
2 72,920 Left Middle Temporal Gyrus

Table 2: Mapping of detected clusters in the neuroimaging data to
real brain regions using the Talairach Daemon software for the study
AD vs. HC.

sourcing from neuroimaging scans and non-image data for
the class of MCI patients in one fold. Figure 5b illustrates the
corresponding dependencies by MDS. The depicted distance
of two objects in this plot, directly correlates with their
joined degree of information. Hence, it is obvious that some
features provide redundant information. By partitioning
clustering, IDEA determines different kind of information.
To represent the discriminatory attributes, shown in Figure 5,
only five features (one of each cluster) are adequate to
achieve strong classification results (cf. Section 4.4).

(a) MI-matrix of merged
attributes sourcing from neuro-
imaging and non-imaging data.

(b) 2D-representation by MDS. Cir-
cles indicate neuroimaging attributes,
squares formalize non-image features.

Figure 5: Calculation and illustration of dependencies among
features for the group of MCI patients.

4.4 Classification Results
For classification, we use the WEKA implementation

(available at http://www.cs.waikato.ac.nz/ml/
weka) of the Support Vector Machine (SVM) with polyno-
mial kernel. For each classification result, we report accu-
racy (acc), sensitivity (sen) and specificity (spec). Table 4
presents the results on neuroimaging data w.r.t. using all

voxels of the detected clusters versus the mean value of the
underlying voxels of each cluster.

The next experiments document the benefit of an in-
tegrative classification procedure as performed by IDEA.
Again, we distinguish between image cluster representations
by all voxels or mean values. The classification results de-
scribed by accuracy, sensitivity and specificity are repre-
sented in Table 5. The accuracy of AD vs. HC of MRI and
PET image data combined with the non-image attributes is
approximately the same due to the number of features of
image data dominate the number of non-image attributes.
However, when combining mean value of clusters with the
informative non-image features, the classification results are
improved above 90%.

As stated in the aforementioned section, IDEA automat-
ically provides small feature sets that achieve accurate clas-
sification results. For this experiment, we evaluate the clas-
sification results on a set of features that was built by parti-
tioning clustering with k = 5 and an IG-driven feature selec-
tion for each cluster on the data illustrated in Figure 5b. The
corresponding results are presented in Table 6. Compared
with Table 5, where we were using all available attributes,
selecting the right set of (few) features yield to similar clas-
sification accuracies.

5 Conclusion
With IDEA, we presented a data mining framework for In-
tegrative Detection of Early-stage Alzheimer’s disease based
on multimodal neuroimaging and heterogeneous non-image
data types. The combination of information gain, mutual in-
formation, multidimensional scaling and clustering enables
us to find feature combinations that have a high potential to
predict Alzheimer’s at an early stage. In near future, we per-



Table 4: Classification results on neuroimaging data using all
voxels of a cluster vs. using the mean value of the voxels to
represent a cluster.

AD vs. AD vs. HC vs.
HC MCI MCI

MRI data
acc (all) 0.8029 0.6959 0.6556
acc (mean) 0.7458 0.7095 0.6723
sen (all) 0.8067 0.3700 0.1433
sen (mean) 0.69221 0.1656 0
spec (all) 0.7978 0.8510 0. 9055
spec (mean) 0.7978 0.9650 1

PET data
acc (all) 0.8763 0.7128 0.6956
acc (mean) 0.7513 0.7024 0.6723
sen (all) 0.8422 0.3478 0.2900
sen (mean) 0.7378 0.2089 0
spec (all) 0.9100 0.8857 0.8900
spec (mean) 0.7600 0.9355 1

form a big data study on a second data set contributed by
partners of the Institute for Stroke and Dementia Research
(ISD), University of Munich based on a compact data repre-
sentation. Here, we again expect new insight to the develop-
ment and diagnosis of a disease that causes problems with
memory, thinking and behavior for a multitude of elderly
people. Furthermore, we currently work on a user-optimized
graphical presentation based on scatter-plots that enable the
medical scientists to rate the individual risk profile of a par-
ticular subject.
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