Density-based Clustering using Graphics Processors

Christian B6hm,
University of Munich
Munich, Germany
boehm@dbs.ifi.Imu.de

Claudia Plant

Technische Universitat Miinchen

Munich, Germany
plant@Irz.tum.de

ABSTRACT

During the last few years, GPUs have evolved from simple
devices for the display signal preparation into powerful co-
processors that do not only support typical computer graph-
ics tasks but can also be used for general numeric and sym-
bolic computation tasks. As major advantage GPUs provide
extremely high parallelism combined with a high bandwidth
in memory transfer at low cost. We want to exploit these ad-
vantages in density-based clustering, an important paradigm
in clustering since typical algorithms of this category are
noise and outlier robust and search for clusters of an arbi-
trary shape in metric and vector spaces. Moreover, with a
time complexity ranging from O(nlogn) to O(n?) these al-
gorithms are scalable to large data sets in a database system.
In this paper, we propose CUDA-DClust, a massively par-
allel algorithm for density-based clustering for the use of a
Graphics Processing Unit (GPU). While the result of this al-
gorithm is guaranteed to be equivalent to that of DBSCAN,
we demonstrate a high speed-up, particularly in combination
with a novel index structure for use in GPUs.

Categories and Subject Descriptors

H.2.8 [Information Systems|: Database Applications—
Data mining; 1.3.1 [Computer Graphics|: Hardware Ar-
chitecture— Graphics processors

General Terms

Algorithms, Performance

1. INTRODUCTION

Graphic Processing Units (GPUs) have recently evolved from
simple devices for the display signal preparation into power-
ful coprocessors supporting the CPU in various ways. Graph-
ics applications such as realistic 3D games are computation-
ally demanding and require a large number of complex alge-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’09, November 2-6, 2009, Hong Kong, China.

Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

661

Robert Noll
University of Munich
Munich, Germany
rnoll@fehler4.de

Bianca Wackersreuther
University of Munich
Munich, Gernjgny
wackersb@dbs.ifi.Imu.de

braic operations for each image update. Therefore, today’s
graphics hardware contains a large number of programmable
processors, which are optimized to cope with this high work-
load in highly a parallel way. In terms of peak performance,
the GPU has outperformed state-of-the-art multi-core CPUs
by a large margin. Hence, there is a great effort in many
research communities to use the computational capabilities
of GPUs even for purposes, which are not at all related to
computer graphics, including life sciences, mechanical sim-
ulation or data mining. The corresponding research area is
called General Processing-Graphics Processing Unit. A brief
survey of recent approaches in the field of database manage-
ment supported by GPUs is given in Section 2. Vendors of
graphics hardware have anticipated that trend and devel-
oped libraries, precompilers and application programming
interfaces. Most prominently, NVIDIA’s technology Com-
pute Unified Device Architecture (CUDA) offers free evelop-
ment tools for the C programming language in which both
the host program as well as the kernel functions are assem-
bled in a single program [1]. The host program or so-called
main program is executed on the CPU. In contrast, the ker-
nel functions are executed in a massively parallel fashion on
hundreds of processors on the GPU. Analogous techniques
are also offered by ATI using the brand names Close-to-
Metal, Stream SDK, and Brook-GP.

Data mining tasks such as classification, clustering, or
outlier detection are often very computationally demand-
ing. Typical algorithms for the learning of complex statis-
tical models from data are in quadratic or cubic complexity
classes w.r.t. the number of objects and/or the dimension-
ality. To make these algorithms usable in a large and high
dimensional database context is therefore a great challenge.
Clustering is among the most important problems of data
mining. Intuitively, it means to arrange the database ob-
jects such that similar objects are in the same group, called
cluster and dissimilar objects are in different clusters. Typ-
ical applications include the segmentation of customers, the
functional analysis of genes by detecting similar expression
patterns, or the analysis of brain activities in neuro-imaging.
The problem of clustering has attracted a huge volume of
attention for several decades, with multiple books [11, 21],
surveys [18] and papers presenting algorithms for partition-
ing clustering [19], subspace clustering [2] or density-based
clustering [8, 3, 14] just to name a few directions. Whereas
the widespread and well-known clustering algorithms of the
k-means type focus on Gaussian or spherically shaped clus-

ters it is generally agreed now that for many applications
such assumptions are not beneficial. Hence, an important
research focus has been to find clusters of arbitrary shape,
by various methods of spectral clustering and density-based
clustering. As spectral clustering requires a space complex-
ity of O(n?) and a time complexity of O(n?) to O(n*) (where
n is the number of objects), spectral clustering is not really
scalable to database scenarios. In contrast, basic methods
for density-based clustering have a linear space complexity
and a O(n2) time complexity, that can even be reduced up
to O(nlogn) by the use of an appropriate indexing structure
for similarity search. A brief review of density-based cluster-
ing approaches that enable one to find clusters of arbitrary
shape, and that are very robust w.r.t noise and outliers is
presented in Section 2.

To combine the high computational power and the multi-
ple advantages provided by density-based clustering, we pro-
pose CUDA-DClust, a density-based clustering algorithm
specially dedicated to the use of GPUs under NVIDIA’s
CUDA architecture and programming model. CUDA-DClust
is highly parallel and exploits thus the high number of sim-
ple SIMD (Single Instruction Multiple Data) processors of
today’s graphics hardware. The parallelization which is re-
quired for GPUs differs considerably from previous parallel
algorithms which have focused on shared-nothing parallel
architectures prevalent in server farms. In contrast, GPU-
capable parallel algorithms do not only have shared main
memory but groups of the processors even share very fast
memory units at the speed of first level-cache or registers.
Hence, the cooperation between different processes is not or-
ganized by message passing but by information sharing on
different levels of fast and fastest memory. For even further
acceleration, we also propose the algorithm CUDA-DClust*,
a variant of CUDA-DClust that uses an index structure
for similarity search which is particularly composed for the
use in GPUs. We demonstrate the superiority of CUDA-
DClust and CUDA-DClust* over the corresponding sequen-
tial density-based clustering methods on CPU. Both algo-
rithms outperform their sequential counterpart by typically
one order of magnitude, while the clustering results can be
proven to be identical.

The rest of the paper is organized as follows: Section 2
surveys the related work in density-based clustering and GP-
GPU processing. Section 3 explains the graphics hardware
and the corresponding programming model. A formal defi-
nition of density-based clustering is given in Section 4. Sec-
tion 5 is dedicated to our highly parallel density-based clus-
tering algorithm CUDA-DClust. Section 6 describes an in-
dex structure which can be applied in the simplified context
of GPU processing. Section 7 demonstrates an impressive
experimental evaluation of CUDA-DClust and its indexed
version, and Section 8 concludes with a summary and some
directions for future research.

2. RELATED WORK

Density-based Clustering. In density-based clustering,
clusters are regarded as areas of high object density in the
data space, which are separated by areas of lower density.
This cluster notion has many benefits, as it allows to de-
tect clusters of arbitrary shape, and most algorithms for
density-based clustering are rather robust against outliers
and noise points. The algorithms differ in the formal rep-
resentation of the density-based cluster notion and in the

662

search strategies to find the clusters. DBSCAN [8] deter-
mines a non-hierarchical, disjoint partitioning of the data
into several clusters. Clusters are expanded starting at ar-
bitrary seed points within dense areas. Objects in areas of
low density are assigned to a separate noise partition. DB-
SCAN is robust against noise and the user does not need
to specify the number of clusters in advance. A hierarchical
extension of DBSCAN is presented via OPTICS [3]. The al-
gorithm DENCLU [14] formalizes the cluster notion by non-
parametric kernel density estimation based on modelling the
local influence of each data object on the feature space by a
simple kernel function, e.g. Gaussian. It defines a cluster as
a local maximum of the probability density. A faster variant
of DENCLU has recently been proposed [13]. [23] combines
the idea of kernel density estimation with level set methods.
Especially in difficult situations with overlapping clusters,
this technique outperforms DENCLU and DBSCAN.

Parallel Variants of Density-based Clustering. Multi-
ple papers cover parallel variants of the density-based clus-
tering approach DBSCAN. Among these, PDBSCAN [22] is
a parallel clustering algorithm for mining large distributed
spatial databases. It uses the so-called shared nothing ar-
chitecture, which has the main advantage that it can be
scaled up to a high number of computers. In [4] a map-
ping of the overall structure of DBSCAN to separate se-
quential modules of the key functionalities is presented and
among these a parallel cooperation scheme is devised. This
version of DBSCAN is useful to improve performance on
high-dimensional data. In [6], DBSCAN is parallelized by a
conservative approximation of complex distance functions,
based on the concept of merge points. The final clustering
result is derived from a global cluster connectivity graph.
However the parallel variants of density-based clustering can
not straightforward be transfered on a GPU, because the
parallelization, which is required for GPUs differs consider-
ably. As the parallel algorithms described above focus on
shared-nothing parallel architectures, GPU-capable parallel
algorithms do not only have shared main memory but groups
of the processors even share very fast memory units. Hence,
the cooperation between different processes is not organized
by message passing but by information sharing on different
levels of extremely fast memory.

General Processing-Graphics Processing Unit. Some
recent approaches, e.g. [9] and [10] demonstrate that im-
portant building blocks for query processing in databases,
e.g. sorting, can be significantly speed up by the use of
GPUs. In [12] some algorithms for the relational join on
a GPU are presented. Two recent papers [17, 5] focus on
GPU algorithms for the similarity join, which determines
all pairs of objects from two different sets that are neigh-
bors. [17] proposes an algorithm based on the concept of
space filling curves, e.g. the z-order, to prune the search
space. The z-order of a set of objects can be determined
very efficiently on GPU by highly parallelized sorting. How-
ever, since all dimensions are treated equally, performance
degrades in higher dimensions. In addition, due to uniform
space partitioning in all areas of the data space, space fill-
ing curves are not suitable for clustered data. An approach
that overcomes that problem is presented in [5]. Here, the
baseline technique underlying any join operation with an
arbitrary join predicate, the nested loop join (NLJ) is par-
allelized. Probably the most related approaches to ours are

Graphics Processing Unit

Multiprocessor MP,

Multiprocessor MP,,

1 ‘

‘ Processor Py 4 ‘ ‘ Processor P, | E | Processor P,
A X3 A 3 A
[| 2 |
N A E A
‘ Registers | ‘ Registers | £ | Registers ‘
=
=
]
£

| Shared Memory (SM)

‘ Shared Memory (SM) ‘

Main Board
Multi-Core CPU
| Pracessor P, m\‘ £ Core, || Core, |...| Core,
=]
N £ v v S A
| Registers ‘ o | Registers H Registers | | Registers ‘
] |
2
ﬁ R4 L d W
£ ‘ Cache Memory ‘
I

I 1
- v
Device Memory (DM)

I
|
W

-
% Main Memory

Figure 1: Architecture of the CUDA model including communications between CPU and GPU.

two papers on clustering on GPU. [7] extends the basic idea
of k-means clustering by calculating the distances from a
single input centroid to all objects at one time, which can
be done simultaneously on GPU. [20] parallelizes k-means
by using multi-pass rendering and multi shader program
constants. Thus, the authors achieve significant increas-
ing performances. However, the effectiveness of both ap-
proaches strongly depends on the shape of the clusters that
are present in the data sets, and they are not portable to
different GPU models, like CUDA-techniques are.

3. THE GPU: A MASSIVELY PARALLEL
SUPERCOMPUTER

GPUs of the newest generation are powerful coprocessors,
not only designed for games and other graphic-intensive ap-
plications, but also for general-purpose computing. From
the hardware perspective, a GPU consists of a number of
multiprocessors (MPs), each of which consists of a set of
simple SIMD-processors. These SIMD-processors, which we
also call just processors wherever non-ambiguous operate in
a SIMD fashion. For instance, NVIDIA’s GPU of the GT200
series, e.g. the Geforce GTX280 has 30 MPs, each consisting
of 8 SIMD-processors, summarizing to a total amount of 240
processors inside one GPU. The computational power sums
up to a peak performance of 933 GFLOP/s.

3.1 The Memory Model

Apart from some memory units with special purpose in the
context of graphics processing (e.g. texture memory), we
have four important types of memory (cf. Figure 1):

1. Set of registers: A fast memory area, which is com-
pletely private to each of the SIMD processors.
Shared Memory (SM): A memory unit with fast access
but very limited in capacity, which is shared among all
processors of a MP. It can be used to exchange infor-
mation between threads on different processors of the
same MP, but cannot be used for information, which
is shared among threads on different MPs.

Device Memory (DM): The actual video RAM of the
graphics processor, which is physically located on the
graphics card but not inside the GPU. DM is signifi-
cantly larger than SM but also significantly slower. It
can be used to share information between threads on
different MPs.

Main Memory (MM): A memory unit that is not part
of the graphics card.

2.

663

The GPU has no access to the address space of the CPU. The
CPU can only write to or read from DM using specialized
API functions. In this case, the data packets have to be
transferred via the Front Side Bus and the PCI-Express Bus.
The bandwidth of these bus systems is strictly limited, and
therefore, these special transfer operations are considerably
more expensive than direct accesses of the GPU to DM or
direct accesses of the CPU to MM.

3.2 The Programming Model

The basis of the programming model of GPUs are threads.
Threads are lightweight processes that are easy to create
and to synchronize. In contrast to CPU processes, the gen-
eration and termination of GPU threads as well as context
switches between different threads do not cause any consid-
erable overhead either. In typical applications, thousands or
even millions of threads are created, for instance one thread
per pixel. It is recommended to create a number of threads,
which is even much higher than the number of available
SIMD-processors because context switches are also used to
hide the latency delay of memory accesses: Particularly an
access to the DM may cause a latency delay of 400-600 clock
cycles, and during that time, a MP may continue its work
with other threads. The CUDA programming library [1]
contains API functions to create a large number of threads
on the GPU, each of which executes a function called ker-
nel function. The parallely executed kernel functions on the
GPU as well as the sequentially executed host program on
the CPU are defined in an extended syntax of the C pro-
gramming language.

On GPUs the threads do not even have an individual in-
struction pointer. An instruction pointer is rather shared by
several threads. For this purpose, threads are grouped into
so-called warps (typically 32 threads per warp). One warp is
processed simultaneously on the eight processors of a single
MP using 4-fold pipelining (totalling in 32 threads executed
fully synchronously). If not all threads in a warp follow the
same execution path, the different execution paths are exe-
cuted in a serialized way. The number of SIMD-processors
per MP, as well as the concept of 4-fold pipelining is con-
stant on all current CUDA-capable GPUs. Multiple warps
are grouped into thread groups (TG). It is recommended [1]
to use multiples of 64 threads per TG. The different warps
in a TG (as well as different warps of different TGs) are
executed independently. The threads in one TG use the
same SM and may thus communicate and share data via
the SM. When all warps of the same group have reached a

particular point of execution the threads in one TG can be
synchronized. The latency delay of the DM can be hidden by
scheduling other warps of the same or a different TG when-
ever one warp waits for an access to DM. To allow switching
between warps of different TGs on a MP, it is recommended
that each thread uses only a small fraction of the SM and
registers of the MP [1].

3.3 Atomic Operations

In order to synchronize parallel processes and to ensure the
correctness of parallel algorithms, CUDA offers atomic op-
erations, e.g. increment, decrement, or exchange. Most of
these operations work on integer data types in DM. However,
the newest version of CUDA (Compute Capability 1.3 of the
GPU GT200) even allows atomic operations in SM. If, for
instance, some parallel processes share a list as a common
resource with concurrent reading and writing from/to the
list, it may be necessary to atomically increment a counter
for the number of list entries. In this case, atomicity im-
plies the following two requirements: If two or more threads
increment the list counter, then first the value counter af-
ter all concurrent increments must be equivalent to the old
value plus the number of concurrent increment operations
and, second, each of the concurrent threads must obtain a
separate result of the increment operation which indicates
the index of the empty list element to which the thread can
write its information. Hence, most atomic operations return
a result after their execution.

For instance, the operation atomicInc has two parame-
ters, the address of the counter to be incremented, and an
optional threshold value, which must not be exceeded by
the operation. atomicInc works as follows: The addressed
counter value is read, and incremented if the threshold is not
exceeded. Finally, the old value of the counter is returned
to the kernel method which invoked atomicInc before in-
crementing. If two or more threads of the same or different
TGs call some atomic operations simultaneously, the result
of these operations is that of an arbitrary sequentialization of
the concurrent operations. The operation atomicDec works
in an analogous way. atomicCAS performs a Compare-and-
Swap operation using three parameters, an address, a com-
pare value and a swap value. If the value at the address
equals the compare value, the value at the address is re-
placed by the swap value. In each case, the old value at the
address is returned to the invoking kernel method before
swapping.

4. FOUNDATIONS OF DENSITY-BASED
CLUSTERING

The idea of density-based clustering is that clusters are ar-
eas of high point density, separated by areas of significantly
lower point density that can be formalized using two param-
eters, called € € R and MinPts € NT. The central notion
is the core object. A data object P is called a core object of
a cluster, if at least MinPts objects (including P itself) are
in its e-neighborhood denoted by N¢(P), which corresponds
to a sphere of radius €. Formally:

DEFINITION 1. (Core Object)
Let D be a set of n objects from RY, € € RT and MinPts €
NT. An object P € D is a core object, iff

|N.(P)| > MinPts, where N.(P)={Q € D:||P — Q|| < €}.

Figure 2: Sequential density-based clustering.

Two objects may be assigned to a common cluster. In
density-based clustering this is formalized by the notions
direct density reachability, and density connectedness.

DEFINITION 2. (Direct Density Reachability)
Let P,Q € D. Q is called directly density reachable from P
(in symbols: P Q) iff

1. P is a core object in D, and
2. Q € N(P).

If P and @ are both core objects, then P <1 @ is equivalent
with P> Q. The density connectedness is the transitive and
symmetric closure of the direct density reachability:

DEFINITION 3. (Density Connectedness)
Two objects P and Q are called density connected (in sym-
bols: P <1 Q) iff there is a sequence of core objects (Pi, ..., Pm)
of arbitrary length m such that

PoP>...<Pn<Q.

In density-based clustering, a cluster is defined as a maximal
set of density connected objects:

DEFINITION 4. (Density-based Cluster)
A subset C C D is called a cluster iff the following two
conditions hold:

1. Density connectedness: VP,Q € C' : P Q.
2. Mazimality: VP € C,YQ € D\ C : "P < Q.

The algorithm DBSCAN [8] implements the cluster notion
of Definition 4 using a data structure called seed list S con-
taining a set of seed objects for cluster expansion. More
precisely, the algorithm proceeds as follows:

1. Mark all objects as unprocessed.
2. Consider arbitrary unprocessed object P € D.

3. If P is core object, assign new cluster-ID C, and do
step (4) for all elements @ € N.(P), which do not yet
have a cluster-1D:

4. (a) mark element @ with cluster-ID C' and
(b) insert object @ into seed list S.

5. While S not () repeat step (6) for all elements P’ € S:

6. If P’ is core object, do step (7) for all elements Q €
N.(P"), which do not yet have any cluster-I1D:

7. (a) mark element @ with cluster-ID C' and
(b) insert object @ into seed list S.

8. If D still contains unprocessed objects, do step (2).

MP,

(HHHHHHH]

YN H
A

A

innnnnnn
o |

(a) Parallelism at the level of multiprocessors (chains).

b) Parallelism exemplarily of
SIMD-processor M Ps.

Figure 3: Two different ideas of parallelization.

Since every object of the database is considered only once
in Step (2) or (6) exclusively, we have a complexity, which
is n times the complexity of N((P) (which is linear in n if
there is no index structure, and sublinear or even O(log(n))
in the presence of a multidimensional index structure). The
result of DBSCAN is determinate. To illustrate the algo-
rithmic paradigm, Figure 2 displays a snapshot of DBSCAN
during cluster expansion. The light grey cluster on the left
side has been processed already. The algorithm currently
expands the dark grey cluster. The seed list S only contains
the object P. P is a core object since there are more than
MinPts = 3 objects in its e-neighborhood. Two of these
objects, @ and R have not been processed so far and are
therefore inserted into S. This way, the cluster is iteratively
expanded until S is empty. After that, the algorithm con-
tinues with an arbitrary unprocessed object until all objects
have been processed.

5. CUDA-DCLUST
5.1 Chains: The Main Idea of Parallelization

Since in density-based clustering there is a complex rela-
tionship between the data objects and an unknown num-
ber of clusters, where two objects share a common cluster
whenever they are (directly or indirectly) connected by an
unknown number of core objects, it is not possible to de-
fine a straightforward parallelization e.g. by assigning an
individual thread to each data object, cluster, or dimension.
Instead, our approach CUDA-DClust is based on a new con-
cept especially introduced to allow for massive parallelism
in density-based clustering, called chain. A chain is a set of
data objects belonging to a common density-based cluster,
formally:

DEFINITION 5. (Density-based Chain)
A subset C C D is called a density-based chain iff the fol-
lowing condition holds:

VP,QeC: PxQ.

Note that a cluster may be composed by several chains but
each chain belongs to one single cluster only. In contrast
to Definition 4, we do not require maximality. Using the
concept of chains, we basically perform the task of cluster
expansion, i.e. the transitive closure computation of the re-
lation of direct density reachability. Thus, a chain can be
considered as a tentative cluster with a tentative cluster-ID
(which we call chain-ID). The idea is, instead of sequentially
performing one single cluster expansion like, for instance, in

665

DBSCAN, we start many different cluster expansions at the
same time via different chains from different starting points.
Of course CUDA-DClust has to register every collision be-
tween two or more chains carefully. A collision means that
CUDA-DClust has to notice that two chains actually par-
ticipate in the same cluster. A detailed description of our
collision handling is presented in Section 5.2.

We now introduce a concept for book-keeping of all infor-
mation that is essential for collision handling, called collision
matriz. A collision matrix C' is an upper triangular boolean
matrix of size (p X p), where p is the number of chains that
are expanded simultaneously. If a collision of chains ¢ and j
is detected, we set C;,; := trueifi < j and Cj; := true oth-
erwise. Since C' is small, we later run a sequential algorithm
to determine transitive collisions. Finally, a valid cluster-ID
is assigned to each chain and is distributed to the points in a
parallel fashion on GPU. Figure 3(a) illustrates parallelism
based on the concept of chains. Here, three density-based
chains are processed in different TGs and may, therefore, be
computed in a parallel fashion on different MPs of the GPU.
Each MP is responsible for the expansion of one chain. The
seed point to be expanded is loaded into the SM in order to
have it efficiently accessible for every thread in this TG.

Besides the approach of chains, we now introduce a sec-
ond, but equally important idea of parallelization. When-
ever a point S is considered for determining its core object
property and for marking its neighbors as potential new seed
points, all points in N¢(S) must be determined. Therefor,
a number of threads is generated in order to process many
potential neighbors P; of S simultaneously. Note that, as
already mentioned in Section 3, the generation of a high
number of threads in CUDA does not cause any consid-
erable overhead. In contrast, it is of high importance to
generate a high number of potentially parallel threads in
order to keep the processors in a GPU busy, even in the
frequent case of delays due to memory latency. Figure 3(b)
shows the intra-MP parallism, exemplarily for MP2 of the
example illustrated in Figure 3(a). All possible mating part-
ners @; of the seed point, which have to be tested whether
or not they are in N(P) are processed by different SIMD-
processors in MPs. Hence, the coordinates are loaded in the
corresponding registers of the SIMD-processors, and each
of them computes one distance function between P and Q;
simultaneously. Summarizing, we achieve a high degree of
intra-MP and inter-MP parallelism by having one TG for
each parallely executed chain and one thread for each po-
tential partner point of the current seed point of a chain.

In CUDA, multiples of 32 threads must be grouped into
TGs. As indicated in Section 3, threads of the same group

// Some global information available on Device Memory:

float pointSet [n][d];
int pointState [n]; // initialized with UNPROCESSED
// It will contain the ChainlD/ClusterlD of the object
// but also special values like NOISE.
float ¢;
int minPts;
int threadGroupSize, numChains, maxSeedLength;
int seedList [numChains][maxSeedLength];
int seedLength [numChains];
boolean collisionMatrix[numChains][numChains]; // initialized with false
kernel ClusterExpansion (int threadGroupld, int threadID)
chainlD = threadGrouplD; // = means only shortcut for readability.
mySeedList [| = seedList [chainID][];
mySeedLength = seedLength [chainID];
shared int neighborBuffer [minPts];
shared int neighborCount = 0;

mySeedLength := mySeedLength — 1;
shared int seedPointID := mySeedList [mySeedLength];
shared float P[] := pointSet [seedPointID][]; // copy from DM.
syncThreads () ;
for i := threadlD to n — 1 step threadGroupSize do
processObject (7);
syncThreads () ;
if neighborCount > minPts then
pointState[seedPointID] := chainlD ;
for i := 0 to minPts — 1 do // Reconsider the neighbors
markAsCandidate(neighborBuffer[:]); // in the quarantine buffer.
else
pointState[seedPointID] := NOISE ;
end kernel;

procedure processObject (int)

register float Q [] := pointSet [i][];
register float § := Distance (P, Q);
if § < e then

register int 1 = atomiclnc (neighborCount);
if h > minPts then
markAsCandidate (7);
else
neighborBuffer [h] := 4;
end procedure;

// P is not yet confirmed as core object:
// Therefore, put Q in quarantine buffer.

procedure markAsCandidate (int 7)
register int oldState=atomicCAS(pointState[i], UNPROCESSED,chainID);
if oldState = UNPROCESSED then
register int h := atomiclnc (mySeedLength, maxSeedLength) ;
if h < maxSeedLength then
seedList [h] := i ;
else
if oldState # NOISE A oldState # chainlD then
if oldState < 4 then
collisionMatrix[oldState][7] := true;
else
collisionMatrix[i][oldState] := true;
end procedure;

// Collision !

Figure 4: The Cluster Expansion Kernel.

are potentially executed in a fully synchronous way in the
same MP, may exchange information through the SM, and
all threads of the same TG can be synchronized when all
threads wait until all other threads of the same TG have
reached the same point of execution. Therefore, it is obvi-
ously beneficial to collect all threads belonging to the same
chain into one TG.

5.2 The Cluster Expansion Kernel

The Cluster Expansion Kernel is the main kernel method
of CUDA-DClust. It performs the actual work, i.e. the
determination of the core point property and the transitive
expansion of the clusters. We generate a high number of
threads, all executing the Cluster Expansion Kernel. Some

666

other kernel methods for supportive and cleaning tasks will
be shortly described later.

Consider the pseudocode presented in Figure 4. Each TG,
generated by the Cluster Expansion Kernel starts with the
ID of the seed point P that is going to be processed. Its
main tasks are, determine the neighbor-points, assert the
core object property of P, mark the neighbors as chain mem-
bers, and record potential collisions in C'. A TG starts by
reading the coordinates of P into the SM, and determin-
ing the minimum bounding rectangle MBR.(P) of N.(P)
allowing d-fold parallelism, where d is the dimension of the
data space. Then the threads are synchronized and a loop
encounters all points Q € PointSet from D and considers
them as potential neighbors in N¢(P). This is done by all
threads in the TG allowing a maximum degree of intra-group
parallelism. Therefore, this loop starts with the point with
index thread-ID, and in each iteration, exactly the number
of threads per TG is added to the index of the considered
point Q. The further processing of @ by the procedure pro-
cessObject depends on the core object property of P as
clusters are expanded from core objects only. However, at
an early stage it may be unclear if P is a core object. In
any case, the distance § between P and @ is determined. If
0 exceeds € nothing needs to be done. Otherwise, we have
to distinguish: If P is already confirmed to be a core object,
then we can immediately mark @ as a chain member, but
have to perform further operations (described in the next
paragraph). Otherwise, we increment (cf. Section 3.3) the
counter neighborCount, which is individual to P atomically
and take @ into a temporary list called neighborBuffer with
at most MinPts entries. We can say, that @ is taken un-
der quarantine until the core status of P is really known.
Whenever we mark an object as a chain member, we have
to perform the following actions: Check if the object is al-
ready a member of the same or a different chain. In the first
case, nothing needs to be done. Otherwise we have a colli-
ston of two chains. That means, we have to note that the
two chain-IDs actually belong to the same cluster-1D. Fig-
ure 5 shows a typical situation of such a scenario. Note that
three situations are possible: First the point was originally
marked by the dark grey chain in the middle and later the
white chain recognized the collision, or vice versa. The third
opinion is, that the dark grey and the white chain tried to
mark the collision object simultaneously. To cope with that
case, we need atomic operations again. To label the neigh-
bor points we use atomicCAS (compare-and-swap, cf. Sec-
tion 3.3). This operation checks if a certain value is stored
at the corresponding address. If the object had the status
UNPROCESSED then atomicCAS replaces the old label by
the current chain-ID and CUDA-DClust tries to include @
in the seed list of our chain. Otherwise, the label remains
and the old value is returned to the kernel. Hence, we can
decide unambiguously whether there was a collision or not.

Figure 5: A collision of two chains.

5.3 Management of the Seed List

The seed list S is the central data structure of density-based
clustering. Its purpose is to provide a waiting queue for those
objects, which are directly density reachable from any ob-
ject that has already been confirmed to be a core object of
the current cluster, also named candidates. The core object
property of the candidates in the queue will be checked later,
and a confirmed core object P will be replaced by those ob-
jects, which are directly density reachable from P. S is a
very simple data structure: An unpriorized queue for a set
of objects with the only operations of storing and fetching
an arbitrary object. In sequential density-based clustering
algorithms such as DBSCAN or OPTICS, only one seed list
must be maintained. In contrast, CUDA-DClust simulta-
neously performs cluster expansions of a moderately high
number of chains, and, therefore, multiple seed lists must
be managed, which potentially causes space problems. The
index number of the actual seed list that is used by a TG
can be determined from its TG-ID (which simulataneously
serves as Chain-ID). To facilitate the readability of the code,
at the beginning of the kernel ClusterExpansion, these sim-
plifications are introduced by equivalence associations using
the symbol =. These are only meant as shortcuts, and no
copying of data is needed.

For the insertion of objects into S the operation atom-
icInc (for increment) has to be used because some candi-
dates may be simultaneously inserted by different threads of
the same T'G. The space in each seed list in the DM is lim-
ited by a parameter (mazSeedLength). In our experiments,
we used 1,024 points per seed list. In case of a list overflow,
new points are only marked by the current chain-ID but not
inserted into the seed list. We use two different counters
to keep track of the number of discarded candidates. Us-
ing a special kernel method, called SeedRefill Kernel we can
search for candidates that have been discarded.

5.4 Load Balancing

Since a number of seeds is expanded simultaneously and a
number of chains is processed in parallel, it naturally hap-
pens that one of the chains is completed before the others. In
this case, we start a new chain from an unprocessed object.
If no such object is available, we split a chain, i.e. one of
the objects from S of a randomly selected chain is removed
and we start a new chain with that candidate. Thereby, an
almost constant number of threads working in the system is
guaranteed, all with approximately the same workload.

5.5 The Main Program for CPU

Apart from initialization, the main program consist merely
of a loop starting three different kernel methods on the GPU,
until no more unprocessed data objects exist any more:

1. Transfer the data set from MM to DM;

Create NumChains new chains from randomly selected
points of D;

N

StartKernel (ClusterExpansion);

Transfer the states of the chains from DM to MM;
If necessary, StartKernel (NewSeeds);

If necessary, StartKernel (SeedRefill);

If unprocessed objects exist, continue with step (3);
Transfer the result (cluster-IDs) from DM to MM.

© N o w

667

6. AN INDEX STRUCTURE TO SUPPORT
CUDA-DCLUST ON GPU

The performance of CUDA-DClust can be significantly im-
proved by a multidimensional index structure supporting
the search of points in the e-neighborhood of some object P
Nc(P). Our index structure needs to be traversed in parallel
for many search objects using the kernel function. Since ker-
nel functions do not allow any recursion, and as they need to
have small storage overhead by local variables etc., the index
structure must be kept very simple. To achieve a good com-
promise between simplicity and selectivity of the index, we
propose a data partitioning method with a constant num-
ber of directory levels. The first level partitions the data
space D according to its first dimension, the second level
according to its second dimension, and so on. Therefore,
before starting the actual clustering method, some transfor-
mation technique should be applied that guarantees a high
selectivity in the first dimensions, e.g. Principal Component
Analysis. Figure 6 shows a simple, 2-dimensional example
of a 2-level directory (plus the root node, which is consid-
ered as level-0), similar to [15, 16]. The fanout of each node
is 8. In our experiments (cf. Section 7), we used a 3-level
directory with fanout 16.

l

]
[T1]

Figure 6: An index structure for the GPU.

To receive the indexed version of CUDA-DClust named CUDA-

DClust*, our index structure must be constructed in a bottom-
up way by fractionated sorting of the data D before starting
the actual clustering method. First, D is sorted according to
the first dimension, and partitioned into the specified num-
ber of quantile partitions. Then, each of the partitions is
sorted individually according to the second dimension, and
so on. The boundaries are stored using arrays that can be
easily accessed in the subsequent kernel functions. In prin-
ciple, this index construction can already be done on the
GPU, because efficient sorting methods for GPU have been
proposed [9]. Since bottom up index construction is typi-
cally not very costly compared to the clustering algorithm,
our method performs this preprocessing step on CPU. When
transferring D from the MM into the DM in the initializa-
tion step of CUDA-DClust, CUDA-DClust* has to transfer
the directory additionally. Compared to the size of D, the
directory is always small. The most important change in
our cluster expansion kernel regards the determination of
Nc(P) of some given seed object P, which is done by ex-
ploiting SIMD-parallelism inside a MP. In CUDA-DClust,
this was done by a set of threads inside a TG, each of which
iterated over a different part of D. In CUDA-DClust*, one
of the threads iterates in a set of nested loops over those
nodes of the index structure, which represent regions of D
that intersect N (P). In the innermost loop, we have one set
of points corresponding to a data page of the index struc-
ture, which is processed by exploiting the SIMD-parallelism,
like in CUDA-DClust.

7. EXPERIMENTAL EVALUATION

To evaluate the performance of density-based clustering on
GPU, we execute different experiments. First we evaluate
CUDA-DClust vs. DBSCAN without index support and
CUDA-DClust* vs. DBSCAN with index support w.r.t. the
size of the data sets. Second we analyze the impact of the
parameters MinPts and e. Finally we perform an evaluation
w.r.t. the data dimensionality. All test data are synthetic
feature vectors containing 20 randomly generated Gaussian
clusters. Unless otherwise mentioned, the algorithms are pa-
rameterized with € = 0.05 and MinPts = 4. These param-
eters are used in an analogous way like the correspondent
parameters of the sequential DBSCAN algorithm. For an
extensive description of strategies for parameter selection,
we refer the intrested reader to [8]. The time needed for
index construction is not included in these experiments, but
evaluated separately in Section 7.6. A detailed presentation
of the complete runtime profile of CUDA-DClust is given in
Section 7.7. The implementation for all variants is written
in C++ and all experiments are performed on a worksta-
tion with Intel Core 2 Duo CPU E4500 2.2 GHz and 2 GB
RAM, which is supplied with a Gainward NVIDIA GeForce
GTX280 GPU (240 SIMD-processors) with 1GB GDDR3
SDRAM. As a benchmark we apply a single-threaded im-
plementation of DBSCAN on the CPU, that uses the same
index structure as CUDA-DClust for all experiments with
index support.

7.1 CUDA-DClust vs. DBSCAN

Figure 7(a) displays the runtime in seconds of CUDA-DClust
compared with the DBSCAN implementation on the CPU
without index support for various data size in logarithmic
scale and the corresponding speedup factor. Due to massive
parallelization, CUDA-DClust outperforms CPU without in-
dex by a large factor that is even growing with the number
of points N. The speedup ranges from 10 for 30k points up
to 15 for 1m points. Note that the calculation on GPU takes
40 minutes, compared to nine hours on CPU.

7.2 CUDA-DClust* vs. Indexed DBSCAN

The following experiments are performed with index support
as introduced in Section 6. The runtime of CUDA-DClust*
and the indexed version of DBSCAN on CPU and speedup
are presented in Figure 7(b). CUDA-DClust* outperforms
the benchmark again by a large factor, that is proportional
to the size of the data set. In this evaluations the speedup
ranges from 3.5 for 30k points to almost 15 for 2m points.
A guaranteed speedup factor of at least 10 is obtained by
data sets consisting of more than 250k points.

7.3 Impact of the Parameter MinPts

In these experiments we test the impact of the parameter
MinPts on the performance of CUDA-DClust* against the
indexed version of DBSCAN on CPU. We use a synthetic
data set with a fixed number of about 260k 8-dimensional
points and choose € = 0.05. The parameter MinPts is eval-
uated in a range from 4 to 2,048. Figure 7(c) shows that
the runtime of CUDA-DClust* increases for larger MinPts
values. For 4 < MinPts < 512 the speedup factor remains
relatively stable between 10 and 5. Then the speedup de-
creases significantly. However CUDA-DClust* outperforms
the implementation on CPU even for large MinPts-values
by a factor of 2. The speedup decline can be explained by a

668

closer look at the implementation details of CUDA-DClust*
(cf. Section 5). It can be seen that the first MinPts — 1
found neighbors have to be buffered, because they can not
be marked before it is guaranteed that the seed point is also
a core point. As all threads that are executed in parallel
have to share the limited shared memory, less threads can
be executed in parallel if a high number of points have to be
buffered in addition.

7.4 Impact of the Parameter ¢

We also evaluated the impact of the second DBSCAN pa-
rameter € on CUDA-DClust* using a synthetic data set con-
sisting of 260k 8-dimensional points and fixed MinPts = 4.
We test the impact of € for values that range from 0.02 to
0.10 and present the results in Figure 7(d). Evidently, the
impact of € is negligible, as the range of the corresponding
speedup factor is almost stable between 9 and 10.

7.5 Evaluation of the Dimensionality

Here, we provide an evaluation w.r.t. the dimensionality of
the data, ranging from 4 to 64. Again, we use our algorithm
CUDA-DClust* and perform all tests on the synthetic data
set consisting of 260k 8-dimensional points clustered with
default parameter-settings for € and MinPts. Figure 7 il-
lustrates that CUDA-DClust* outperforms the benchmark
by factors of about 7 to 12 depending on the dimensionality
of the data. In our DBSCAN implementation the dimension-
ality is already known at compile time. Hence optimization
techniques of the compiler have an impact on the perfor-
mance of the CPU version. Obviously, also the size of the
data structures for the seed points in the GPU implementa-
tion is affected by the dimensionality and hence influences
the performance of CUDA-DClust*, as the data structures
are stored in the shared memory. This overhead affects the
number of threads that can be executed in parallel on the
GPU.

7.6 Evaluation of the Index Construction

All experiments presented so far do not include the time that
is needed for constructing the index structure (described in
Section 6). Table 1 displays the time needed to construct
the index, the runtime of CUDA-DClust and relates these
two terms to each other for various sizes and dimensions of
synthetic data sets. All experiments indicate that the time
for building the index structure is negligible and independent
of the parameter-setting by a fraction of lower than 5%.
Further analysis demonstrate that larger data sets show an
even smaller value of lower than 2%.

Table 1: Evaluation of the Index Construction.
N | Dim | Index GPU | Index / GPU
65k 8 0.1s 2.2'8 4.5 %

130k 8 0.2s 5.8 s 34 %
260k 8 04 s 16.5 s 2.4 %
260k 16 0.6 s 38.6 s 1.6 %
260k 32 1.0s 45.9 s 2.2 %
260k 64 1.8s | 111.6 s 1.6 %
520k 8 0.8 s 52.1s 1.5 %
1m 8 1.7s | 1824 s 0.9 %
2m 8 3.6s | 681.8s 0.5%

1868608 E 208 T T T
16608 34953 Fepeedup —+—) 4
r] 15 — 4 t T —
1088 1635 i z/", |
" 3
:3 108 _f i8 — =
18 - r i
3 5 —
pq L . | . | 1 8 . | . |
a 5688 1888 a 588 1888
/1868 /168688
(a) Runtime and speedup of CUDA-DClust.
188008 — 28 —— . —
1 epeedup —+H— E
18968 01585 5 15 L —~+ |
1888 = L i
W g2z]
:: 188 _E 18 — -
18 - -]
i 5 —
8.1 .1 8 A B R L.
a il] 18649 1588 2088 29569 a baa 18649 15688 2088 25608
H/10608 H/1088
(b) Runtime and speedup of CUDA-DClust*.
1BBBBB E T | T T I T T = 2B T I T I T I T
fepy —H— 1 Fespeedup —+— 4
18888 =
FEPU ¥] 15 -
188 = L 4
M H—t s i] —
T 1ee E 1555 1555172 —izes)
18 F 1g - 24s -
PP SR R NI R S o N B I R
a 512 1824 1536 2048 a 512 1824 1536 2048
ninpts ninpts
(c¢) Impact of MinPts on runtime and speedup of CUDA-DClust*.
133333 E T I T I T T T I | 23 T | T I T T I T
fcpu —+— 1 Fepeedup —+H— E
186888 =
Cgpu —] 15 -
1688 = L i
“ C n i M M M 1
5 188 Bas131:14451565169518052025228 42? 18 — P t : } prtp—t
18 = 5z 1ds 1595 165 18s 193 21s 223 23s 5 '_ _'
P I RER RRR R R R o P R R S SR
a a.a2 a.84 8,85 8,83 a,1 a a.a2 a.84 8,85 a.88 a.1
epsilon epsilon
(d) Impact of € on runtime and speedup of CUDA-DClust*.
1BBBBB E T | T T T I L= 2B T I T T T T
[cpu —+— 1 I epeedup —+— E
168688 =
Fepu —H— 7 15 -
1088 |]
o F T aags 7998 3453_3 B]
5 199 EEadstag “ %pe Azs 3 10
95 “A6s L]
18 E“y346s E
- i 5 —
P R R U B B o . i . | . | . | .
a 16 32 48 64 a 16 32 48 64
1} 1}

(e) Impact of the dimensionality on

runtime and speedup of CUDA-DClust*.

Figure 7: Experimental evaluation of density-based clustering on CPU and GPU w.r.t. the size of the data
set (Figures 7(a) and 7(b)), the parameters of DBSCAN (Figures 7(c) and 7(d)) and the dimensionality of

the data (Figure 7(c)).
669

7.7 Runtime Profiling

In this section we present a detailed runtime profile of CUDA-
DClust* concerning different parts of the algorithm that is
evaluated on two different synthetic data sets. The corre-
sponding charts are depicted in Figure 8. The left diagram
illustrates the distribution of the execution time of the pro-
gram parts cluster expansion kernel, new seeds kernel, col-
lision matrix and seed refill kernel on a data set consisting
of 520k 8-dimensional points and the right diagram for 4m
points respectively. Thus the bulk of performance is ex-
ecuted by the cluster expansion kernel. The auxiliary pro-
gram parts and computations on CPU only consume a small
fraction of the complete runtime as desired. Remark that
the CPU is not reserved during the execution of the cluster
expansion kernel, that requires the main part of the compu-
tation. Hence the CPU can process multiple other jobs while
the algorithm is executed by the cluster expansion kernel.
In all experiments the time needed to divide the cluster-
ing process and the time to integrate the result for both
algorithms CUDA-DClust and CUDA-DClust* is negligible.

< s
e’

Figure 8: Runtime profile of CUDA-DClust* for two
different data sets.

Cluster Expansion Kernel
New Seeds Kernel
u Collision Matrix

® Seed Refill Kernel

8. CONCLUSION

In this paper, we proposed CUDA-DClust, a novel algorithm
for very efficient density-based clustering supported by the
computing power of the GPU. This architecture allows for
extreme parallelization at very low cost. CUDA-DClust
combines several concepts to exploit the special characteris-
tics of the GPU for clustering, as parallel cluster expansion
supported by the concept of chains, parallel nearest neighbor
search that can even be accelerated by the use of a hierarchi-
cal index structure, and effective load balancing among the
microprocessors. Our experiments demonstrate that CUDA-
DClust outperforms the algorithm DBSCAN on CPU by an
order of magnitude and yields an equally accurate cluster-
ing. The impressive results can even be increased by the
use of an appropriate index structure, which yields to our
second proposed algorithm CUDA-DClust*. In our ongoing
work, we analyze in-depth the effect of arbitrary shaped clus-
ters and noise objects on the performances of CUDA-DClust
and CUDA-DClust*. However, we do not expect significant
losses, as first experiments let assume an independency of
the runtime and the factors mentioned above.

9. REFERENCES

[1] NVIDIA CUDA Compute Unified Device Architecture
- Programming Guide, 2007.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan. Automatic Subspace Clustering of High
Dimensional Data for Data Mining Applications. In
SIGMOD Conference, 1998.

670

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

21]

(22]

23]

M. Ankerst, M. M. Breunig, H.-P. Kriegel, and

J. Sander. OPTICS: Ordering Points To Identify the
Clustering Structure. In SIGMOD Conference, 1999.
D. Arlia and M. Coppola. Experiments in Parallel
Clustering with DBSCAN. In Furo-Par, 2001.

C. Bohm, R. Noll, C. Plant, and A. Zherdin.
Indexsupported Similarity Join on Graphics
Processors. In BTW, 2009.

S. Brecheisen, H.-P. Kriegel, and M. Pfeifle. Parallel
Density-Based Clustering of Complex Objects. In
PAKDD, 2006.

F. Cao, A. K. H. Tung, and A. Zhou. Scalable
Clustering Using Graphics Processors. In WAIM, 2006.
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In KDD, 1996.
N. K. Govindaraju, J. Gray, R. Kumar, and

D. Manocha. GPUTeraSort: High Performance
Graphics Co-processor Sorting for Large Database
Management. In SIGMOD Conference, 2006.

N. K. Govindaraju, B. Lloyd, W. Wang, M. C. Lin,
and D. Manocha. Fast Computation of Database
Operations using Graphics Processors. In SIGMOD
Conference, 2004.

J. A. Hartigan. Clustering Algorithms. John Wiley &
Sons, 1975.

B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational Joins on
Graphics Processors. In SIGMOD, 2008.

A. Hinneburg and H.-H. Gabriel. DENCLUE 2.0: Fast
Clustering Based on Kernel Density Estimation. In
IDA, 2007.

A. Hinneburg and D. A. Keim. An Efficient Approach
to Clustering in Large Multimedia Databases with
Noise. In KDD, 1998.

M. Kitsuregawa, L. Harada, and M. Takagi. Join
Strategies on KD-Tree Indexed Relations. In ICDE,
1989.

S. T. Leutenegger, J. M. Edgington, and M. A. Lopez.
STR: A Simple and Efficient Algorithm for R-Tree
Packing. In ICDE, 1997.

M. D. Lieberman, J. Sankaranarayanan, and

H. Samet. A Fast Similarity Join Algorithm Using
Graphics Processing Units. In ICDE, 2008.

F. Murtagh. A Survey of Recent Advances in
Hierarchical Clustering Algorithms. Comput. J., 26(4),
1983.

R. T. Ng and J. Han. Efficient and Effective Clustering
Methods for Spatial Data Mining. In VLDB, 1994.

S. A. A. Shalom, M. Dash, and M. Tue. Efficient
K-Means Clustering Using Accelerated Graphics
Processors. In DaWakK, 2008.

C. Van-Rijsbergen. Information Retrieval.
Butterworths, London, England, 2nd edition, 1979.
X. Xu, J. Jager, and H.-P. Kriegel. A Fast Parallel
Clustering Algorithm for Large Spatial Databases.
Data Min. Knowl. Discov., 3(3), 1999.

A. M. Yip, C. H. Q. Ding, and T. F. Chan. Dynamic
Cluster Formation Using Level Set Methods. IEEE
Trans. Pattern Anal. Mach. Intell., 28(6), 2006.

