
Probabilistic Skyline Queries

Christian Böhm
University of Munich
Munich, Germany

boehm@ifi.lmu.de

Frank Fiedler
University of Munich
Munich, Germany

fiedler@dbs.ifi.lmu.de

Annahita Oswald
University of Munich
Munich, Germany

oswald@dbs.ifi.lmu.de

Claudia Plant
Technische Universität

München
Munich, Germany

plant@lrz.tum.de

Bianca Wackersreuther
University of Munich
Munich, Germany
wackersreuther
@dbs.ifi.lmu.de

ABSTRACT
The ability to deal with uncertain information is becoming increas-
ingly important for modern database applications. Whereas a con-
ventional (certain) object is usually represented by a vector from a
multidimensional feature space, an uncertain object is represented
by a multivariate probability density function (PDF). This PDF can
be defined either discretely (e.g. by a histogram) or continuously
in parametric form (e.g. by a Gaussian Mixture Model). For a
database of uncertain objects, the users expect similar data analy-
sis techniques as for a conventional database of certain objects. An
important analysis technique for certain objects is the skyline op-
erator which finds maximal or minimal vectors with respect to any
possible attribute weighting. In this paper, we propose the concept
of probabilistic skylines, an extension of the skyline operator for
uncertain objects. In addition, we propose efficient and effective
methods for determining the probabilistic skyline of uncertain ob-
jects which are defined by a PDF in parametric form (e.g. a Gaus-
sian function or a Gaussian Mixture Model). To further accelerate
the search, we elaborate how the computation of the probabilistic
skyline can be supported by an index structure for uncertain ob-
jects. An extensive experimental evaluation demonstrates both the
effectiveness and the efficiency of our technique.

Categories and Subject Descriptors
H.3 [Information Storage And Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Performance

Keywords
Gaussian Mixtrue Model, Skyline Query, Uncerain Data

1. INTRODUCTION
Skyline queries and probabilistic queries on uncertain data are

two vital areas of current database research which recently have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

attracted increasing attention. The classical example of a skyline
query is a user looking for cheap hotels which are close to the
beach. Typically, it is unknown to the system how important the
two conditions, distance and price, to the user actually are. If there
is a conflict between these conditions (available are expensive ho-
tels close to the beach and cheap hotels far away from the beach), it
is unclear how the user’s trade-off between these conditions would
really look like. The system could ask the user to express his pref-
erences by a weighting factor. However, such a weighting factor is
often difficult to estimate, especially since the user typically has no
information on the database content. Moreover, complex decision
making on real world data usually involves several dimensions of
interest. As an alternative, the skyline query returns all offers which
may be of interest. This means, the skyline does not only contain
the cheapest hotel and the hotel closest to the beach but also all
hotels providing an outstanding combination of price and distance,
which makes them more attractive to the user than any other ho-
tel in the database. If one hotel A is both, closer to the beach and
cheaper than hotel B, we say A dominates B (in symbols A ≺ B),
because A is better than B with respect to any possible weighting of
the criteria distance and price. More generally, the skyline contains
all objects which are not dominated by any other object in the data
set. Such conventional skyline queries on exact data have attracted
a huge volume of attention in the recent years, e.g. [3, 18, 9, 14,
11] where most papers focus on efficient algorithms for query pro-
cessing. More recent approaches study skyline queries for special
applications, e.g. time series data [10] and skyline queries from
the perspective of a moving query object [20].

Uncertainty is a natural factor in many applications, which is
not restricted to moving objects [8, 20]. The classical example
of uncertain data modelled by probability density functions (PDFs)
are sensor networks. In numerous applications, sensor networks
are collecting data to monitor complex systems, for example the
behavior of a certain species in its natural habitat [13], the environ-
mental conditions in a region [12], the medical conditions of a pa-
tient [16], or the production of a chemical reactor [21]. A common
characteristic of all sensor networks is that the individual sensors
collect uncertain data. Every obtained piece of information is as-
sociated with some measurement error. Usually there is a trade-off
between the accuracy, size and price of a sensor. Very precise sen-
sors are typically more expensive and also larger in size. Wearable
sensors for example need to be small and the measurement error is
partly due to inaccurate placement and other individual conditions
such as the electrical conductance of the skin. Based on extensive
testing, manufacturers of sensors can usually provide close bounds
on the measurement error.

651

Most complex decision processes based on real world data in-
volve uncertainty which could be effectively supported by skyline
queries on uncertain data: As a concrete application scenario of
a sensor network with a large amount of sensors considers a chem-
ical reactor producing polyvinyl chloride (PVC). Depending on the
aiming application area of the PVC the reactor has to have a cer-
tain temperature. The temperature can either be controlled by heat-
ing up the reactor, or by adding some substances cooling down the
whole production process. Due to the size of the reactor adding
some chemical product in order to increase the temperature needs
a certain time to take effect. Furthermore the pressure inside the
reactor is also another critical and monitored indicator in quality
assurance of the resulting product. Gas can be injected into the
reactor or valves can be opened in order to control the pressure.

Producing PVC is only possible if the temperature of the reactor
at any point may not drop below a certain value. Furthermore the
pressure is not allowed to drop below some critical threshold. Of
course the combination of low temperature and decreased pressure
is also a critical combination. The reactor is equipped with hun-
dreds of sensors, which measure different inaccurate phenomena
of the production process. In general all outstanding combinations
of the monitored sensors can be critical to the production phase.
Those extraordinary values can be recognized as a skyline. There-
fore an efficient skyline computation on uncertain data is necessary.

Uncertainty is not only restricted to sensor networks and moving
objects. Due to space limitation, we can only mention a few exam-
ples. In privacy preserving data mining for example, uncertainty is
often deliberately introduced to mask sensitive information. In all
these applications, decision making can effectively be supported by
our technique for processing probabilistic skyline queries.

The remainder of the paper is organized as follows: Section 2 in-
troduces the related work on skylines and probabilistic query pro-
cessing. In Section 3, the mathematical foundations for probabilis-
tic skyline computation on uncertain data are derived, first for gen-
eral PDFs and then for the important case of Gaussian PDFs and
Gaussian Mixture Models. Section 4 gives the details on efficient
processing of probabilistic skyline queries in presence of an index
structure for uncertain objects in a filter-and-refinement architec-
ture. Section 5 is dedicated to the algorithms for computing the
skyline objects with and without index structures. Section 6 gives
an extensive experimental evaluation and Section 7 concludes our
paper.

2. RELATED WORK
Skyline Queries on Certain Data. The skyline operator has

been introduced to the database community by Börzsönyi et al. [3].
Triggered by the practical relevance of skyline queries in many do-
mains including e.g. customer segmentation, decision support and
bio-medical applications, a huge volume of papers focus on effi-
cient query processing, e.g. [6, 18, 9] and [11]. Most of these
approaches can be classified into three major categories: nested-
loop-based, divide-and-conquer-based and index-based methods.
The Block-Nested-Loops algorithm (BNL) and the Extended Di-
vide&Conquer algorithm (D&C) by Börzsönyi et al. [3] have been
the fundamental approaches in the first two categories. More effi-
cient approaches have recently been proposed, e.g. the Sort-Filter-
Skyline algorithm (SFS) by Chomicki et al. [6] which improves
BNL by pre-sorting the data set. Index-based approaches focus on
pruning strategies based on approximations to avoid scanning the
whole data set. The Bitmap and the Index technique by Tan et
al. [18] fall into this category. The first method uses bit-vectors
as approximations, whereas the second applies a transformation
into one-dimensional space to exploit the B+-tree for efficient re-

trieval. Another index-based algorithm is presented by Kossmann
et al. [9], which is based on nearest neighbor search. This method
does not compute the skyline in a batch-oriented way but progres-
sively outputs results and thus allows the user to change preferences
during runtime. Papadias et al. [14] developed a progressive algo-
rithm BBS (branch-and-bound skyline), based on a nearest neigh-
bor search technique supported by an R-tree. Only nodes that may
contain skyline points are accessed, and each node is processed
only once. Lin et al. [11] developed an efficient skyline computa-
tion method by determining the skyline for the most recent N el-
ements in a data stream. All of these methods aim at the skyline
computation of certain data.

Uncertain Data. In many applications, e.g. sensor networks
[8] and moving objects, the features of the objects are not exactly
known, but can be specified with some uncertainty, e.g. the current
location of a moving object. A lot of work focuses on efficient in-
dexing and query processing on uncertain data, e.g. [7, 17, 4, 5, 19,
2], just to mention a few. Typically, uncertain objects are modelled
by probability density functions. Most query types on conventional
databases, especially K-nearest neighbor and range queries have
been extended to the probabilistic case. Cheng et al. [5] intro-
duce R-tree-based index structures to support probabilistic thresh-
old queries on uncertain objects. An uncertain object is represented
by a so-called uncertainty interval which covers the unknown true
appearance of the object and is associated with a PDF. All objects
which are answers with a probability exceeding a threshold are re-
turned to the user. Similarly, Tao et al. [19] represent uncertain ob-
jects by an uncertainty region associated with a PDF. The authors
propose the U-tree, a hierarchical index structure to efficiently sup-
port probabilistic range queries. Hyper-rectangular core parts of the
uncertainty regions can be associated with bounds for the appear-
ance probability of an uncertain object, which allows for effective
pruning. In [2], uncertain objects are represented by Gaussians,
which allows for probabilistic identification queries. Given an un-
certain query object, the identification query returns those uncer-
tain objects which most likely represent the same object (e.g. for a
database of facial images: Find the images most likely showing the
same person as portrayed on the query image). The Gauss-tree is
a hierarchical index structure on the parameter space of Gaussians:
Gaussians with similar mean and variance are stored in a common
MBR. The Gauss-tree, the U-tree and most other index structures
for the efficient management of uncertain data are fully dynamic in-
dex structures which can efficiently handle insertions and deletions
of uncertain objects. These index structures are very general and
support many types of queries (e.g. identification queries). There-
fore, it can be assumed that in a database system for uncertain ob-
jects, such an index structure is available, and it is not required to
construct a particular index for each single query.

Probabilistic Skylines on Multi-Instance Data. In contrast to
common query types, such as range or identification queries, prob-
abilistic skyline queries have been nearly untouched so far. To the
best of our knowledge, only the work of Pei et al. [15] goes into this
direction. The authors propose a probabilistic skyline model for
multi-instance data, where each object is part of the skyline with a
certain probability. Each object consists of multiple instances. The
skyline probability of an object is determined by counting the num-
ber of its instances which are not dominated by the instances of any
other object in the database. This is the first approach dealing with
uncertain data in the area of skyline queries, but it is not directly
adaptable to objects which are initially represented by probability
density functions. Approaches involving uncertain data represent
uncertainty by a PDF because the true representation of an uncer-
tain object is not available.

652

3. THE SKYLINE PROBABILITY OF
UNCERTAIN OBJECTS

In this section, we introduce the basic definitions of probabilistic
skylines. In the following we consider uncertain objects, each given
by a PDF denoted by f(�x) or g(�x), and the complete database
consists of a set of such PDFs, DB = {f1(�x), ..., fn(�x)} where
n = |DB| is the number of uncertain objects in DB. The vec-
tor �x = (x1, ..., xd)

T ∈ Rd is a stochastic variable of the corre-
sponding uncertain object that follows the given distribution func-
tion (�x ∼ f(�x)). Unlike in [15], �x is not an instance given from
the application.

3.1 The Skyline Probability of a General PDF
The original concept of skylines (for d-dimensional certain fea-

ture vectors) defines the notion of dominance in the following way:
Object �x dominates object �y (in symbols �x ≺ �y) if the following
two conditions hold:

(1) xi ≤ yi for all coordinates i : 1 ≤ i ≤ d, and
(2) xi < yi for at least one coordinate i : 1 ≤ i ≤ d.

The generalization from non-probabilistic skylines on certain ob-
jects to probabilistic skylines on uncertain objects is given in the
following definitions. We start with the generalization of the no-
tion of the dominance:

DEFINITION 1 (PROBABILISTIC DOMINANCE). Let
f(�x), g(�y) ∈ DB be uncertain objects. The probability that f(�x)
dominates g(�y) corresponds to the probability that �x generated
from the probability density function f(�x) dominates �y generated
by g(�y). In symbols:

P (�x ≺ �y) =

Z
Rd

Z
Rd

f(�x) · g(�y) ·
j

1 if �x ≺ �y
0 otherwise

d�x d�y.

Instead of P (�x ≺ �y) we will also often write P (f(�x) ≺ g(�y)).
The symbol

R
Rd f(�x)d�x stands for the d-dimensional infinite vol-

ume integral evaluated over the complete data space Rd:Z
Rd

f(�x) d�x =

Z +∞

−∞
...

Z +∞

−∞
f((x1, ..., xd)

T) dx1 ... dxd.

Similarly to the dominance, also the skyline property of an uncer-
tain object in the database can only be defined in terms of a proba-
bility, the so-called skyline probability PS(f(�x)):

DEFINITION 2 (SKYLINE PROBABILITY). The skyline prob-
ability of an uncertain object f(�x) ∈ DB corresponds to the prob-
ability with which �x taken from the PDF f(�x) is not dominated by
any of the �y each of which is independently taken from one of the
remaining uncertain objects stored in the database g(�y) ∈ DB′

where DB′ = DB\{f(�x)}:

PS(f(�x)) = P (
^

g(�y)∈DB′
g(�y) ⊀ f(�x)) =

=

Z
Rd

f(�x)
Y

g(�y)∈DB′
(1 −

Z
Rd

g(�y) ·
j

1 if �y ≺ �x
0 otherwise

d�y) d�x.

Most of the considered PDFs (such as Gaussians) have infinite sup-
port (i.e., the domain in which the probability density is different
from 0). Hence in principle every object is in the skyline, though
the skyline probability of most objects is very close to zero. In
practice, usually only objects with a skyline probability signifi-
cantly greater than zero are of interest. This is formalized by a
user-defined threshold τ :

DEFINITION 3 (τ -SKYLINE). Let τ ∈ [0..1] be a threshold.
The τ -Skyline of a database of uncertain objects is the set of objects
for which the following property holds:

-4 -2 2 4 60-6 -4 -2 2 4 60 -6

y,i

x,i , x,i+ y,i
n (xi)2 2

x,i , x,i
n (xi)2

y,i , y,i
n (yi)2 x,i

x,i , x,i+ y,i
N (y,i)2 2

Figure 1: Transformation of the Probability.

Sτ = {f(�x) ∈ DB|PS(f(�x)) ≥ τ}.
In the next section, we will derive the closed formulas for the dom-
inance and skyline probability of uncertain objects, provided that
the PDF is a normal distribution.

3.2 Gaussian Distribution Functions
The Gaussian distribution (or normal distribution) is by far the

most important and most commonly used distribution function in
statistics. Its extarordinary role is mainly due to the central limit
theorem. The probability density function f(�x) corresponds to
the well-known multivariate Gaussian function with mean �μx =
(μx,1, ..., μx,d)

T and a diagonal (in principle, our work can also
be extended to the non-diagonal case) covariance matrix Σx =
diag(σ2

x,1, ..., σ
2
x,d):

f(�x) = n�μx,Σx(�x) =
1p

(2π)d det Σx

· e−
1
2 (�x−�μx)T·Σ−1

x ·(�x−�μx).

A second object g(�y) can be defined applying separate parameters
�μy and Σy . Since Σx and Σy are diagonal, the distribution func-
tions are independent in the coordinates, and we can write them in
the following way:

f(�x) =
Y

1≤i≤d

nμx,i,σ2
x,i

(xi) =
Y

1≤i≤d

1q
2πσ2

x,i

e
− (xi−μx,i)

2

σ2
x,i .

The dominance probability can be rewritten as follows:

P (�x ≺ �y) =

=

Z
Rd

Z
Rd

0
@ Y

1≤i≤d

nμx,i,σ2
x,i

(xi) ·
Y

1≤i≤d

nμy,i ,σ2
y,i

(yi)

1
A ·

·
j

1 if xj ≤ yj ∀j : 1 ≤ j ≤ d
0 otherwise

d�xd�y.

Since all the factors in the products of this formula correspond to
independent variables xi and since the conditions in the case dis-
tinctions are independent, we can rearrange the terms in the follow-
ing way and then exchange product and integral:

P (�x ≺ �y) =
Y

1≤i≤d

Z +∞

−∞

Z +∞

−∞
nμx,i,σ2

x,i
(xi) · nμy,i ,σ2

y,i
(yi)

·
j

1 if xi ≤ yi

0 otherwise
dxidyi

=
Y

1≤i≤d

P (xi ≤ yi).

This means, we can do the whole determination of the dominance
probability independently in each dimension (the two-fold integral)
and then combine the individual dimension-wise probabilities to an
overall probability (the product symbol in the above formula). Now

653

we are going to derive the solution for each of the dimensions. In
Figure 1, we see on the left side two different Gaussians. The task
is to determine the probability with which xi ≤ yi.

We substitute a new variable εi such that yi = xi + εi. Then, the
half space which we have to integrate (in which the case distinc-
tion yields 1) is exactly defined by εi ≥ 0. Then, our dominance
probability corresponds to:

P (xi ≤ yi) =

=

Z ∞

0

Z +∞

−∞
nμx,i,σ2

x,i
(xi) · nμy,i,σ2

y,i
(xi + εi) dxi dεi

=

Z +∞

0

Z +∞

−∞
nμx,i,σ2

x,i
(xi) · nμy,i−εi,σ2

y,i
(xi) dxi| {z }

= nμx,i,σ2
x,i+σ2

y,i
(μy,i − εi) (∗)

dεi.

where the formula (*) for the convolution product has already been
proven in [2]. This can be simply rewritten using the cumulative
distribution function, in the following form:

P (xi ≤ yi) = Nμx,i,σ2
x,i+σ2

y,i
(μy,i).

We can now conclude that integrating the product of the two Gaus-
sians exactly corresponds to integrating one Gaussian with the added
variances of the two. As Figure 1 demonstrates, the original prob-
lem on the left side has been transformed into an easy-to-solve
problem on the right side, where only one Gaussian needs to be
integrated. The integral is marked in color.

3.3 Gaussian Mixture Models
Now, we want to derive an analogous formula, provided that the

probability density functions fx(�x) and fy(�y) are given by Gaus-
sian Mixture Models rather than simple Gaussian functions. Gaus-
sian Mixture models provide a highly flexible and accurate repre-
sentation of uncertain objects. Gaussian Mixture Models are for
example suitable to represent sensor data with non-Gaussian error
distributions [1]. A Gaussian Mixture Model Mx is given as a set
of triplets

Mx = {(wx, �μx, Σx)(1), ..., (wx, �μx, Σx)(k)}

where k = |Mx| is the number of components. Each component is
defined by its weight wx and its means �μx and its diagonal variance
matrix Σx. The sum of the weights equals one:

X
(wx,�μx,Σx)∈Mx

wx = 1.

The probability density function of the GMM is given by:

fx(�x) =
X

(wx,�μx,Σx)∈Mx

wx · n�μx,Σx (�x)

=
X

(wx,�μx,Σx)∈Mx

wx ·
Y

1≤i≤d

nμx,i,σ2
x,i

(xi).

The GMM My and its probability density function is defined
analogously. The number of components l = |My | may differ
from that of Mx.

The dominance probability can now be written as:

P (�x ≺ �y) =

=

Z
Rd

Z
Rd

0
@ X

(wx,�μx,Σx)∈Mx

wx ·
Y

1≤i≤d

nμx,i,σ2
x,i

(xi)

1
A ·

·
0
@ X

(wy ,�μy,Σy)∈My

wy ·
Y

1≤i≤d

nμy,i,σ2
y,i

(yi)

1
A ·

·
j

1 if xj ≤ yj ∀j : 1 ≤ j ≤ d
0 otherwise

d�xd�y.

We can apply the distributive law and then exchange summation
and integration, and include our results obtained in Section 3.2 to
obtain:

=
X

(wx,�μx,Σx)∈Mx

X
(wy ,�μy,Σy)∈My

wxwy ·
Y

1≤i≤d

Nμx,i,σ2
x,i+σ2

y,i
(μy,i).

4. CONSERVATIVE ESTIMATION OF THE
DOMINANCE PROBABILITY

When uncertain objects are stored in an index structure such as
the U-tree [19] or the Gauss-tree [2], then it is an interesting ques-
tion how to accelerate the search for the skyline by exploiting this
index structure. If, for instance, a few objects belonging to the
skyline are already known (or at least a few good candidates for
skyline objects) then these objects may dominate not only other
single database objects but also complete branches (subtrees) of
the index. On the other hand, to determine the exact probability of
an uncertain object f(�x) to belong to the skyline, theoretically we
have to examine all objects g(�y) ∈ DB which have a probability
P (�y 	 �x) > 0 of dominating the object. However, many objects
g(�y) may have a probability to dominate f(�x) which is close to
zero, and the same may be true for all objects g(�y) in a complete
subtree. This leads us to the question, how to estimate the high-
est and lowest possible probability with which an uncertain object
dominates an arbitrary object stored in a subtree, and, inversely,
what is the highest and lowest probability that an arbitrary object
stored in a subtree dominates another uncertain object.

Note that index structures such as the U-tree or the Gauss-tree
are very general indexing methods efficiently supporting different
kinds of queries (such as probabilistic identification queries) and
efficiently supporting insertion of new uncertain objects and dele-
tion of uncertain objects. Therefore, it can be assumed that such an
index is available in a database system for uncertain objects. The
details how insertions and deletions can be processed and how the
tree is maintained (e.g. to keep balance) for the U-tree can be found
in [19], for the Gauss-tree in [2].

An important principle for indexing probability density functions
is the principle of parameter space indexing where the parameters
(in the case of Gaussian PDFs (μ1, σ1, ..., μd, σd)) are stored like
points from a (2 · d)-dimensional data space rather than spatially
extended objects. For Gaussian Mixture Models, each uncertain
object is represented by a set of such (2 · d)-dimensional points.
The most prominent example for such a parameter space indexing
method is the Gauss-tree [2]. Like in R-trees and similar tree struc-
tures for high-dimensional data, objects which are close to each
other in the (2 · d)-dimensional data space are grouped together
into a common subtree, and the whole subtree is represented by an
axis-parallel minimum bounding rectangle of the stored points. Be-
fore accessing a node, query processing algorithms have to check
according to the minimum bounding rectangle, whether or not the
corresponding subtree is able to contain objects to answer the query.

654

x,i

1 N i i x,i(x,i)

ii

ii

0.5

1.0

0.0

1 N i i x,i(x,i)

1 N i i x,i(x,i)

x,iii

1 N i i x,i(x,i)2 2

2 2

2 2

2 2

case (B)

case (A)

Figure 2: Maximum Probability that Object nμx,i,σ2
x,i

Domi-
nates My .

In our context, we need to determine the maximum and mini-
mum probability of an object stored in a tree (≡ contained in the
rectangle) to dominate a given uncertain object, and to be domi-
nated by a given uncertain object, respectively.

In the following sections we restrict the formulas to the simple
Gaussian functions only for better readability, the exact same for-
mulas hold for the Mixture Model as well, only the weighting factor
is missing.

4.1 Uncertain Object Dominates MBR
To clearly define the problem, we are given an uncertain object

as a probability density function

f(�x) =
Y

1≤i≤d

nμx,i,σx,i(xi)

and a minimum bounding rectangle

MBR = (μ̌1, μ̂1, σ̌1, σ̂1, ..., μ̌d, μ̂d, σ̌d, σ̂d).

which defines limits for the parameters of other probability density
functions g(�y) which may be stored in the subtree. Therefore, g(�y)
may be an arbitrary Gaussian function

g(�y) =
Y

1≤i≤d

nμy,i ,σy,i(yi)

where the parameters fulfill the constraints

μ̌1 ≤ μy,1 ≤ μ̂1, ..., μ̌d ≤ μy,d ≤ μ̂d

σ̌1 ≤ σy,1 ≤ σ̂1, ..., σ̌d ≤ σy,d ≤ σ̂d.

We call the functions g(�y) fulfilling the above constraints the al-
lowed functions in the subtree. Note that a function does not have
to be stored in the subtree to be allowed. The allowed functions are
rather those uncertain objects which potentially could be stored in
the subtree.

We want to determine among all allowed functions those which
are dominated by f(�x) with maximum and minimum probability,
respectively. In symbols:

P̂ (f(�x) ≺ MBR) = max
μ̌i≤μy,i≤μ̂
σ̌i≤σy,i≤σ̂

8<
: Y

1≤j≤d

Nμx,j ,σ2
x,j+σ2

y,j
(μy,j)

9=
; ,

(∀i : 1 ≤ i ≤ d) is the maximum dominance probability, and

P̌ (f(�x) ≺ MBR) = min
μ̌i≤μy,i≤μ̂
σ̌i≤σy,i≤σ̂

8<
: Y

1≤j≤d

Nμx,j ,σ2
x,j+σ2

y,j
(μy,j)

9=
; ,

(∀i : 1 ≤ i ≤ d) is the minimum dominance probability. Our
first observation is that here the maximization (minimization) can
be done individually in each dimension because the terms are again
independent in the dimensions. We can add the variance of f(�x) to
that of g(�y):
P̂ (f(�x) ≺ MBR) =

=
Y

1≤i≤d

max
μ̌i≤μy,i≤μ̂
σ̌i≤σy,i≤σ̂

n
Nμx,j ,σ2

x,j+σ2
y,j

(μy,j)
o

(and analogously for the minimum dominance probability). It is
convenient to exchange μx,j and μy,j in the above equation by fol-
lowing the rule Nμ,σ2(x) = 1 − Nx,σ2(μ):
P̂ (f(�x) ≺ MBR) =

=
Y

1≤i≤d

max
μ̌i≤μy,i≤μ̂
σ̌i≤σy,i≤σ̂

n
1 − Nμy,j ,σ2

x,j
+σ2

y,j
(μx,j)

o
.

Now, we can draw the four extreme curves of the MBR with the
added variance of f(�x), as depicted in the top and middle diagram
of Figure 2. We have also marked for two possible positions of
μx,i, in the top diagram a position which is less than μ̂i and in the
middle diagram a position greater than μ̂i. In the next paragraph we
will see that these are two possibilities in a case distinction. In both
diagrams, we have marked the dominated area, i.e. right from μx,i.
The probability corresponds to the area under the Gaussian, starting
from μx,i until +∞ which exactly corresponds to 1 − N...(μx,i).
We will also show in the next paragraph how the parameters of N
must be set in order to maximize (minimize) the dominance proba-
bility.

No matter at what position μx,i in Figure 2 is, the maximally
dominated function is always one of the rightmost possible func-
tions, i.e. μy,i = μ̂i. The reason is that if we want to determine
that curve, which has most of its area right from the point μx,i,
then we have to shift the curve as far as possible to the right side.
This intuition is also confirmed by the bottom diagram in Figure 2
which depicts for each of the extreme functions of the MBR the cor-
responding function 1 − N...(μx,i) which gives for each position
of μx,i the area under the Gaussian right from μx,i: The two func-
tions centered at μ̂i are everywhere greater than the correspond-
ing functions centered at μ̌i and all other allowed functions (with
same variance). A little bit more complex is the determination of
the variance σ2

y,i of the function g(�y) maximizing the dominance
probability. We have to distinguish the two cases where μx,i is left
(case A) or right (case B) from μ̂i.

Case (A) is depicted in the top diagram of Figure 2. In this case,
we can see that the maximizing variance is defined by the most nar-
row (and highest) function with σy,i = σ̌i, because the integral of
a Gaussian is monotonically increasing (positive derivative) with
increasing variance σ2 if (and only if) the upper integration bound-
ary is less than the mean, and monotonically decreasing (negative

655

derivative) if (and only if) the upper integration boundary is greater
than the mean. If the integration boundary is equal to the means,
then the integral is constantly 0.5 no matter how large the variance
is (and its derivative is equal to zero). Formally:

d
dσ

Nμ,σ2(x)

8<
:

< 0 if x < μ
= 0 if x = μ
> 0 if x > μ.

Therefore, in case (A), 1 − N...(μx,i) is maximal for the smallest
possible variance (i.e. the most narrow Gaussian), in this case (σ̌2

i +
σ2

x,i). This intuition is again confirmed by the bottom diagram of
Figure 2 where the maximum among all allowed functions is 1 −
Nμ̂i,σ̌2

i +σ2
x,i

(μx,i) if μx,i ≤ μ̂i.

Case (B) is depicted in the middle diagram of Figure 2. In this
case, we see that σy,i = σ̂i defines the maximum because the
marked area becomes larger the more σyi is increased. For the case
μx,i = μ̂i, we would mark 50 percent of the curve, no matter how
large σyi is. Summarizing, we obtain the following formula for an
upper bound estimation of the maximum dominance probability:
P̂ (f(�x) ≺ MBR) =

=
Y

1≤i≤d

(
1 − Nμ̂i ,σ̌2

i +σ2
x,i

(μx,i) if μx,i ≤ μ̂i

1 − Nμ̂i ,σ̂2
i +σ2

x,i
(μx,i) otherwise.

We have 1 − N...(μx,i) because here we have to integrate from
μx,i to +∞ rather than the integration boundaries from Section
3.2 (from −∞ to μx,i). The overall function P̂ (f(�x) ≺ MBR) is
depicted in the bottom diagram of Figure 2. Here we can see the
four integral functions corresponding to the four extreme Gaussians
representing the corner points of the MBR. The maximum (which
changes at μ̂i from 1−Nμ̂i,σ̌2

i +σ2
x,i

(μx,i) to 1−Nμ̂i,σ̂2
i +σ2

x,i
(μx,i))

is marked in color. Analogously, the minimum dominance proba-
bility is given by:
P̌ (f(�x) ≺ MBR) =

=
Y

1≤i≤d

(
1 − Nμ̌i ,σ̂2

i +σ2
x,i

(μx,i) if μx,i ≤ μ̌i

1 − Nμ̌i ,σ̌2
i
+σ2

x,i
(μx,i) otherwise.

In the bottom diagram of Figure 2, the minimum function is not
particularly marked but it can also be recognized that minimal are
those functions which are centered by μ̌i and that the case distinc-
tion of the above formula is also correct.

4.2 MBR Dominates a Given
Uncertain Object

Inversely, we are also interested in the question what is the max-
imum and minimum probability with which an arbitrary function
from the MBR may prune a given uncertain object. This informa-
tion will later be used to avoid unnecessary node refinements when
confirming that the uncertain object is indeed a skyline object. The
derivation of the following equations is analogous to those in Sec-
tion 4.1:
P̂ (MBR ≺ f(�x)) =

= max
μ̌i≤μy,i≤μ̂

σ̌i≤σy,i≤σ̂

8<
: Y

1≤j≤d

Nμy,j ,σ2
x,j+σ2

y,j
(μx,j)

9=
;

=
Y

1≤i≤d

(
Nμ̌i,σ̂2

i +σ2
x,i

(μx,i) if μx,i ≤ μ̌i

Nμ̌i,σ̌2
i +σ2

x,i
(μx,i) otherwise.

P̌ (MBR ≺ f(�x)) =

= min
μ̌i≤μy,i≤μ̂

σ̌i≤σy,i≤σ̂

8<
: Y

1≤j≤d

Nμy,j ,σ2
x,j+σ2

y,j
(μx,j)

9=
;

=
Y

1≤i≤d

(
Nμ̂i,σ̌2

i +σ2
x,i

(μx,i) if μx,i ≤ μ̂i

Nμ̂i,σ̂2
i +σ2

x,i
(μx,i) otherwise.

4.3 MBR Dominates Other MBR
We can define the dominance probability also at the level of two

minimum bounding rectangles MBRx and MBRy and determine
the maximum and minimum probability with which an arbitrary
function stored in MBRx dominates an arbitrary curve stored in
MBRy , respectively.
P̂ (MBRx ≺ MBRy) =

= max
μ̌x,i≤μx,i≤μ̂x,i
σ̌x,i≤σx,i≤σ̂x,i
μ̌y,i≤μy,i≤μ̂y,i
σ̌y,i≤σy,i≤σ̂y,i

8<
: Y

1≤j≤d

Nμy,j ,σ2
x,j+σ2

y,j
(μx,j)

9=
;

=
Y

1≤i≤d

(
1 − Nμ̂y,i ,σ̌2

y,i+σ̌2
x,i

(μ̌x,i) if μ̌x,i ≤ μ̂y,i

1 − Nμ̂y,i ,σ̂2
y,i+σ̂2

x,i
(μ̌x,i) otherwise.

P̌ (MBRx ≺ MBRy) =

=
Y

1≤i≤d

(
1 − Nμ̌y,i ,σ̂2

y,i+σ̂2
x,i

(μ̂x,i) if μ̂x,i ≤ μ̌y,i

1 − Nμ̌y,i ,σ̌2
y,i+σ̌2

x,i
(μ̂x,i) otherwise.

4.4 Bounding the Skyline Probability
Until now, we have only given the details how the dominance

probability can be determined for Gaussian PDFs but not for the
skyline probability. An obvious idea to determine the skyline prob-
ability of an uncertain object f(�x) would be directly to use the
results of Section 4.2 to 4.3 and to multiply the probabilities of
all other uncertain objects g(�y) ∈ DB\{f(�x)}, not to dominate
f(�x). However, this approach requires the independence of the
dominance property. As we will show in this section, the prob-
ability that one object g(�y) dominantes f(�x) and the probability
that another object h(�z) dominates f(�x) may be positively (but not
negatively) correlated. As we will see, negative correlations are ex-
cluded due to the transitivity of the dominance. The consequence
is, that we could under-estimate (but not over-estimate) the skyline
probability by ignoring this correlation.

LEMMA 1 (POSITIVE CORRELATION OF DOMINANCE). Let
f(�x), g(�y), and h(�z) ∈ DB be uncertain objects. The conditional
probability that f(�x) is dominanted by h(�z) under the condition
that f(�x) is dominated by g(�y) is greater or equal to the uncon-
ditional probability that f(�x) is dominated by h(�z). Likewise, the
conditional probability that f(�x) is not dominated by h(�z) under
the condition that f(�x) is not dominated by g(�y) is greater or equal

f(xi)

h(zi)g(yi) B

yi zi

A

B
C

Figure 3: Correlation of Dominance.

656

to the unconditional probability:

P (h(�z) ≺ f(�x)|g(�y) ≺ f(�x)) ≥ P (h(�z) ≺ f(�x)),

P (h(�z) ⊀ f(�x)|g(�y) ⊀ f(�x)) ≥ P (h(�z) ⊀ f(�x)).

PROOF. Consider Figure 3 where we have two stochastic vari-
ables yi ∼ g(yi) and zi ∼ h(zi) Those values of xi which are
dominated by zi, are in the area marked by A =

R ∞
zi

f(xi)dxi.
The values which are dominated by yi are in the areas A ∪ B with
B =

R zi

yi
f(xi)dxi. The sum of areas A + B + C = 1 (the

whole Gaussian PDF). The unconditional probability with which
xi is dominated by zi is:

P (zi ≤ xi) =
A

A + B + C
= A.

In contrast, if we know that xi is dominated by yi (conditional
probability), then the event space only consists of the areas A∪B,
and, therefore, the conditional probability is:

P (zi ≤ xi|yi ≤ xi) =
A

A + B
≥ P (zi ≤ xi).

If the roles of yi and zi are exchanged, then the conditional prob-
ability even becomes 1 because all instances which are dominated
by zi are also dominated by yi. But also in this case the statement
of the lemma holds (trivially). It also holds in the multivariate case
(h(�z) ≺ f(�x)), because in the conditional probability, the area of
negative events is always less or equal compared to the uncondi-
tional probability whereas the positive events are unchanged. The
same applies for the conditional probability for h(�z) ⊀ f(�x).

This lemma provides us some possibilities for the estimation of up-
per and lower boundaries of the skyline probability, mostly due to
the product rule of probabilites (P (A ∧ B) = P (A) · P (B|A)
for arbitrary, not necessarily independent stochastic events A and
B which is related to Bayes’ theorem) which allows the decompo-
sition of the formula for the skyline probability. Let Q ⊆ DB′

(where again DB′ = DB\{f(�x)}) be a suitable subset of the
database, (e.g. those objects that have the largest probabilities to
dominate f(�x)). Then according to the product rule of probabili-
ties we have:

PS(f(�x)) = P (
^

g(�y)∈DB′
g(�y) ⊀ f(�x)) =

= P (
^

g(�y)∈Q

g(�y) ⊀ f(�x)) · P (
^

h(�z)∈DB′\Q

h(�z) ⊀ f(�x)|
^

g(�y)∈Q

g(�y) ⊀ f(�x))

of which we can get an upper bound by completely cancelling the
conditional term (which is ≤ 1), and a lower bound by replacing it
by the unconditional term (which is a lower bound due to Lemma
1):

PS(f(�x)) ≤ P̂ Q
S (f(�x)) = P (

^
g(�y)∈Q

g(�y) ⊀ f(�x)),

PS(f(�x)) ≥ P̌ Q
S (f(�x))

= P (
^

g(�y)∈Q

g(�y) ⊀ f(�x)) ·
Y

h(�z)∈DB′\Q

P (h(�z) ⊀ f(�x)).

We call P̂ Q
S (f(�x)) the partial skyline estimation with respect to Q

and the term

P Q
IASP (f(�x)) =

Y
h(�z)∈Q

P (h(�z) ⊀ f(�x))

the independence assumption skyline estimation with respect to Q.
Note that, if Q corresponds to the complete database DB′, then

P̌ DB′
S (f(�x)) = PS(f(�x)) = P̂ DB′

S (f(�x)),

and the independence assumption estimation (which can be com-
puted analytically in a very inexpensive way) can e.g. be used to
rank the objects of the database (cf. Section 3.2). For the partial
skyline estimation P̂ DB′

S (f(�x)), we can use the following partial
Montecarlo integration method: Let X = {�x1, ..., �xs} be a set
(with a number s = |X| of elements) of values i.i.d. generated
from f(�x). Then:

P̂ Q
S (f(�x)) ≈ P Q

MC(f(�x)) =
1

s

X
�x∈X

Y
n�μ,Σ(�y)∈Q

(1 − N�μ,Σ(�x)).

This Montecarlo integration is not very expensive either since (1)
it generates instances �x only for the single PDF f(�x), and not for
the (many) other functions g(�y) ∈ Q (i.e. our method requires
O(s) computations), and (2) this integration method is updatable
whenever Q changes (e.g. when a new uncertain object is inserted
into Q). (e.g. when a new uncertain object is inserted into Q). Our
method has no demand to store generated instances permanently.

5. ALGORITHMS
In the following sections we describe algorithms for efficient

computation of the τ -skyline.

5.1 Baseline Algorithm for Skyline
Computation

The baseline algorithm for determining the τ -skyline iterates
over the number n of objects in the database, and determines the
skyline probability of each object by generating s instances. The
skyline probability is then computed according to the formula for
P DB′

MC (f(�x)), where DB′ = DB\{f(�x)} as described in Section
4.4. An object f(�x) belongs to the τ -skyline if

P DB′
MC (f(�x)) ≥ τ

holds. Since each database object has to be compared to each other,
the runtime complexity of the baseline algorithm is O(s ·n2), with
s being the sample rate. The baseline algorithm has only a linear
runtime complexity with respect to the number of instances. But no
filtering steps from Section 3 are applied to accelerate the skyline
operator.

5.2 Priority Algorithm for Efficient τ -Skyline
Computation

In order to avoid the computation of the exact skyline probability
for each object, we introduce our priority algorithm. The main idea
of the priority algorithm is to use the equations derived in Section
4.4 to exclude as many objects as possible from further considera-
tion. Compared to the numerically determined skyline probability
P DB′

MC (f(�x)), the approximation P DB′
IASP (f(�x)) can be computed

extremly fast even on large databases. This fact is used to deter-
mine for object f(�x) the approximation P DB′

IASP (f(�x)) by compar-
ing the object f(�x) with all other objects g(�y) of the database. The
resulting dominance probability 1 − P (g(�y) ≺ f(�x)) from this
comparison step is stored together with a reference to g(�y) in a pri-
ority queue in descending order. In the following iteration step, in
order to decide whether f(�x) belongs to the τ -skyline, we use the
priority queue and get one object after the other out of the queue.
For each dequeued object h(�z), we update the skyline probability
P SF

MC(f(�x)) of the set SF of all So Far processed objects of the pri-
ority queue. When processing object h(�z) we update P DB′

IASP (f(�x))
by cancelling out the dominance probability which is stored in the

priority queue. This results in the probability P
DB′\SF
IASP (f(�x)),

657

01 algorithm PrioritySkyline(threshold τ)
02 Set resultSet := {};
03 for all f(�x) ∈ DB do:
04 PriorityQueue pq = new PriorityQueue(descending);
05 for all g(�y) ∈ DB′ do:
06 update P DB′

IASP (f(�x));
07 pq.insert(g(�y), (1 − P (g(�y) ≺ f(�x))));
08 end for;
09 Set SF :={};
10 while(pq.isNotEmpty()) do:
11 h(�z) := pq.removeFirst();
12 SF := SF ∪ {h(�z)}
13 update P

DB′\SF
IASP (f(�x))

14 update P SF
MC(f(�x))

15 if (P SF
MC(f(�x)) < τ)

16 break while; //f(�x) does NOT belong to skyline

17 if (P SF
MC(f(�x)) · P

DB′\SF
IASP (f(�x)) ≥ τ)

18 resultSet.add(f(�x)); // A belongs to skyline
19 break while;
19 end while;
20 end for;
21 return resultSet;

Figure 4: Pseudocode of the Priority Algorithm for Skyline
Construction.

representing the maximal possible influence of the remaining ob-
jects in the priority queue on object f(�x). This means, the more
objects h(�z) are processed, the smaller P SF

MC(f(�x)) gets. Object
f(�x) can be returned if one of the following conditions are ful-
filled:

• if P SF
MC(f(�x)) < τ then f(�x) can definitely be excluded

from the τ -skyline.

• if P SF
MC(f(�x))) · P DB′\SF

IASP (f(�x)) ≥ τ then f(�x) definitely
belongs to the τ -skyline.

If we are only interested in objects belonging to the τ -skyline, we
can stop the computation as soon as we know that f(�x) belongs to
the skyline. But then the exact skyline probability value of f(�x)
can not be returned.

We can typically exclude object f(�x) from the skyline very early,
i.e. after comparing it with only a few other objects h(�z) of the pri-
ority queue, since the queue is sorted in descending order according
to PIADP (h(�z) ≺ f(�x)). The objects h(�z) which probably have
the highest influence on the skyline probability of f(�x) are pro-
cessed first.

The pseudocode for the priority τ -skyline algorithm is depicted
in Figure 4. Here, the computation of P DB′

IASP (f(�x)) in line 06
refers to the formula in Section 4.4. The worst case runtime com-
plexity of the priority algorithm is:

O
`
n2 + s · n · |SF |´ ,

with s being the sample rate, n the number of objects in the database,
and |SF | being the maximum number of objects considered in the
set SF . In Section 6 we will demonstrate the superiority of the pri-
ority algorithm over the baseline approach. The main disadvantage
of the priority algorithm is its I/O costs.

5.3 Indexed Algorithm for Efficient τ Skyline
Computation

When objects are stored in a database a common indexing tech-
nique uses minimal bounding rectangles (MBR). The indexed ap-
proach uses the MBR technique as described in section 4. By using

01 algorithm IndexedSkyline(threshold τ)
02 Set resultSet := {};
03 PriorityQueue pq = new PriorityQueue(descending);
04 pq.insert(db.getRoot(), ∞);
05 while (pq.hasUnprocessedElements()) do:
06 Element elem = pq.nextUnprocessedElement();
07 if(elem.isMBR())
08 pq.remove(elem);
09 for (Element child : elem.getChildElements()) do:
10 if(child.isMBR())
11 pq.insert(child, P̂ pq

IASP (child));
12 else //child is an object
13 pq.insert(child, P̂ pq

MC (child));
14 end for;
15 update P̂ pq

MC(f(�x)), P̌ pq
MC(f(�x)) : ∀ f(�x) ∈ pq

16 update P̂ pq
IASP (R) : ∀R |R is MBR ∧R ∈ pq

17 else //elem is an object
18 if(P̂MC (elem)< τ)
19 pq.markAsProsessed(elem);
20 return resultSet;
21 else if(P̌MC (elem)≥ τ)
22 pq.markAsProsessed(elem);
23 resultSet.add(elem);
24 else // we can not decide yet
25 MBR nextMBR = pq.getNextMBR();
26 pq.update(nextMBR, ∞); // is processed next
27 end while;
28 return resultSet;

Figure 5: Indexed Algorithm for Skyline Construction.

the index the τ -skyline can prune several MBRs without looking at
the exact objects.

The indexed approach is backed by a priority queue held in main
memory. The priority queue is sorted descending according to the
P̂MC(f(�x)) of an object f(�x) and according to P̂IASP (R) of a
MBR R. The first element to be inserted in the priority queue is
the root of the index. The next element to be processed is the one
with the highest current skyline probability. If the next element
is a node with MBR R, it is removed from the queue and all its
child elements are inserted into the queue. By inserting the child
elements, the values of P̂MC(f(�x)) and P̌MC(f(�x)) of all objects
f(�x) as well as P̂MC(R) of all MBRs R are updated.

If the next element is an object f(�x), it can be returned provided
that one of the two following conditions are fulfilled:

• if P̂MC(f(�x)) < τ we can exclude the object f(�x) from
the skyline.

• if P̌MC(f(�x)) ≥ τ we know that f(�x) belongs to the sky-
line and can add it to the result set.

When we exclude an object f(�x) from the skyline we can stop
searching for further objects in the queue, since all other objects
have smaller skyline probabilities than f(�x). If we cannot decide
for the current object if it belongs to the skyline or not, we process
the priority queue’s next MBR and insert its children. Thus, the
skyline probabilities for all objects contained in the queue will be
refined.

The pseudocode for the indexed τ -skyline algorithm is depicted
in Figure 5. The update of the upper and lower bounds of the sky-
line probability (P̂ pq

MC(f(�x)), P̌ pq
MC(f(�x))) of every object f(�x)

of the priority queue in line 14 can be done in one iteration step
over the priority queue when inserting all the child elements of
the former MBR. In this iteration the computation of the upper
bound (line 15) of the independence assumption skyline probability

658

(P̂ pq
IASP (R)) for every MBR R of the priority queue can be done as

well.
Our experiments presented in the next section demonstrate sub-

stantial performance gains by indexing. As with any index struc-
ture, the magnitude of improvement depends on data distribution
and dimensionality. Thus, an acceptable worst case runtime com-
plexity is an important characteristic. The indexed approach has a
worst case runtime complexity of:

O
`
s · n2´

,

with s being the sample rate and n the number of objects in the
database, since the objects are retrieved from the tree and after-
wards in the worst case compared to each other.

6. EXPERIMENTAL EVALUATION
In this section, we present an extensive experimental evaluation

on synthetic and real world data. Uncertain objects are provided
by single Gaussian distributions or Gaussian Mixture Models. Un-
less otherwise specified, the following experiments have been per-
formed on 4,000 uniformly distributed 3-dimensional uncertain ob-
jects with a sample-rate of 100 and a threshold of τ = 0.7. Uncer-
tainty is simulated by representing each object as Gaussians with
mean between 0 and 1,000 and a variance between 0 and 1000

4· d√n
.

Besides synthetic data we used the NBA game-by-game tech-
nical statistics from 1991 to 2005 which is available at the NBA
website www.NBA.com. The data set contains the performance
statistics of 1,313 players. We represented each player as an un-
certain object including 3 important statistics on his performance:
number of points, number of assists, and number of rebounds (each
defined by mean and variance).

We implemented all of our algorithms single threaded in Java.
Unless otherwise noted, all experiments were performed on a SUN
Fire X4600 with SunOS which is equipped with four Dual-Core
AMD Opteron Processor and has 32 GByte of RAM. But in all ex-
periments our algorithms only used 256 MB of Ram and a single
CPU core.

Runtime w.r.t. Sample Rate. Figure 6 displays the effect of
varying sample rates on NBA data. It is evident that all algorithms
scale linearly with increasing sample rate (cf. Figure 6(a)). How-
ever, the linear factor is much larger for the baseline algorithm
than for the other two. For 10,000 samples the baseline algorithm
needs 198 minutes, whereas the priority algorithm needs 13 min-
utes. The indexed algorithm taking approximately 2 minutes is the
fastest method. The reason for this is that relatively costly Mon-
tecarlo integrations are performed for each pair of objects in the
baseline approach. Exploiting the lower bounding approximation
even the simple priority algorithm saves much time. In the indexed
approach, whole sub-trees can be pruned based on this efficient ap-
proximation, leading to superior runtime as displayed in detail in
Figure 6(b).

Another experiment for the sample rate was evaluated on a syn-
thetic generated Gaussian Mixture Model data set with 1500 ob-
jects in the database. As depicted in figure 7(a) the differences in
runtime especially for the baseline are tremendous, here the priority
and the indexed algorithms show their superiority.

Semantically the sample rate determines the level of abstraction
which is used to represent an uncertain object. A higher sample
rate may lead to more accurate results. Our experiments on NBA
data demonstrate that a sample rate of 100 is sufficient to achieve
a stable result. The skyline probabilities of the NBA players are
displayed in Table 1. LeBron James is in all our results the most

200

150

200

n)

baseline
priority

100

150

(m
in priority

indexed

50

100

im
e

0

t

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

(a) all three algorithms

14

10
12
14

n)

priority

8
10

(m
in indexed

4
6

im
e

0
2t

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

(b) priority and indexed

Figure 6: Runtime for Different Sample Rates.

LeBron James 0.525133 Karl Malone 0.414282
Shaquille O’neal 0.496458 Allen Iverson 0.387400
Jason Kidd 0.484001 Chris Webber 0.383983
Charles Barkley 0.482588 Michael Jordan 0.379210
Dennis Rodman 0.466790 John Stockton 0.318612
Kevin Garnett 0.458139 Grant Hill 0.317689
Tim Duncan 0.420447 Kevin Johnson 0.312901

Table 1: NBA Players with a Skyline Probability of at least 0.3.

outstanding player. He is always several percentages better than
the second best player according to the skyline probability. Players
with almost equivalent skyline probability differ only in the 3rd dec-
imal place e.g. Jason Kidd and Charles Barkley or Grant Hill and
John Stockton. As depicted in Figure 7(b) the skyline probabilities
of the NBA-players show highly stable results and only vary on
average about 0.7% when repeating the experiment multiple times
with sample rates ranging from 1000 to 4000.

30

25

30 baseline

i it
20h)

priority

indexed
15

m
e
(indexed

10ti
m

0

5

0

1k 2k 3k 4k 5k 6k

number of samples

(a) sample rate

0 020,02

0 01an
ce

0,01

va
ri
a

0

v

0

1k 2k 3k 4k1k 2k 3k 4k
number of samples

(b) variance of results

Figure 7: Variance of Results and Runtime for Sample Rate.

Runtime w.r.t. Number of Objects. Figure 8 shows the runtime
behavior of the three algorithms on different database size. We gen-
erated synthetic data sets with varying number of objects. As it can
be seen in Figure 8(b), the runtime of the baseline algorithm heav-
ily depends on the database size n, whereas the priority and the
indexed demonstrate their superiority. Even at moderate database
sizes of 4,000 objects the baseline approach is outperformed by a
factor of 57 compared to the priority algorithm. Figure 8(a) com-
pares the runtime of priority and indexed algorithm. The indexed
shows a speedup of factor 4 for 10,000 objects. The response time
is only 52 seconds whereas the priority algorithm needs 213 sec-
onds.

I/O Costs of the Indexed Approach. Another experiment demon-
strates the I/O cost of the indexed algorithm. We defined a page size
of 2 kByte and assumed a cache of 20% of the pages for both algo-
rithms. In Figure 9(b) the resulting page accesses are depicted. It
can be seen that the indexed outperforms the priority algorithms by
magnitudes especially for large number of objects in the database.
Comparing the data set with 10,000 objects, the indexed algorithm
only has to access 186 pages whereas the priority has to load 6.8
times more pages, resulting in 1,280 page accesses.

659

150

200

250

e(
s)

priority

indexed

0

50

100

0 2000 4000 6000 8000 10000

ti
m
e

number of objects

(a) priority and indexed

1500

2000

2500

e(
s)

priority
indexed
baseline

0

500

1000

1500

0 2000 4000 6000 8000 10000

ti
m
e

number of objects

baseline

(b) all three algorithms

Figure 8: Runtime Analysis with Increasing Database Size.

Runtime w.r.t. τ . Figure 9(a) depicts the runtime on 1500
synthetic generated Gaussian Mixture Model data with increasing
values for the skyline-threshold τ , ranging from 0.1 to 0.9. The
runtime for the baseline algorithm is not included in this diagram,
since its runtime does not depend on τ . Recall that the baseline
approach first computes the skyline for all objects and just scans in
a postprocessing step the result for objects having a higher skyline
probability than τ . The runtime of the baseline approach is about
24 minutes for all τ values. The performance of the priority algo-
rithm starts to degrade for thresholds lower than approximately 0.4,
whereas the indexed approach scales only slightly sub-linear with
decreasing τ . This indicates that pruning is effective even for very
small threshold values. Even for the extreme case of τ = 0.1 the
query is processed in 4 seconds, which is a speedup of a factor of
24 w.r.t. the priority algorithm.

60

80

e(
s)

priority

indexed

0

20

40

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

ti
m
e

τ
(a) different τ threshold values

1400 i it

1000
1200
1400

ce
ss

priority
indexed

800
1000

e
ac
c

400
600

pa
ge

0
200
400p

0
0 2000 4000 6000 8000 10000

number of objects

(b) number of page accesses

Figure 9: Runtime Analysis on Changing τ Threshold and Page
Accesses.

7. CONCLUSIONS
In this paper, we have introduced the probabilistic skyline query

which is a powerful building block for data mining and decision
support applications on uncertain data. This is the first approach
extending the skyline operator to uncertain objects which are mod-
elled by probability density functions. Analogously to the con-
ventional skyline query, we provide definitions for dominance and
skyline probability for uncertain objects. We propose an efficient
algorithm to compute the skyline probability of each uncertain ob-
ject and introduce the τ -skyline query, together with an efficient
algorithms for query processing. The result set of the τ -skyline
query contains all objects with a skyline probability of more than
τ%. Our algorithms relies on a very simple data structure based on
MBRs and thus can be integrated into many indexing techniques.
In an extensive experimental evaluation on synthetic and real data
we demonstrate that the proposed algorithms are highly efficient
and scalable to large data sets.

8. REFERENCES
[1] R. S. Blum, Y. Zhang, B. M. Sadler, and R. J. Kozick.

Approximation of correlated nongaussian noise pdfs using

gaussian mixture models, published. In American University,
Washington DC, 1999.

[2] C. Böhm, A. Pryakhin, and M. Schubert. The gauss-tree:
Efficient object identification in databases of probabilistic
feature vectors. In ICDE, page 9, 2006.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[4] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In SIGMOD, pages
551–562, 2003.

[5] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter.
Efficient indexing methods for probabilistic threshold
queries over uncertain data. In VLDB, pages 876–887, 2004.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting: Theory and optimizations. In Intelligent
Information Systems, pages 595–604, 2005.

[7] N. N. Dalvi and D. Suciu. Answering queries from statistics
and probabilistic views. In VLDB, pages 805–816, 2005.

[8] A. Faradjian, J. Gehrke, and P. Bonnet. Gadt: A probability
space adt for representing and querying the physical world.
In ICDE, pages 201–211, 2002.

[9] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the
sky: An online algorithm for skyline queries. In VLDB,
pages 275–286, 2002.

[10] Q. Li, B. Moon, and I. Lopez. Skyline index for time series
data. IEEE Transactions on Knowledge and Data
Engineering, 16(6):669–684, 2004.

[11] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky:
Efficient skyline computation over sliding windows. In
ICDE, pages 502–513, 2005.

[12] K. Lu, Y. Qian, D. Rodríguez, W. Rivera, and M. Rodriguez.
Wireless sensor networks for environmental monitoring
applications: A design framework. In GLOBECOM, pages
1108–1112, 2007.

[13] A. M. Mainwaring, D. E. Culler, J. Polastre, R. Szewczyk,
and J. Anderson. Wireless sensor networks for habitat
monitoring. In WSNA, pages 88–97, 2002.

[14] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD,
pages 467–478, 2003.

[15] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines
on uncertain data. In VLDB, pages 15–26, 2007.

[16] B. Sarikaya, M. A. Alim, and S. Rezaei. Integrating wireless
eegs into medical sensor networks. In IWCMC, pages
1369–1374, 2006.

[17] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom.
Working models for uncertain data. In ICDE, page 7, 2006.

[18] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In VLDB, pages 301–310, 2001.

[19] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar. Indexing multi-dimensional uncertain data
with arbitrary probability density functions. In VLDB, pages
922–933, 2005.

[20] A. K. H. Tung, Z. Huang, H. Lu, and B. C. Ooi. Continuous
skyline queries for moving objects. IEEE Transactions on
Knowledge and Data Engineering, 18(12):1645–1658, 2006.

[21] D.-L. Yu and D.-W. Yu. Detecting sensor faults for a
chemical reactor rig via adaptive neural network model. In
ISNN (3), pages 544–549, 2005.

660

