
Approximate Reverse k-Nearest Neighbor Queries in
General Metric Spaces

Elke Achtert, Christian Böhm, Peer Kröger, Peter Kunath, Alexey Pryakhin,
Matthias Renz

Institute for Computer Science, Ludwig-Maximilians Universität München
Oettingenstr. 67, D-80538 Munich, Germany

{achtert,boehm,kroegerp,kunath,pryakhin,renz}@dbs.ifi.lmu.de

ABSTRACT
In this paper, we propose an approach for efficient approx-
imative RkNN search in arbitrary metric spaces where the
value of k is specified at query time. Our method uses an
approximation of the nearest-neighbor-distances in order to
prune the search space. In several experiments, our solution
scales significantly better than existing non-approximative
approaches while producing an approximation of the true
query result with a high recall.

Categories and Subject Descriptors: H.2.2 [Physical
Design]: Access methods

General Terms: Algorithms, Performance

Keywords: Approximative similarity search, reverse near-
est neighbor

1. INTRODUCTION
A reverse k-nearest neighbor (RkNN) query returns the

data objects that have the query object in the set of their
k-nearest neighbors. A naive solution of the RkNN problem
requires O(n2) time, as the k-nearest neighbors of all of the
n objects in the data set have to be found. In general, the
RkNN problem appears in many practical situations such
as geographic information systems (GIS), traffic networks,
adventure games, or molecular biology where the database
objects are general metric objects rather than Euclidean vec-
tors. In most applications, the parameter k can change from
query to query and is not known beforehand. In addition,
the efficiency of the query execution is much more important
than effectiveness, i.e. users want a fast response even if the
results are only approximate (as far as the number of false
drops and false hits is not too high). Existing approxima-
tive approaches for RkNN search [2, 3] are only designed for
Euclidean vector data. All other approaches for the RkNN
search are exact methods that usually produce considerably
higher runtimes.

In this paper, we propose an efficient approximate solu-
tion for the RkNN problem based on the observation that
if the distance of an object p to the query q is smaller than
the 1-nearest neighbor distance of p, p can be added to the
result set. Our solution is extends the work in [1] and is de-

Copyright is held by the author/owner(s).
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
ACM 1-59593-433-2/06/0011.

signed for general metric objects and allows RkNN queries
for arbitrary (unbounded) values of k. The idea is to use a
suitable approximation of the kNN distances for each k of
every object in order to evaluate database objects as true
hits or true drops without requiring a separate kNN search.
The proposed concepts can be integrated into any hierarchi-
cally organized, tree-like index structure for metric spaces.
In addition, it can also be used for Euclidean data by using
a hierarchically organized, tree-like index structure for Eu-
clidean data. In summary, our solution is the first approach
that can answer RkNN queries for any k ∈ N in general
metric databases. Since our solution provides superior per-
formance but approximate results, it is applicable whenever
efficiency is more important than complete results. How-
ever, we will see in the experimental evaluation that the
loss of accuracy is negligible.

2. APPROXIMATE RKNN SEARCH
The only existing approach to RkNN search that can han-

dle arbitrary values of k at query time and can be used for
any metric objects is the MRkNNCoP-Tree [1]. This ap-
proach, however, is optimized for exact RkNN search and its
flexibility regarding the parameter k is limited by an addi-
tional parameter kmax. This additional parameter must be
specified in advance, and is an upper bound for the value of k
at query time. If a query is launched specifying a k > kmax,
the MRkNNCoP-Tree cannot guarantee complete results. In
our scenario of answering approximate RkNN queries, this
would be no problem but since the MRkNNCoP-Tree con-
straints itself to compute exact results for any query with
k ≤ kmax, it generates unnecessary computational overhead.

Our idea is to store one approximation of the kNN dis-
tances for any k ∈ N. This approximation is represented by
a function, i.e. the approximated kNN distance for any value
k ∈ N can be calculated by applying this function. Similar to
existing approaches, we can use an extended tree-like metric
index, that aggregates for each node the one approximation
of the approximations of all child nodes or data objects con-
tained in that node. These approximations are again repre-
sented as functions. At runtime, we can estimate the kNN
distance for each node using this approximation in order to
prune nodes analogously to the way we can prune objects.

A suitable model function for the approximation of our
kNN distances for every k ∈ N should obviously be as com-
pact as possible in order to avoid a high storage overhead

788

and, thus, a high index directory. In our case, we can as-
sume that the distances of the neighbors of an object o are
given as a (finite) sequence

NNdist(o) = 〈nndist1(o), nndist2(o), . . . , nndistkmax (o)〉
for any kmax ∈ N. Our task here is to describe the dis-
crete sequence of values by some function fo : N → R with
fo(k) ≈ nndistk(o). As discussed above, such a function
should allow us to calculate an approximation of the kNN
distance for any k, even for k > kmax by estimating the
corresponding values.

Following the theory of self-similarity it can be assumed
that the kNN distances also follow the power law, i.e. k ∝
nndistk(o)df , where df is the fractal dimension. Transferred
into log-log space, we have a linear relationship:

log(nndistk(o)) ∝ 1

df
· log(k).

From this observation, it follows that it is generally sen-
sible to use a model function which is linear (and thus com-
pact) in log-log space, corresponding to a parabola in non-
logarithmic space. In the following, we consider the pairs
(log(k), log(nndistk(o)) as points of a two-dimensional vec-
tor space (xk, yk). Like in most other applications of the
theory of self-similarity, we need to determine a classical re-
gression line that approximates the true values of nndistk(o)
with least squared errors. This line is exactly the approxi-
mation of the kNN distances we want to aggregate. In other
words, for each object o ∈ D, we want to calculate the func-
tion fo(x) = mo · x + to that describes the regression line of
the point set {(log k, log nndistk(o)) | 1 ≤ k ≤ kmax}.

From the theory of linear regression, the parameters mo

and to can be determined as

mo =

(
kmaxP
k=1

yk · log k) − kmax · ȳ · 1
kmax

kmaxP
k=1

log k

(
kmaxP
k=1

(log k)2) − kmax · (1
kmax

kmaxP
k=1

log k)2

where ȳ = 1
kmax

Pkmax
k=1 log nndistk(o), and

to = ȳ − mo · 1

kmax

kmaxX

k=1

log k.

Using these concepts, an accurate approximation for each
object of the database can be generated. When using a
hierarchically organized index structure, the approximation
can also be used for the nodes of the index to prune irrelevant
sub-trees. Usually, each node N of the index is associated
with a page region representing a set of objects in the subtree
which has N as root. In order to prune the subtree of node
N , we need to approximate the kNN distances of all objects
in this subtree, i.e. page region. If the distance between the
query object q and the page region of N , called MINDIST,
is larger than this approximation, we can prune N and thus,
all objects in the subtree of N . The MINDIST is a lower
bound for the distance of q to any of the objects in N . The
aggregated approximation should again estimate the kNN
distances of all objects in the subtree representing N with
least squared error. This can be done in a straight-forward
manner.

The concepts presented here can be integrated into any
hierarchically organized index for metric objects or into Eu-

clidean index structures. Then, the algorithm for approx-
imate RkNN queries is similar to the exact RkNN query
algorithms of the MRkNNCoP-Tree. However, using our
concepts, the index can be used to answer RkNN queries
for any k specified at query time. Let us point out that
the value of k is not bound by a predefined kmax parame-
ter, although the approximation of the kNN distances are
computed by using only the first kmax values, i.e. the kNN
distances with 1 ≤ k ≤ kmax. The kNN distance for any
k > kmax can be extrapolated by our approximations in the
same way as for any k ≤ kmax.

A query q is processed by traversing the index from the
root of the index to the leaf level. A node N needs to be
refined if the distance between q and N is smaller than the
aggregated kNN distance approximation of N . Those nodes
having distance to q larger than their aggregated kNN dis-
tance approximation are pruned. The traversal ends up
at the data node level. Then, all points p inside the ob-
tained nodes are tested using their approximation fp(x) =
mp ·x+tp. A point p is a hit if log(dist(p, q)) ≤ mp ·log k+tp.
Otherwise, if log(dist(p, q)) > mp · log k + tp, point p is a
miss and should be discarded.

In contrast to other approaches that are designed for RkNN
search for any k, our algorithm directly determines the re-
sults. In particular, we do not need to apply an expensive
refinement step to a set of candidates. This further avoids
a significant amount of execution time.

3. RESULTS
We integrated our concepts into an M-Tree and compared

our concepts with the methods proposed in [1] using two
real-world metric datasets. On both datasets, our approach
clearly outperforms the competing MRkNNCoP-Tree. The
performance gain of our approach over the existing method
also grows with increasing database size.

We also executed RkNN queries on the metric databases
with varying k and compared the scalability of both com-
peting methods. The parameter kmax was set to 100 for
both approaches in all experiments. With increasing k, the
performance gain of our method over the competitor rapidly
grows.

In summary, in almost all parameter settings, our novel so-
lution turned out to be clearly faster than the MRkNNCoP-
Tree which computes an exact solution but is limited by
the kmax parameter. On the other hand, our solution is
not limited to any k ≤ kmax but only designed for approxi-
mate answers. However, in all our experiments, we achieved
high recall values of clearly above 90%. Furthermore, the
recall does not decrease significantly when answering RkNN
queries with k > kmax. This is important, since it indicates
that our solution is very efficient and produces high quality
results.

4. REFERENCES
[1] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and

M. Renz. Efficient reverse k-nearest neighbor search in
arbitrary metric spaces. Proc. SIGMOD, 2006.

[2] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High
dimensional reverse nearest neighbor queries. Proc. CIKM,
2003.

[3] C. Xia, W. Hsu, and M. L. Lee. Erknn: efficient reverse
k-nearest neighbors retrieval with local knn-distance
estimation. Proc. CIKM, 2005.

789

