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Abstract—Idiopathic chronic pain disorders constitude a large,
clinically important health care problem that urgently needs
deeper pathophysiological insight. The understanding which
brain compartments are involved in such diseases, is therefore
a very interesting research topic in neurological medicine. In
this paper, we apply an efficient algorithm for motif discovery
to time series data of somatoform patients and healthy controls.
We find groups of brain compartments that occur frequently
within the brain networks and are characteristic for patients
with somatoform disorder.

I. INTRODUCTION

Understanding the mechanisms that govern neural processes
in the brain is an important topic for medical studies. Recently
the emergence of an increasing number of clinical diagnostics
approve a global analysis of complex processes and therefore
allow a better understanding of numerous diseases. We focus
on the mechanisms in the brain that are associated with
somatoform pain disorder. Somatization disorders constitude
a large, clinically important health care problem that urgently
needs deeper insight [12].

Earlier studies have revealed that different subunits interact
among each other, when particular stimuli are performed to
the brain. Hence the different components form a network.
From an algorithmic point of view, interacting subunits act
as frequent subgraphs within the network. From a medical
perspective, it is interesting to ask to which degree interacting
subunits exert influence on medical disorders.

In this article, we study the question whether brain
compartments of patients with somatoform pain disorder form
different motifs than brain compartments of subjects that do
not suffer from this disease. For this purpose we analyze
task-fMRI scans (a special form of neuroimaging) of the brain
of 11 subjects, 7 patients with somatoform pain disorder and
4 healthy controls that attended the study of [4]. In this study
both groups underwent alternate phases of non-pain and pain
stimuli during the fMRI scanning. We construct a network
for each subject where each node represents a voxel in the
fMRI image. Voxels are grouped together in 90 so called
regions of interest using the template of Tzourio-Mazoyer et
al. [10]. We apply the efficient heuristic approach GREW [8]
to uncover frequent subgraphs in each of these networks.
GREW is designed to operate on a large graph and to find

patterns corresponding to connected subgraphs that have a
large number of vertex-disjoint embeddings. This approach
overcomes the limitations of existing complete or heuristic
frequent subgraph discovery algorithms. We use GREW to
find frequent subgraphs as it can efficiently operate on large
networks. We demonstrate that patients with somatoform
disorder show different activation patterns in the brain than
healthy subjects.

The remainder of this article is organized as follows. Section
2 gives a brief survey of the previous work on frequent
subgraph mining. Section 3 begins with basic definitions of
graph theory and describes our proposed framework in the
following. Experimental results of our method are given in
Section 4 and Section 5 concludes our paper.

II. RELATED WORK

Several algorithms have been defined for finding frequent
subgraphs and their embeddings in one large graph or in a
dataset of graphs. We distinguish algorithms for ’graph dataset
mining’ that work on a dataset of graphs, and algorithms for
’large graph mining’ that discover frequent motifs in one large
graph. While frequent subgraph algorithms that work on large
graphs can directly be applied to datasets of graphs, the other
direction is more complicated. However, by splitting a large
graph into subgraphs, one can still use a graph dataset mining
algorithm for frequent subgraph discovery on the large graph
(albeit some subgraphs might be lost by the split).

A. Graph Dataset Mining

For the graph dataset mining tasks, approaches can
be broadly divided into two classes, apriori-based and
pattern-growth based. AGM (Apriori-based Graph Mining)[5]
determines subgraphs G′ in a dataset DS of graphs that
occur in at least minsup percentage of all graphs in the
dataset. AGM works on graphs with edge and node labels. In
principle, AGM uses the apriori principle of iterated candidate
generation and candidate evaluation. Candidate generation
means that candidate subgraphs are created by joining
subgraphs that have been shown to be frequent in earlier
iterations. In the candidate evaluation phase, these candidates
are tested, i.e. it is checked whether their frequency is greater
than minsup, and then the whole process is iterated until all
frequent patterns have been found. AGM uses a canonical
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form and a normal form to represent subgraphs to reduce
runtime cost for subgraph isomorphism checking.

Similar to AGM, FSG (Frequent SubGraph Discovery) [6]
uses a canonical labeling based on the adjacency matrix.
Canonical labeling, candidate generation and evaluation are
sped up in FSG by using graph invariants and the Transaction
ID principle, which stores the ID of transactions a subgraph
appeared in. This speed-up is paid for by reducing the class of
subgraphs discovered to connected subgraphs, i.e. subgraphs
where a path exists between all pairs of nodes.

The most well-known member of the class of pattern-
growth algorithms, gSpan (graph-based Substructure pattern
mining), discovers frequent substructures efficiently without
candidate generation [13]. Tree representations of graphs are
encoded using a Depth First Search (DFS) code, amongst
which a minimum DFS code is chosen according to some
lexicographic order. Pre-order DFS-tree search is then
conducted to find the complete set of frequent subgraphs
in a set of graphs. gSpan is efficient, both with respect to
runtime and memory requirements, making it one of the
best state-of-the-art algorithms for graph dataset mining.
CloseGraph [14] extends gSpan by limiting the search to
frequent complete graphs, i.e. subgraphs without supergraphs
that have the same support, thereby increasing the efficiency
of mining substantially.

B. Large Graph Mining

Unlike graph dataset mining, large graph mining intends to
find subgraphs that have minsup embeddings in one large
graph.

SUBDUE tries to minimize the minimum description
length (MDL) of a graph by compressing frequent subgraphs.
Frequent subgraphs are replaced by one single node and
the MDL of the remaining graph is then determined. Those
subgraphs whose compression minimizes the MDL are
considered frequent patterns in the input graph. The candidate
graphs are generated starting from single nodes to subgraphs
with several nodes, using a computationally-constrained beam
search.

GREW [8] and SUBDUE [1] are greedy heuristic
approaches to frequent graph mining that deal speed for
completeness of the solution. GREW iteratively joins
frequent pairs of nodes into one super-node and determines
disjoint embeddings of connected subgraphs by a maximal
independent set algorithm. Similarly, vSIGRAM and
hSIGRAM [7] find subgraphs that are frequently embedded
within a large sparse graph, using “horizontal”(h) breadth-first
search and vertical (v) depth-first search, respectively. They
employ efficient algorithms for candidate generation and
candidate evaluation that exploit the sparseness of the graph.

The algorithm by [11] uses a randomized enumeration
strategy for sampling subgraphs. This approach exhaustively
enumerates all subgraphs rather than randomly sampling from
this enumeration. As the runtime effort for exhaustive enu-
meration grows exponentially in the size of the subgraphs we
employ the heuristic approach GREW [8]. This enables us to
find frequent subgraphs in large graph rather than to restrict
ourselves to small frequent subgraph.

III. METHOD

In this section, we introduce the main concepts of this paper.
We propose a framework for generating network data out of
fMRI timeseries data and describe how to perform frequent
subgraph mining on these networks.

A. Basics of Graph Theory

We start with a brief summary of necessary definitions from
the field of graph mining.

Definition 1 (Labeled graph / network): A labeled graph
is represented by a 4-tuple G = (V,E,L, l), where V is a
set of vertices (i.e. nodes), E ⊆ V × V is a set of edges,
L is a set of labels, and l : V ∪ E → L is a mapping that
assigns labels to vertices V and edges E. If labels are not
of decisive importance, we will use the short definition of a
graph G = (V,E). In the following we also use network as
a synonym for graph.

Definition 2 (Subgraph): Let G1 = (V1, E1, L1, l1) and
G2 = (V2, E2, L2, l2) be labeled graphs. G1 is a subgraph
of G2 (G1 v G2) if the following conditions hold: V1 ⊆ V2,
E1 ⊆ E2, L1 ⊆ L2, l1 = l2. If G1 is a subgraph of G2, then
G2 contains G1.

Definition 3 (Isomorphism): Two graphs are isomorphic
if there exists a bijection f between the nodes of two graphs
G1 = (V1, E1) and G2 = (V2, E2) such that (v1a, v1b) ∈ E1

iff (v2a, v2b) ∈ E2 where v2a = f(v1a) and v2b = f(v1b).
If G1 is isomorphic to G2, we will refer to (v1a, v1b) and
(v2a, v2b) as corresponding edges in the following.

The problem to decide whether two graphs are isomorphic,
i.e. the graph isomorphism problem, is not yet known to be
NP-complete or in P. Given two graphs G1 = (V1, E1) and
G2 = (V2, E2), the subgraph isomorphism problem consists
in finding a subgraph of G2 that is isomorphic to G1. This
problem is known to be NP-complete [2].

Definition 4 (Embedding): If graph G1 is isomorphic to
a subgraph S of graph G2, then S is referred to as an
embedding of G1 in G2.

Definition 5 (Frequent subgraph / motif): A graph G1 is
a frequent subgraph of graph G2 if G2 contains at least t
embeddings of G1, where t is a user-set frequency threshold
parameter. Such a frequent subgraph is often called a motif.
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Definition 6 (Union graph): Given a time series of graphs
Gts with n states. Then the union graph DG(Gts) of Gts

is defined as DG(Gts) = (VDG, EDG, `), where VDG = Vi

for all 1 ≤ i ≤ n and EDG = ∪1≤i≤nEi.

An example for the transformation of a time series of graphs
into a union graph is depicted in Figure 1. Note that the union
of all edges of the time series is the set of edges of the union
graph.

Fig. 1. Transformation from a time series of three labeled graphs into the
corresponding union graph.

B. Construction of Brain Network Models Out of fMRI Time-
series

We define the voxels of the fMRI image data as the vertex
set of the brain network model. Edges between two vertices
v1 and v2 stand for a similar level of activation of the two
voxels. The measured value of a voxel indicates the degree
of blood circulation in the particular brain region. The darker
the voxel the more blood is present in the compartment, thus
the higher the activation.

We are interested in topological patterns that are
characteristic for patients with somatoform pain disorder.
Therefore we want to perform graph mining methods on one
graph that represents interacting regions of the brain. fMRI
timeseries data can be transformed in the following manner.

We distinguish two categories of activation levels for each
voxel v at each time point i, denoted by vi. a(i) stands
for its activation level at time point i. We determined the
z − scoremedian for each voxel vi by comparing the median
activation level of v across the time series with a(i) in order
to assign activation categories.

z–scoremedian(vi) =
a(i)−medianj∈{1,..,n}a(j)

mediank∈{1,..,n}
∣∣(a(k)−medianj∈{1,..,n}a(j)

∣∣
We use a median-based z–score rather than a mean-based as
we want to detect unusually high activation levels. In contrast
to the z–scoremean a z–scoremedian is more robust with
respect to these extremes and better suited for detecting them,
as validated in initial experiments (not shown here).

• high activation: a(i) is significantly higher than the
median activation level of v.
(z–scoremedian(v(i)) ≥ 7.0)

• no significant activation: a(i) is not significantly higher
than the median activation level of v.
(z–scoremedian(v(i)) < 7.0).

Edges between vertices v1 and v2 are assigned if v1 and
v2 both show high activation. We perform frequent subgraph
mining on the resulting union graph.

C. Performing Frequent Subgraph Mining on Brain Co-
Activation Networks

In order to find frequent subgraphs in our network we
have to group our nodes and assign each group a labeling.
A meaningful grouping of nodes when considering brain
networks is a mapping of the nodes to their corresponding
brain compartments. Hence motifs in those networks represent
compartments of the brain that show similar activation profile.
We removed edges between nodes that share the same label,
as a correlated degree of activation within one region is trivial,
and we are interested in activity of different regions.
In the next step we applied GREW for finding motifs in our
labeled graphs. As approaches that exhaustively enumerate all
subgraphs would limit ourselves to motifs of length 3 and 4
we decided to employ a heuristic approach. This allowed us
to find motifs of arbitrary size but missed out on some motifs.

D. Evaluation of Detected Motifs

To find motifs that are characteristic for a disease we have
to analyze the motifs separately. Therefore we want to detect
motifs that occur in patients but not in the control group and
vice versa. Another class of motifs that might be interesting
are motifs that occur in all subjects that attend a certain study.

Another aspect that should be considered is the label distri-
bution across motifs. A label that is used for a high number
of vertices has a higher probability to appear in a motif than
a label that covers a small number of nodes. Hence we have
to define the normalized frequency of a node label l, denoted
by Freqnorm(l).

Freqnorm(l) =
freqm∈{1,...,n}(l) ·#Embeddings(m)

freqBackground(l)

freqm∈{1,...,n} stands for the number of occurences of label
l in a motif m. This number has to be multiplied by the
number of isomorphic subgraphs of m, its embeddings. The
freqBackground(l) describes the number of occurences of l
with respect to alle vertices. In our case it refers to the size
of a ROI.

IV. EXPERIMENTS

Construction of the brain network models. We created
networks for 11 subjects that attended the studies of [4].
The resulting networks comprise 39 to 440 nodes with 90
different classes of node labels and 278 to 13,788 edges. The
network models indicate different number of edge types. The
type of an edge is referring to the concatenation of the labels
of the adjacent nodes. All edges are undirected because in
the relationship ’both adjacent voxels show high activation’
a direction makes no sense. We have measurements for 325
time steps. The exact statistics of each subject are depicted
in table I.
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TABLE I
STATISTICS ABOUT OUR 11 NETWORKS.

subject nodes different edges edge
labels types

patient 1 39 18 49 12
patient 2 102 31 456 91
patient 3 185 32 1,997 84
patient 4 241 35 4,017 90
patient 5 263 46 7,407 293
patient 6 313 46 11,814 372
patient 7 440 58 13,788 475
control 1 66 10 358 15
control 2 99 33 408 111
control 3 109 18 1,093 13
control 4 202 35 2,243 133

Timeseries datasets. We used fMRI data (1.5 T MR
scanner) of 7 female somatoform patients and 4 healthy
controls. Standard data preprocessing including realign-
ment, correction for motion artifacts and normalization to
standard space have been performed using SPM2 (avail-
able http://www.fil.ion.ucl.ac.uk/spm/). In addition, to remove
global effects the voxel time series have been corrected re-
gressing out the global mean, as suggested in [9].

TABLE II
TOTAL NUMBER OF MOTIFS FOUND IN THE 11 NETWORKS.

subject motifs
patient 1 3
patient 2 38
patient 3 706
patient 4 505
patient 5 752
patient 6 4,154
patient 7 4,256
control 1 15
control 2 32
control 3 133
control 4 236

Vertex labels. We labeled all nodes in our network model
by regional parcellation of the voxels into 90 brain regions
using the template of Tzourio-Mazoyer et al. [10].

Finding motifs. We searched for topological motifs of
arbitrary size using GREW with a threshold parameter of
t = 5 and a minimum number of one edge.

Evaluation of the motifs. Altogether we found 10,530
different motifs in somatoform patients and healthy controls.
10,173 different motifs were detected among patients, 413
within the group of healthy subjects.
For validation we divided the subjects into three classes. Class
(1) contains only the somatoform patients, class (2) consist
of the controls exclusively and class (3) composes the union
of class(1) and (2). Figure 2 shows typical representatives of
each class. The two motifs on the left occur in 57% of the
patients but in no healthy subject. The middle motif arises in
50% of the class (2)–subjects but in no patient. The upper
motif on the right side was found in 50% of the control group

Patients only Controls only Patients and Controls

Frontal_Mid_R

Frontal_Mid_Orb_R

Frontal_Sup_L

Frontal_Mid_L

Lingual_R

Fusiform_R

Temporal_Pole_Sup_R

Insula_L

Temporal_Inf_L

Fusiform_L

Fig. 2. Typical representatives of motifs found in the groups of somatoform
patients, healthy controls respectively and the group of all subjects.

and in 14% of the patients, the lower motif in 25% of the
control group and in 43% of the patient group.
The largest motifs (highest number of vertices and edges) of
class (1) were found in subject ’patient 6’. They consist of 28
vertices and 29 edges, five different brain compartments are
involved in this motif. A total of 34 motifs of this kind were
found in this subject. The largest motifs in class (2) were
detected in subject ’control 3’. We found two motifs that
comprise 12 nodes with two different labels and 17 edges.
An example of the largest motifs found in class (1) and the
two largest motifs of class (2) are shown in figure 3.
It has to be mentioned that there is no motif that occurs in
all subjects.

Patients only Controls only

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

Frontal_Inf_
Tri_R

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_
Mid_R

Frontal_Inf_
Tri_L

Frontal_
Mid_R

Frontal_
Mid_R

Frontal_
Mid_R

Frontal_Inf_
Tri_L

Frontal_Inf_
Tri_L

Frontal_Inf_
Tri_L

Frontal_Inf_
Tri_R

Frontal_Inf_
Tri_R

Frontal_Inf_
Tri_R

Frontal_Inf_
Tri_R

Frontal_Inf_
Tri_R

Frontal_Inf_
Tri_R

Frontal_Inf_
Tri_R

Fig. 3. Largest motifs found in the groups of somatoform patients and healthy
controls.

Evaluation of ROIs. We found motifs that can discrimi-
nate very well between somatoform patients and controls. In
the next step we determined the normalized frequencies of
the ROIs in patients and controls, respectively. The results
are depicted in Figure 4. Our results are consistent with a
previous study [4]. They report different activation pattern in
the regions Insula L and Frontal Mid Orb R of patients and
controls. Our results of different activation of the parahip-
pocampal cortex in patients and controls (not depicted in
Figure 4) supports a recent study that suggests that patients
with posttraumatic stress disorder showed also an altered
activation pattern in the parahippocampal cortex in comparison
to healthy controls when subjected to painful heat stimuli [3].
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Fig. 4. Frequencies of ROIs in motifs of patiens and controls respectively

In addition, we found that patients show increased activation
in Rolandic Oper L, Caudate R and Rectus R whereas the
control group is activated in the regions Temporal Inf L,
Heschl R and Lingual R to a higher degree. Also the olfactory
region shows alterations in the activation of patients and
controls. Whereas Olfactory R occurs to a much higher degree
in motifs found in patients, motifs found in the networks of
controls are labeled more often with Olfactory L.

V. CONCLUSION

In this paper, we have applied an efficient algorithm for fre-
quent subgraph discovery to time series data of 7 somatoform
patients and 4 healthy controls. These motifs represent groups
of brain compartments that covary in their activity during the
process of pain stimulation.

We evaluate the appearance of motifs for both groups.
Our results let suspect that somatoform brain disorder is
caused by an additional pathogenous activity, not by a missing
physiological activity.

So far we care about the topology in the network of interac-
tions, but ignore the temporal order of these interactions. When
studying network topology, it is important to bear in mind that
the network models currently available are simplified models
of the systems that govern cellular processes. While these
processes are dynamic, the models we consider so far are all
static. In future research, we will look into the temporal order
of the motifs, thus we want to determine dynamic motifs.
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