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ABSTRACT INTRODUCTION
Motivation: During the Bavarian newborn screening pro- Background
gramme all newborns have been tested for about 20 inherited
metabolic disorders. Owing to the amount and complexity
of the generated experimental data, machine learning tech-
niques provide a promising approach to investigate novel
patterns in high-dimensional metabolic data which form the
source for constructing classification rules with high discrimin-
atory power.

Results: Six machine learning techniques have been investig-
ated for their classification accuracy focusing on two metabolic
disorders, phenylketo nuria (PKU) and medium-chain acyl-
CoA dehydrogenase deficiency (MCADD). Logistic regression
analysis led to superior classification rules (sensitivity >96.8%,
specificity >99.98%) compared to all investigated algorithms.
Including novel constellations of metabolites into the models,
the positive predictive value could be strongly increased (PKU
71.9% versus 16.2%, MCADD 88.4% versus 54.6% compared
to the established diagnostic markers). Our results clearly
prove that the mined data confirm the known and indicate
some novel metabolic patterns which may contribute to a better
understanding of newborn metabolism.

Newborn screening programmes for severe metabolic
disorders, which hinder an infant’s normal physical or men-
tal development, are well established (Liedblal., 2002b,
2003). Otherwise not apparent at this early age, these meta-
bolic disorders can be addressed by effective therapies. New
and refined screening methodologies based on tandem mass
spectrometry of metabolites have been developed for routine
deployment (Millingtoret al., 1984). The functional endpoint

of metabolic cycles, which offer a precise snapshot of the cur-
rent metabolic state, can be detected in a single analysis of a
small blood sample that is collected during the first few days
of life. Screening simultaneously for more than 20 inherited
metabolic disorders by quantifying the concentrations of up
to 50 metabolites (Millingtot al., 1992; Chacet al., 1999),

the amount and complexity of the experimental data is quickly
becoming unmanageable to be evaluated manually. Therefore,
machine learning techniques have been suggested to discover
and mine novel data in metabolic networks and to construct
screening models for metabolic disorders in newborns with

Availability: WEKA machine learning package: www.cs. high predictive power (Mendes, 2002; Nevikeal., 2003;

waikato.ac.nz/~ml/weka and statistical software package Purohitet al., 2003; Baumgartnest al., 2004).
ADE-4: http://pbil.univ-lyon1.fr/ADE-4 Task definition

Contact: christian.baumgartner@umit.at Focusing on two representative inborn errors of metabolism—

phenylketonuria (PKU), an amino acid disorder, and medium-
*To whom correspondence should be addressed. chain acyl-CoA dehydrogenase deficiency (MCADD), a

Bioinformatics vol. 20 issue 17 © Oxford University Press 2004; all rights reserved. 2985


http://pbil.univ-lyon1.fr/ADE-4

C.Baumgartner et al.

fatty acid oxidation defect—six well-established supervisedDisease char acteristics, metabolism and
machine learning techniques were evaluated to determingpidemiological aspects of investigated disorders

the ‘best' screening model according to the following phenyiketonuria (PKU, OMIM #261600 http:/www3.ncbi,
criteria: nim.nih.gov/Omim) is an amino acid disorder which is caused
primarily by a deficiency of phenylalanine hydroxylase activ-

« discriminatory performance of the learning algorithm ;..\ wt "biocked hvdroxviati f phenvlalanine to t .
based on pre-classified, selected and clinically valid- y 4 yiation ol pnenyaianine 1o yrosine

r impaired synthesis or recycling of the biopterin (BN4)
ated sub-databases of PKU and MCADD newborns, an(gofactor. Phenylalanine hydroxylase deficiency produces a

controls, spectrum of disorders, including classic PKU, non-PKU
« diagnostic prediction of constructed classifiers with hyperphenylalaninemia and variant PKU (Chatal., 1993;

respect to optimizing sensitivity and minimizing the num- Rashect al., 1995; Guldbergt al., 1998). Untreated children

ber of false positive results considering a larger databasgith persistent severe PKU show impaired brain develop-

of approximately 100 000 controls. ment. Signs and symptoms, include microcephaly, epilepsy,

mental retardation and behaviour problems. Since the appear-
In particular, we compared the classification capabilities ofgnce of universal newborn screening, symptomatic classic
three directly interpretable decision rules (discriminant anapku is infrequently seen. Its predicted incidence in screened
lysis, logistic regression analysis and decision trees), whiclyopulations of less than one in a million live births reflects
represent the data relations in an explicit way, e.g. in &hose children not detected by newborn screening. Prevalence
formula or in a tree-like structure, and three not directly inter-gf phenylalanine hydroxylase deficiency in various popu-
pretable techniquesc{nearest neighbours, artificial neural |ations shows different values: Turks (1:2600), Caucasians
networks and support vector machines), which cannot easilyl;lo 000), Japanese (1:143000). In our experiments we
be described in terms of the original variables or attributesigcused on cases of classic PKU. The estimated incidence
Two feature-selection methods were applied which aim abf classic PKU calculated from Bavarian newborn screening
removing irrelevantand redundant metabolites while retainingNBS) data is approximately 1:14 000.
or improving the discriminatory power of our classification Medium-chain acyl-CoA dehydrogenase deficieny
models. (MCADD, OMIM #201450, http://ww3.ncbi.nim.nih.gov/
Omim) is a fatty acid oxidation defect which leads to an
SYSTEMS AND METHODS accumul_ation of fatty_acids and a decrease in cell energy
metabolism. Fatty acids that accumulate due to the erro-

Tandem mass spectrometry (MSMS) neous metabolism of MCADD are C6-carnitine, C8-carnitine,
A mass spectrometer separates ions based on the@¥l0-carnitine as well as C10:1, which is metabolized by
mass/charges(/z) ratios. Characteristic patterns of fragmentsfour g-oxidation cycles of oleylcarnitine (C18:1) (Van Hove
and relative peak intensities in the resulting spectrum allowet al., 1993; Rasheét al., 1995; Blauet al., 2001; Rinaldo
gualitative as well as quantitative determination of chemicakt al., 2002). Patients with MCADD (clinically two forms
compounds. By coupling two mass spectrometers, usuallpf MCADD can be distinguished, i.e. ‘classic’ and ‘mild’
separated by a reaction chamber or collision cell, the modMCADD) appear normal at birth and usually present between
ern tandem mass spectrometry (MS/MS) allows simultaneou8 and 24 months of age in response to intercurrent and
analysis of multicompounds in a high-throughput processommon infections. Instances of metabolic stress can lead
(Millington et al., 1984). MS/MS has been used for severalto vomiting and lethargy, which may quickly process to
years to identify and measure carnitine ester concentratiorgoma and death. MCADD is a disease that is prevalent in
in blood and urine of children suspected of having inbornCaucasians, especially those of Northern European descent.
errors of metabolism. Indeed, acylcarnitine analysis is al'he overall frequency of the disorder has been estimated to
superior diagnostic test for disorders of fatty acid oxidationrange from 1:4900 to 1:17 000 (variations related to the eth-
because abnormal levels of related metabolites are detect@it background of populations). Based on NBS programmes
before the patient is acutely ill (Millingtoret al., 1992).  worldwide, the incidence has been defined in Northern Ger-
More recently, MS/MS has been used in pilot programmesgnany (1:4900), USA (1:15700) and in Australia (1:25 000).
to screen newborns for these conditions and for disorderf) our experiments we only investigated the classic form
of amino acid and organic acid metabolism as well (Lieblof MCADD. The estimated incidence of classic MCADD
et al.,, 2002a,b, 2003). MS/MS thus permits very rapid, calculated from Bavarian (Southern Germany) NBS data is
sensitive and, with internal standards, accurate guantitativapproximately 1:10 000.
measurement of many different types of metabolites by con- For the screening of inborn errors of metabolism physicians
version of raw mass spectra into clinically meaningful resultsgenerally use decision rules or flags, which are based on so-
(concentrations). called primary diagnostic metabolites. In 2000, the American
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College of Medical Genetics/American Society of Humantraining phase. However, aim of the classification task is to
Genetics Test and Technology Transfer Committee Workachieve highest discriminatory performance by minimizing
ing Group (ACMG/ASHG) published a guideline where thesethe number of false negative and false positive cases. Feature
primary metabolites/markers are summarized. According teubselection algorithms led to a reduced number of metabol-
thisdocument phenylalanine (Phe) and tyrosine (Tyr) are merites relevant for the calculated classifier. Finally, the most
tioned as established primary markers for PKU, C8-carnitinesensitive models were re-evaluated by applying them on a
and C10:1-carnitine for MCADD. We have used the proposedarger database o100 000 controls in order to estimate a
markers as reference for discussion of our found metabolitesepresentative value for specificity.

Examined newborn screening data Supervised machine learning techniques

Our experimental datasets were anonymously provided froysually, for a supervised classification problem, the
the newborn screening programme in Bavaria, Germanyraining datasets are in the form of a set of tuples
(Public Health Newborn Screening Center of the State of (y1,x1,), ..., (¥, Xs,j)} Wherey; is the class label and; is
Bavaria, Oberschleissheim) between 1999 and 2002. A single set of attributes (metabolites) for the instances. The task
blood sample, which has been taken within a few days afte@f the learning algorithm is to produce a classifier (model) to
newborn’s birth, undergoes MS/MS analysis, the measuredlassify the instances into the correct class. The used classi-
metabolic datasets have been saved in a database (file badistion and feature selection algorithms are described shortly
DB, stage 2002). in the section ‘algorithms’.

For an objective train-and-test design cycle we focused on
one representative disorder of the amino acid and one of tha| GORITHMS
faFty aC|q ox@at_lon metgbollsm, each qf them showmg a reI—Classifi cation algorithms
atively high incidence in-between their group of disorders_ _ o _
(classic PKU,n =43 cases and classic MCADD,= 63 Discriminant analysis (DA)  Both discriminant analysis and
cases). The number of cases of further screened metabolic di99iStic regression analysis construct a separating hyperplane
orders was unfortunately too small for a useful examinatiorP&tween the two datasets. This hyperplane is described by
(e.g. 3-OH long-chain acyl-CoA dehydrogenase deficiency? linear discriminant function = f (x1, ..., x,) = bix1 +
LCHADD, n = 2; short-chain acyl-CoA dehydrogenase ?2%2 + -+ + bax, + ¢ which equals to zero at the hyper-
deficiency, SCADDy = 1; very long-chain acyl-CoA dehyd- plane if two preconditions are fulfilled: (i) multivariate normal
rogenase deficiency, VLCADD; = 5; propionic acidemia, distribution in both datasets and (ii) homogeneity of both cov-
PA, n = 6; and methylmalonic acidemia, MMA; = 5). ariance matrices. For discriminant analysis, the hyperplane is
Based on the limited number of PKU and MCADD cases,dEfi”Ed by the geometric means between the centeroids (i.e.
we created a statistically representative control group fronih€ centres of gravity) of the two datasets. To take differ-
the NBS databaseB00 000 entries, end of the year 2002) €Nt variances and covariances in the datasets into account,
using a rate of~1:25 (disorder to controls). Therefore, the the variables are usually first transformed to standard means
PKU sub-database (train-and-test database) contains all 4¢ = 0) and var!an(?eo(z = 1) and the Mahalanobis dis-
cases designated as confirmed classic PKU and a small nurifince (an ellipsoid distance determined from the covariance
ber of randomly sampled controls (1241 cases i.e. eacpatrix of the dataset) is preferred to the Euclidean distance.
500th case from NBS controls, which represent all new{McLachlan, 1992).

borns without verified cases of known metabolic disorderS)Logistic regression analysis (LRA)  Similar to DA logistic
the MCADD sub-database contains all 63 cases newbomMggression analysis constructs a linear separating hyper-
of classic MCADD and again 1241 controls. A much Iargermane between the two datasets which have to be dis-

randomly sampled control group of 98411 cases, represenfinguished by the classifier. In addition, a logistic
ing one-sixth of the NBS control database, serves to obtaif,nction P

reliable estimates of the false positive rates. 1
Experimental design of the classification analysis Po1ve=
The general scheme for constructing a screening model (clags used to consider the distance from the hyperplane as a
sifier) of high-dimensional metabolic data is illustrated in probability measure of class membership, wherethe con-
Figure 1. Starting from the NBS database, we first selecditional probability of the formP (z = 1jx1,...,x,) andz the

ted two sub-databases containing all available PKU andogit of the model. The class membership to both classes is
MCADD cases and a representative small number of ranindicated by a cut-off valueR = 0.5 by default). LRA uses a
domized controls for training and cross (X)-validation. Thus,maximum-likelihood method which maximizes the probabil-
computational efficiency could be ensured without loosingity of getting the observed results given the fitted coefficients
the models’ classification accuracy on reduced data durinfHosmeret al., 2000).

(1)
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Anonymized NBS DB
(data collected over
several years)
=LY X Fi=1n

y, € {2 classes}

X € R

Pre-selected database
of n' = 1347 newborns
including all PKU and
MCADD cases and a
reduced number of
randomly sampled

Pre-selected database
of n* = 98411
randomly sampled
controls

1=y % * e e

controls
X=X Fegm

Reduction of full feature
dimensionality based on
found metabolic patterns

=LY X e

Construction of
classification models
on mined markers by
training + X-validation

Most sensitive
screening models

l V

Most sensitive and specific
screening model
fx: R9 — {classes}

!

Classification result = f (screened newborn)

Testing specificity
of classifiers on a
larger control database

Fig. 1. General process of data analysis for constructing a screening model on high-dimensional metabolic data. Starting from the newborn
screening database (NBS DB) several intermediate data mining steps result in a classification model with optimized sensitivity and specificity.
x describes all available tuples of the database containing the measured metahglkited the flag for the class membershyp)( £, is the

formula for the final model.

Decision trees (DT) Decision trees are rooted, usually bin- whereS represents the data collectios] |ts cardinality,C

ary trees, with simple classifiers placed at each internal nodis the class collection$, the subset ofS containing items
and a class label at each leaf. For most DT algorithmsbelonging to class, V(A) is the set of all possible values for
these simple classifiers associated with the internal nodes afeature A,S, is the subset of for which A has value). We
comparisons between an input variable and a fix value. Thased the C4.5 algorithm with reduced-error-pruning option to
most often used algorithm to generate decision trees is IDavoid overfitting of training data.

(Quinlan, 1986) or its successors C4.5 and C5.0, respectivelly_near%t neighbour dlassifier (kNN) A k-NN classifier

_(Qumlan, 1993). This a_lgorlthm_ selects _the ne>_<t node to pIaC%efines decision boundaries inagimensional space which
in the tree by computing the information gain for all can-

didate features. Information gain (IG) is a measure how wel eparate different sample classes from each other in the data.

the given feature A separates the remaining training data bghe learning process consists in simply storing the presented

) . . . ata. All instances correspond to points inradimensional
expecting a reduction of entropy, a measure of the impurity space and the nearest neighbours of a given query are defined
in the data (Mitchell, 1997). P 9 given query

in terms of the standard Euclidean distance. The probabil-
ity of a queryg belonging to a class can be calculated as

E(S) = ISl 'S“|, (2) follows:
ceC 151 151 Zwk—l(kc:c)
1
1S, plelp) ="K w=———, @
IGS,A)=E©S)— > 5 G, (3) 3wk d(k,q)
veV(A) keK
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whereK is the set of nearest neighbouks the class ok and  addition, for a given kernel it is necessary to specify the
d(k,q) the Euclidean distance &ffrom ¢. Larger values of cost factorc, a positive regularization parameter that con-
K consider more neighbours, and therefore smooth over locdiols the trade-off between complexity of the machine and
characteristics, smaller values leads to limited neighbourthe allowed classification error (Cortesal., 1995; Vapnik,
hoods (Mitchell, 1997). In generat; can only be determined 1998). We used the SVM with its simplest case of a lin-
empirically. For our data representation we propase@lues  ear hyperplane and with polynomial kernels of degree 2
of 1,3 and 5. and 3. The cost factar was set to 100 for all three SVM

Artificial neural networks(ANN)  An ANN is an information settings.
processing paradigm that is inspired by the biological nervous-eatur e selection algorithms

systems, such as the brain. The network consists of Severﬁleature subset selection is the process of identifying and

layers of neurons, which are the input, hidden and outputing as much irrelevant and redundant information as
layers. An input layer takes the input and distributes it to theH-l

hidden | hich do all th ) ossible. This reduces the dimensionality of the data and
Idden layers which do all the necessary computation an ay allow learning algorithms to operate faster and more
output the results to the output layer.

. . . _ efficiently (Mitchell, 1997).

The st.andard. algorithm which we used is a multﬂayergd We propose the filter approach using gain ratio and relief, a
ANN.tralned using backp_rqugatmn and the delta rule. Th'srepresentative of correlation-based selection techniques coup-
algorithm attempts to minimize the squared error betweernng an applicative correlation measure with a heuristic search

the network output values and the target value for these OuE’trategy: As described previously the effectiveness of a fea-
pu_ts (B'Sr.mp’ 1995; M|tcr_1ell, 1997.)' Th_e ANN was demgn_edture in classifying the training data can be quantified using the
using a single layer of hidden units with (hnumber of attrib- iven entropyE [Equation (2)]. Using Equation (3) (inform-
utes+ numbgr of class:es)/ 2 hidden units. Note that too MaNYiion gain, I1G) the expected reduction of entropy caused by
or too feV.V hldden units can lead to over- or underestlma- artitioning the data according to feature A can be measured.
tion of ”"’"”'T‘g data. We chose 500 epochs to tr:?un througl&Ij'hereby, IG favours features with many different values over
and a leaming rate of 0.3, the amount the weights t0 b, qe \yith few values whichiis notalways desired. The concept
updated. of gain ratio (GR) overcomes this problem by introducing an
Support vector machines (SYM) The basic idea of an SVM  extra term Sl taking into account how the feature A splits the
classifier is that the data vectors can be separated by a hypélata.

plane. In the simplest case of a linear hyperplane there _IG(S,A) ,
. : . GR(S,A) = ———, th
may exist many possible separating hyperplanes. Among SI(S,A)
them, the SVM classifier seeks the separating hyperplane
that produces the largest separation margin between the two d 1S:| 1S:|
classes. Such a scheme is known to be associated with SIS, A) =~ IR (6)
i=1

structural risk minimization to find a learning machine that

yields a good trade-off between low empirical risk and smalkyhere s; ared subsets of data resulting from partitionitig

capacity. by thed-valued feature A. For the special case where the SI
In the more general case in which the data points are nakrm can be 0, GRY A) is set to IGE, A).

linearly separable in the input space, a non-linear transforma- Relief is a feature weighting algorithm that is sensitive to

tion is used to map the data vectomto a high-dimensional  feature interactions. It evaluates the merit of a feature by

space prior to applying the linear maximum-margin classivepeatedly sampling an instance and considering the value

fier. To avoid over-fitting in this higher dimensional space,of the given feature for the nearest instance of the same class

an SVM uses kernel functions (polynomial and Gaussianearest hit) and different class (nearest miss). Equation (7)
radial basis kernels are the most common) in which the nonrepresents the weight updating formula:

linear mapping is implicity embedded. With the use of a
kernel, the decision function in a SVM classifier has the diff (A, R, H)?  diff(A, R, M)2
following form: Wa=Wp— +

(7)

m m
L

f@ =) aiyiK i, x)+b, (5)

i=1

where W4 is the weight for attributed, R is a randomly
sampled instanceH is the nearest hitM is the nearest
miss andm is the number of randomly sampled instances.
where K (-,-) is the kernel function,x; are the so-called The function diff calculates the difference between two
support vectors determined from training dafag is the instances foragiven attribute (Kiraand Rendell, 1992; Konon-
number of support vectorsy; is the class indicator asso- enko, 1995). The number of nearest neighbours was selected
ciated with eachx;, and«;, the Lagrange multipliers. In to be 10.
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Evaluation of classifier’s accuracy and validation Table 1. Metabolites of a single blood spot from MS/MS analysis

We evaluated the discriminatory power of the investigated
techniques constructing a classification (confusion or continamino acids
gency) table for our two class problem stating true positives Alanine (Ala)
(TPs), true negatives (TNs), false positives (FPs) and false Arginine (Arg)
negatives (FNs). The most frequently used evaluation meas-Ar?X:'”souS;CC'”ate
ure in classification is accuracy (Acc) which describes the Citrulﬁne (City*
proportion of correctly classified instances: Aec (TP + Glutamate (Glu)
TN)/(TP 4+ FP 4+ TN + FN). Measures which consider  Glycine (Gly)
more precisely the influence of the class size are sensitiv- Methionine (Met)
ity (Sn) or recall, specificity §,), positive predictive value S;”'“”Iel(ofnf o
(PPV) or precision and negative predictive value (NPV). nyong);jt::;;]ti ((Py?;n)
Sn = TP/(TP+ FN) measures the fraction of actual positive  ggine (ser)
instances that are correctly classified; wifie= TN/(TN + Tyrosine (Tyr)
FP) measures the fraction of actual negative examples that Valine (valy*
are correctly classified. The PPV (or the reliability of pos- Leucine+ Isoleucine (Xle)
itive predictions) is computed by PP¥ TP/(TP + FP),
the NPV is defined as NP\= TN/(TN + FN) (Salzberg, Fatyacids
1999). Free carnltl_n_e (Co)
8 L . Acetyl-carnitine (C2)

Five classification algorithms (DT, LRA, kNN, ANN and  prqopionyl-carnitine (C3)
SVM) and the feature selection techniques gain ratio and relief Butyryl-carnitine (C4j
used in this study were obtained from the WEKA machine Isovaleryl-camitine (C5)
learning package (http://www.cs.waikato.acml/weka). Hexanoyl-carnitine (C6)
WEKA is a publicly available, widespread and comprehensive gztczr;y;ﬁéggmiéc(?l 0
tool set which guarantees high comparability of our results. Dodecaﬁoyl_camitme
DA and statistical analysis were performed with the soft- 12y
ware package ADE-4 (http://pbil.univ-lyonl1.fr/ADE-4). The  Myristoyl-carnitine (C14)
packages were used to investigate the models’ discriminatory Hexadecanoyl-carnitine
power on full and reduced data dimensionality. An established Oégﬁiano camitine
methodology to evaluate the robustness of the classifier is cisy Y
to perform a cross-validation on the classifier. 10-fold cross- Tigiyi-carmnitine (C5:1)
validation has been proved to be statistically good enough in Decenoyl-carnitine (C10:1)
evaluating the classification accuracy of the models (Witten Myristoleyl-carnitine
etal., 2000). (C14:1)

Hexadecenoyl-carnitine
(C1e6:1)
Octadecenoyl-carnitine

EXPERIMENTS (C18:1)

L. Lo . Decenoyl-carnitine
Descriptive statistics of metabolic data (C10:2)

Table 1 summarizes all metabolites measured by mass spec-' efrc""f;;?d'enoy"cam'“ne

trometry: 14 am!no_ acid _representi_ng thg spectrum of meta- ociagecadienoyl-carnitine
bolites involved in investigated amino acid disorders and 29  (c18:2)
fatty acids (acylcarnitines) involved in the metabolism of Hydroxy-isovaleryl-
fatty acid oxidation defects. The mean concentrations and Cg;”'é'”He
respective SD of all metabolites are givenmol/l. Dif- H( “OHY .

. ) . ydroxytetradecadienoyl-
ferences of metabolite concentrations between disorder and " gitine

control group were performed with unpaired significance  (c14-oH)

testing. Hydroxypalmitoyl-
carnitine
. e ) (C16-OHY
Comparison of classification methods examined on Hydroxypalmitoleyl-
the full metabolite dimensionality carnitine

_ _ o ) (C16:1-OH}
In order to investigate the discriminatory performance in

PKU Controls
421.8+129.8 508.9-210.7
333.0£447.5 90.9-49.7
1.1742.23 0.01+0.02
24.7+21.7 28.7+39.9
3498 2485 235.9:74.0
331.2-140.0 624.2-315.9
23.5-7.9 29.2+12.9
80.4+54.7 85.2+60.7
58840240.4 57.9:17.9
324181 51.8+31.6
689.& 362.2 400.6-358.2
58.124.2 97.2£64.2
183.4+71.8 170.6£61.3
193.%#91.7 264.5£107.7
MCADD Controls
26.41611.138 29.416-12.087
14.36%7.245 6.66H-3.066
3.202 1.396 2.326:1.205
0.52440.396 0.522+-0.309
0.19£0.122 0.16G:0.105
1.9901.821 0.415-0.516
8.344 6.558 0.223:0.142
0.7640.501 0.079:0.067
0.16640.104 0.209:0.206
0.2074+0.104 0.198:0.106
4.066+ 1.615 4.413k2.144
0.954+0.378 0.928:0.394
0.0310.027 0.052-0.067
0.8@50.478 0.095:0.059
0.096+0.048 0.122-0.094
0.158+0.078 0.185:0.104
0.743+0.276 1.03G: 0.401
0.045+0.029 0.051-0.045
0.032+0.019 0.055:0.046
0.108+0.068 0.161+0.115
0.168+0.101 0.159-0.078
0.01640.010 0.028 0.024
0.021+0.013 0.023+ 0.016
0.03640.021 0.043t 0.038

a high-dimensional feature space, we first examined all
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Table 1. Continued. Table 2. Discriminatory performance of all six machine learning algorithms
applied to full metabolite dimensionality

Fatty acids MCADD Controls B
Hydroxyoleyl-carnitine 0.013+0.010 0.016:0.013  Classifier Sn(%) Sp(%0) Acc(%)
(C18:1-OHy
Dicarboxyl-butyryl- 0.137+0.054 0.15H10.077 PKU
carnitine (C4-DC) DA 90.7 100 99.7
Glutaryl-carnitine (C5-DC) 0.092 0.056 0.0440.031 LRA 95.3 100 99.8
Methylglutaryl-carnitine 0.072+0.049 0.046 0.040 DT 95.3 99.8 99.7
(C6-DC) 1-NN 93.0 100 99.8
Methylmalonyl-carnitine 0.036+0.036 0.096t 0.064 3-NN 90.7 100 99.7
(C12-DC) 5-NN 90.7 100 99.7
ANN 97.7 100 99.9
Concentrations (meatt SD) of amino acids and fatty acids are denouncegdrimol/| SVM-1 95.3 100 99.8
for PKU, MCADD and control group. Controls represent a randomized fraction of 1241 S\yM-2 97.7 100 099
cases. The asterisks indicate no significaht{ 0.05) differences between both classes SVM-3 95.3 100 99.8
compared by means of an unpaired significance test. MCADD
DA 88.9 100 99.5
presented supervised machine learning algorithms on selec-LRA 93.7 98.8 98.5
ted sub-databases considering full amino acid dimension- DT 92.1 99.8 99.4
ality (PKU sub-database) and full fatty acid dimensional- 1NN 88.9 994 98.9
. MCADD b-d b ivelv. O . f full 3-NN 84.1 100 99.2
ity ( sub-datal ase),. respectively. Overview of full g5\ 825 100 99.2
amino and fatty acid dimensionality (Table 1). The effective- ann 92.1 99.7 99.3
ness of the classifiers is summarized in Table 2. SVM-1 93.7 99.6 99.3
These results revealed that most of the classifiers (without SYM-2 93.7 99.8 99.5
SVM-3 93.7 99.8 99.5

DA andk-NN) applied on the PKU database performed well
i ifi i > 0, > 0,

in terms of classification accuracyn(_ 95.3 /O’SF,’ - 99'8 _/0’ Directly interpretable (DA, LRA and DT) and not directly interpretable classifiers run-
Acc > 99.7%). Except the DT learner, all classifiers Indlcatedning on 14 amino acids (PKU data) and on 29 fatty acids (MCADD data). 1-NN, 3-NN
an optimal speciﬁcity of 100%. Thereby, not directly inter- and 5-NN represent theNN classifiers with &-value of 1, 3 and 5. SVMs with a linear
pretable algorithms such as ANN and SVM-2 yielded a mino'hyperplane are denounced as SVM-1, SVMs with polynomial kernels of degree 2 and 3

! e . are abbreviated by the symbols SVM-2 and SVM-3.
advantage in sensitivity compared to the other ones (Table 2).

Running our experiments on the MCADD sub-database, alhnd Arg showed a high impact in the PKU data in addi-
six algorithms showed reduced classification accuracyfcf. tion to Phe. However, these results correspond just partly
and Acc compared to the PKU results, Table 2). This tendencyith the abnormal PKU metabolism, as solely Phe and Tyr
may arise from the induced classifiers being able to charactegre used as conventional diagnostic metabolites for screen
ize the negative samples as our training set contains twice agg for PKU. Little differences were observed in the relief
much higher feature dimensionality compared to the PKU datganking where again Phe, which shows a highly accumu-
(29:14 metabolites). In general, the DA akeNN learners  |ated concentration, was top-placed followed by the acids
demonstrated decreased classification accuracy for both PKidle, Glu, Val and Gly. The diagnostic marker Tyr, which
and MCADD datasets. LRA, ANN, DT, SVM-1 (linear hyper- s significantly diminished in PKU metabolism (cf. Table 1),
plane) and SVM-2 (polynomial kernel, degree 2) led to betteranked at an irrelevant position in both filter approaches. In
discriminationand, accordingly, classification accuracy indic-addition to Phe, Arg and Glu yielded strongly increased con-
ated by highS, (>95.3%) and highS, (>99.8%) in PKU  centration levels, but accompanied by high variances (cf.
data, and minor reduces), (>92.1%) but also supericf,  descriptive results) in the PKU data. However, they show

of >99.6% in MCADD data. no significant concentration changes in the control group.
) ) These observations cannot be directly explained by the defi-
Feature selection and metabolic patterns ciency of phenylalanine hydroxylase activity, but seem to

Feature extraction methods identify redundant metabolitebe an interesting secondary effect of metabolism which cur-
which can be removed leading to simplified classificationrently is in discussion with our clinical and biochemical
models. We applied two filter techniques, gain ratio and reliefexperts.
in order to identify most significant metabolites. Figure 2a For MCADD data the ranked gain ratio results figured out
and b summarizes the ranked metabolic patterns resulting strong dominance of octanyl-carnitine (C8), followed by
from both techniques. Black bars indicate the establishe€10:1, which corresponds well to the established diagnostic
diagnostic markers. markers. Itis also of interest to note that the result of the relief
According to the sequence in-between the amino acidlgorithm yielded similar ranking results in the order of the
group obtained by the gain ratio filter (Fig. 2a), Glu, Argsucfirst six fatty acids. In addition to C8 and C10:1 also C10 and
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Fig. 2. Metabolic patterns examined by gain ratio and relief filter algorithmsapifufl amino acid dimensionality (14 acids, PKU) and on
(b) full fatty acid dimensionality (29 acids, MCADD). Black bars indicate the established primary diagnostic markers for PKU and MCADD

(ACMG/ASHG statement, 2000).

2992



Machine learning in metabolic disorders

C2 (medium and short-chain fatty acids) with elevated andable3. Discriminatory performance of all six machine learning algorithms
C12DC and C18:1 (long-chain fatty acids) with diminished applied to the established diagnostic markers
concentration levels correspond quite well with the abnormal

MCADD metabolism. Classifier Sn(%) Sp(%) Acc(%)
Comparison of classifiers examined on reduced PKU
metabolite dimensionality DA 93 100 99.8
We applied five of six machine learning algorithms (DT (LE?TA; ?975'73) 5(’3598) ?3587)
learner was not examined on the_z reduced feature spectrum; 977 99.9 998
due to its internal feature selection strategy) to the estab- 3.nN 97.7 100 99.9
lished diagnostic markers (ACMG/ASHG statement, 2000), 5-NN 95.3 100 99.8
which served as a reference for employing a low-dimensional ANN 97.7 100 99.9
metabolite space. Table 3 summarizes the classification accur-SVM-1 95.3 100 99.8
for PKU's and MCADD’s primary diagnostic metabolites SvM2 9 100 998
acy for primary diagno : SVM-3 76.7 100 99.2
Phe and Tyr, and C8 and C10:1, respectively. Despite thgcapp
small nuances on differences in classification accuracy within DA 71.4 100 98.6
the examined algorithms on full and reduced feature dimen- LRA 95.2 99.8 99.6
sionality LRA is top-ranked for MCADD §, = 95.2%) (©T) (92.1) (99.6) (99.4)
d together with ANN and-NN learners also best ranked = nx 3.7 2.8 9.5
anad tog _ 3-NN 937 99.8 99.5
for PKU (S, = 97.7%). In contrast, DA and SVMs with 5NN 921 99.8 99.5
polynomial kernels show considerably decreasgdialues ANN 92.1 99.8 99.4
compared to full metabolite dimensionality. However, the :VM-; 23-7 gg-g gg-g
; ; o ; ; VM- 4.1 . :
minor alterations of classification accuracy in both disorders VM3 603 100 981

are caused simply by the obvious statistically significant dif-
ferences between the groups of disorder and controls (CBirectIy interpretable (DA, LRA and DT) and not directly interpretatideN\N, ANN,

descriptive results). SVM) classifiers are including the primary diagnostic markers. Phe and Tyr for PKU
and C8 and C10:1 for MCADD. The DT learner was not examined on pre-selected

Scr eeni ng modelsfor classic PKU and classic metabolites due to its internal feature extraction strategy. Therefore, the results are not

MCADD directly comparable with the other classifiers and are depicted in parentheses.

Models which may prove feasible for clinical routine have toaccuracy in terms of the false positive rate and the positive
ensure easy interpretation without loosing predictive powerpredictive value can now easily be extrapolated considering
Within this context, from all the six investigated machine the disorder’s estimated incidences.

learning paradigms, LRA, 1-NN, 3-NN, ANN and SVM-1  All derived screening models for PKU contain Phe as the
gave promising classification results on reduced metabolitpredominant metabolite which is consistent with its role in
dimensionality. For the screening of classic MCADD and clas-erroneous metabolism (Chaet al., 1993; Rashedt al.,

sic PKU, we trained the LRA model—a paradigm widely used1995). Models including Phe alone or combined with Arg
in medical applications—on both metabolic sub-databaseer Argsuc yielded the highest PPV of 70.7-71.9%, i.e. 16—
showing highests,, of > 95.2% (cf. Table 3). In order to 17 FP cases (0.00017%) out of 98411 controls. The latter
further optimize the model’s discriminatory performance, weconstellations, however, cannot be directly explained by the
computed the six top-ranked metabolites as investigated frorRKU metabolism. The classifier which includes the estab-
feature selection methods and examined their possible pailished diagnostic markers Phe and Tyr show maximgym
wise combinations. Including combinations of more than two(100%), but its PPV drops off significantly (16.2%). However,
metabolites did not further improve the classification accurcombinations of Phe and further meaningful metabolites do
acy. Table 4 summarizes the most sensitive screening modet®t change classification accuracy significantly, Phe remains
(PKU: S, = 95.4-100%, MCADD:S, = 95.2-96.8%). the key marker for PKU. Nevertheless, the role of Arg, Glu,
The total number of falsely negative classified newborns didArgsuc, Val or Xle in alternative pathways needs to be cross-
not exceed 0—4.6% for PKU and 3.2-4.8% for MCADD. checked in order to understand their individual influence on
Promising models predominantly include two metabolites, buPKU metabolism.

differ partly from the clinically applied diagnostic metabol- MCADD models led toS, values (95.2-96.8%) slightly
ites. Following the process of analysis depicted in Figure 1decreased but still superior to the established clinical mark-
our most sensitive models were consecutively re-evaluatedrs;S, and PPV showed higher values compared to the PKU
on a larger control database of 98411 cases. As expecnodels. The most sensitive modél,(= 96.8%) combin-
ted this procedure decreased specificities of the constructadg octanyl-carnitine (C8) and octadecenoyl-carnitine (C18:1)
models significantly. However, the models’ real classificationyields an excellentS, of 99.992% and a PPV of 88.4%.
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Table 4. Screening models based on LRA for classic PKU and classic MCADD

Metabolites Sn (%) FN (#of cases) Sp (%) FP (#ofcases) PPV (%) NPV (%) Acc (%) Logitof models ag +aimy +--- 4 a,my,

PKU
Phe, Tyr 100 0 99.775 222 16.23 100 99.775 —211.2566+ 2.1318Phe— 0.6224Tyr
Phe, Xle 100 0 99.793 204 17.41 100 99.793 —61.2577+ 1.8037Phe— 1.4518Xle
Phe, Val 9767 1 99.895 103 28.966 99.999 99.894-11.8046+ 0.2248Phe— 0.1210Val
Phe, Arg 9535 2 99.983 17 70.69 99.998 99.981-9.827+ 0.0462Phe— 0.0035Arg
Phe, Argsuc 9535 2 99.984 16 71.93 99.998 99.982-10.1674 0.0457Phe— 0.340Argsuc
Phe 9535 2 99.984 16 71.93 99.998 99.982—-10.1482+ 0.0455Phe

MCADD
Cs8, C18:1 96.83 2 99.992 8 88.41 99.998 99.990-5.49174-5.7436C8— 2.1833C18:1
C8 9524 3 99.992 8 88.24 99.997 99.989 —7.5362+5.7931C8
C8,C12DC 95.24 3 99.990 10 85.71 99.997 99.987—-4.8647+5.149C8—-40.4661C12DC
Cs8, C10 9524 3 99.989 11 84.51 99.997 99.986—7.61144-4.6649C8+ 3.3668C10
Cs8, C10:1 95.24 3 99.950 50 54.55 99.997 99.947-8.7572+4.2517C8+10.888C10:1

Screening models for classic PKU and classic MCADD. Sensitivity, (Specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), accuracy (Acc), number
(#) of false negatives (FN), number (#) of false positives (FP) and the Iagitsf (he LRA models are denounced. The specificity of the models was re-evaluated on a randomly
selected control database of 98 411 cases.

In other words only a marginal fraction of eight FP casesdoes not strongly depend on other features (Hall, 1999).

(0.00008% of all controls) is wrongly classified as classicln most cases, classification accuracy using reduced feature
MCADD patients. Considering the established diagnostiqmetabolite) dimensionality equaled or increased accuracy
markers C8 and C10:1 in the model, PPV decreases to 54.6%sing the entire metabolite spectrum as our experiments
so that decision rules based on alternative combinations of C8nfirm.

+ C18:1 and C8t+ C12DC or C8 alone seem to be the better The highest discriminatory performance was achieved by

markers to enhance discriminatory performance and thus tthe LRA model, a directly interpretable technigue, which

optimize classification accuracy. proved readily applicable in the daily screening procedure.
In addition, the derived classification models allow to calcu-The resulting discriminant function can easily be cross-
late a conditional probability value of the forR disorder= checked with already acquired patient data. Furthermore, the

1imetabolitg, . .., metabolitg). The logits of constructed formulascanbe used as a starting pointforthe detection of pre-
LRA models ¢ = ag + aim1 + - - - + a,m,) are presented in  viously unknown causal dependencies in metabolic pathways.

Table 4 (final column). For both disorders the computed sensitivity of the best LRA
models ranged-96.8%, the specificity exceeded 99.98%.
DISCUSSION By including novel constellations of metabolites into our

Machine learning techniques have great potential to increasmodels—as examined by the feature extraction procedures—
our knowledge in functional metabolomics, an area which isspecificity and PPV could be increased compared to the
stillin the early stages of comprehensive investigation. Focusestablished screening metabolites. In case of PKU the PPV,
ing on inborn errors of metabolism from newborn screeningwhich was determined on a larger sampled control database of
data the metabolic patterns of a wide spectrum of amino an8i8 411 cases, improved up to 71.9% using solely Phe, and up
fatty acid concentrations were examined in order to enhanc® 70.7% by combining Phe and Arg. The PPV deteriorated
diagnostics in an early stage of disorder. to just 16.2% when considering Phe and Tyr, both of them
Therefore, we investigated six different machine learningoeing the metabolites predominantly altered in the abnormal
techniques for their suitability to construct classification mod-PKU metabolism. Note that for the classification task solely
els for two severe metabolic disorders, PKU and MCADD. Tosingle metabolite concentrations have been considered as
increase the classifier’s effectiveness, we reduced full metanodel input variables. However, modelling a ratio of Phe/Tyr,
bolite dimensionality by two feature selection algorithms,which represent abnormal changes of Phgdnd Tyr (|)
gain ratio and relief, the latter one with its central hypo-due to the blocked hydroxylation of Phe to Tyr, the PPV
thesis that good feature sets contain features that are highan significantly be increased as already shown elsewhere
correlated with the class, yet uncorrelated with each othe(Chaceet al., 1998).
Experiments showed that correlation-based feature selectionFor MCADD, the model's PPV increased significantly
quickly removes irrelevant, redundant and noisy featuresgompared to the PPV of 54.6% for the established screening
and identifies relevant attributes as long as their relevancmetabolites C8 and C10:1 resulting in PPV values of 88.4%
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for C8 and C18:1, 88.2% for solely C8 and 85.7% for com-directly interpretable method, DA, operates on a separating
bining C8 and C12DC, respectively. The false positive rate fotinear hyperplane similar to LRA. As expected, the DA clas-
MCADD most likely varies between screening programmessifier discriminated worse in both, full and reduced feature
because of differences in acylcarnitine analysis and profilspectrum, since an important precondition, the homogeneity
ing. Programmes that screen for MCADD but not for otherof both covariance matrices, was not fulfilled (confer e.g.
fatty oxidation disorders often limit their analysis to C8, the the data distribution of Phe in the PKU and control groups;
predominant, but not specific marker for MCADD which is Table 1). Out of the group of not directly interpretable tech-
elevated in several other disorders (e.g. medium/short chain 3tiques the ANN classifier performed best. Despite lacking
OH acyl-CoA dehydrogenase deficiency or glutaric acidemialirect interpretation of the knowledge representation, its abil-
type II). Consideration of the disorders included in the differ-ity to calculate non-linear decision boundaries emphasizes its
ential diagnosis should minimize the false positive rate. Oudiagnostic potential. The results of theNN algorithms (for
presented models including novel combinations such as C8 all appliedk-values) were comparable with those running on
C18:1 and C8+ C12DC give additional information with established diagnostic metabolites, but significantly inferior
respect to the aforementioned differential diagnostic chal{2—10% points) to those running on the entire dimensional-
lenges. However, the experimental confirmation is essentiaty of PKU and MCADD databases. Howevéryalues larger
and is part of our ongoing investigations. than 5 generally led to a decrease in the classification accuracy
For the routine clinical screening LRA models proved par-due to smoothing effects of local data characteristics.
ticularly feasible because of their highly significant prognostic In conclusion, our results show that the use of machine
accuracy. The models permit to calculate the probability fodearning paradigms, in particular the LRA model, is suit-
the occurrence of the disorder by classifying the tested newable to construct classifiers on high-dimensional metabolic
borns according to a default cut-off level & = 0.5. By  data. Moreover, we could demonstrate that the screening
employing sharper cut-offs (e.g. 0.25 P < 0.75, i.e. models high predictive power could be achieved by reduc-
between the first and third quartile), this approach can béng the dimensionality of the parameter space using only 1-2
extended to a prognostic ‘alarm system’ allowing a morerepresentative metabolites for PKU and MCADD. The mined
effective response to cases of metabolic disorders detectedsults confirm some known patterns among the metabolites
during the screening procedure. Subsequent diagnostic cla@nd reveal a number of novel patterns which may contribute
fication has only to focus on this ‘third’ class of newbornstowards a better understanding of newborn metabolism, and
in the interval [0.25, 0.75] which is highly suspicious for constitutes a significant contribution to the early recognition
the screened disorders. However, the presented models shoand therapy of metabolic diseases.
ing high specificity do not always have optingl of 100%.
A feasible procedure for optimizing sensitivity is to change
the default cut-off level ofP = 0.5. The costs for elevating ACKNOWLEDGEMENTS

sensitivity by decreasing the default cut-off are subject of ourrpjs study was generously supported by the Austrian Indus-

current work. Preliminary results indicate that CIaSSificationtria| Research Promotion Fund FFF (Grand No. HITT-10
models showing optimized sensitivity of 100% have to accepiymT).

a 2-3-fold increase in FP cases.
To sum it up, the top three machine learning techniques,
LRA (as discussed above), SVM and ANN, delivered resultsREFERENCES

of high predictive power when running on full as well as on \erican College of Medical Genetics/American Society of Human
reduced feature dimensionality. Although SVMs can effect-  Genetics Test and Technology Transfer Committee Working

ively construct nonlinear decision boundaries by mapping Group (2000) Tandem mass spectrometry in newborn screening.
training data into a higher-dimensional feature space (SVM- Genet. Med., 2, 267—2609.

2, SVM-3), these polynomial SVMs did not perform better in Baumgartner,C., Baumgartner,D. and B6hm, C. (2004) Classifica-
low-dimensional feature spaces compared to the known lin- tion on high dimensional metabolic data: phenylketonuria as an
ear techniques like LRA. Interestingly, SVM operating witha  example.ASTED Proceedings of 2nd International Conference
linear separating hyperplane (SVM-1) performed better than ©On Biomedical Engineering (BioMED 2004), Innsbruck, Austria,

the polynomial ones. They led to results similar to the LRA _ PP- 357-360. .
classifier, an observation already described by other authof&SnoP.C.M. (1995)Neural Networks for Pattern Recognition.
(Dreiseitlet al., 2001). The C4.5 DT classifier, which selects Oxford University Press, Oxford.

f . v b d he inf . . h lau,N., Thony,B., Cotton,R.G.H. and Hyland,K. (2001)
eatures internally based on the information gain, showe Disorders of tetrahydrobiopterin and related biogenic amines.

good discriminatory performance, leading to the safpe In Scriver,C.R., Kaufman,S., Eisensmith,E., Wo00,S.L.C.,
(95.3%) as LRA on PKU data (tree roet Phe, no child \Vogelstein,B. and Childs,B. (edsJhe Metabolic and Molecular
nodes) and slightly decreassg (—1.6%) on MCADD data Bases of Inherited Disease, 8th edn. McGraw Hill, New York,
(tree root C10:1, two child nodes C8 and C16). The third pp. 1725-1776.

2995



C.Baumgartner et al.

Chace,D.H., Millington,D.S., Terada,N., Kahler,S.G., Roe,C.R.McLachlan,G.J. (1992piscriminant Analysis and Satistical Pat-
and Hofman,L.F. (1993) Rapid diagnosis of phenylketonuria by tern Recognition. Wiley, New York.
guantitative analysis for phenylalanine and tyrosine in neonataMendes,P. (2002) Emerging bioinformatics for the metabolome.
blood spots by tandem mass spectrome@n. Chem., 39, Brief. Bioinform., 3, 134—145.
66-71. Millington,D.S., Roe,C.R. and Maltby,D.A. (1984) Application
Chace,D.H., Sherwin,J.E., Hillman,S.L., Lorey,F. and Cunning- of high resolution fast atom bombardment and constant B/E
ham,G.C. (1998) Use of phenylalanine-to-tyrosine ratio determ- ratio linked scanning to the identification and analysis of acyl-
ined by tandem mass spectrometry to improve newborn screening carnitines in metabolic diseasBiomed. Mass Spectrom., 11,
for phenylketonuria of early discharge specimens collected in the 236-241.
first 24 hoursClin. Chem., 44, 2405-2409. Millington,D.S., Terada,N., Kodo,K. and Chace,D.H. (1992) A
Chace,D.H., DiPerna,J.C. and Naylor,E.W. (1999) Laboratory integ- review: carnitine and acylcarnitine analysis in the diagnosis of
ration and utilization of tandem mass spectrometry in neonatal metabolic diseases: advantages of tandem mass spectrometry. In
screening: a model for clinical mass spectrometry in the next Matsumoto,l. (ed)Advances in Chemical Diagnosis and Treat-

millennium. Acta Paediatr. Suppl., 88, 45-47. ment of Metabolic Disorders. John Wiley & Sons, New York, Vol
Cortes,C. and Vapnik,V. (1995) Support vector netwotidsch. 1, pp. 59-71.
Learning, 20, 273-297. Mitchell, T.M. (1997) Machine Learning. McGraw-Hill, Boston,

Dreiseitl,S., Ohno-Machado,L., Kittler,H., Vinterbo,S., Billhardt,H. MA.
and Binder,M. (2001) A comparison of machine learning methodsNational Center for Biotechnology Information. Online Mendelian
for the diagnosis of pigmented skin lesiodsBiomed. Inform., Inheritance in Man (OMIM), http://www3.ncbi.nlm.nih.gov/
34, 28-36. Omin

Guldberg,P., Rey,F., Zschocke,J., Romano,V., Francois,B.Neville,P., Tan,P.Y., Mann,G. and Wolfinger,R. (2003) Generaliz-
Michiels,L., Ullrich,K., Hoffmann,G.F., Burgard,P., Schmidt,H.  able mass spectrometry mining used to identify disease state
et al. (1998) A European multicenter study of phenylalan- biomarkers from blood serurRroteomics, 3, 1710-1715.
ine hydroxylase deficiency: classification of 105 mutations andPurohit,P.V. and Rocke,D.M. (2003) Discriminant models for high-
a general system for genotype-based prediction of metabolic throughput proteomics mass spectrometer datateomics, 3,

phenotypeAm. J. Hum. Genet., 63, 71-79 1699-1703.

Hall,M.A. (1999) Correlation-based feature selection for machineQuinlan,R.J. (1986) Induction of decision trebkach. Learning, 1,
learning. PhD Thesis. University of Waikato, New Zealand. 81-106.

Hosmer,D.W. and Lemeshow,S. (20@®plied Logistic Regression, Quinlan,R.J. (1993%4.5: Program for Machine Learning. Morgan
2nd edn. Wiley, New York. Kaufmann, San Mateo, CA.

Kira,K. and Rendell,L.A. (1992) A practical approach to Rashed,M.S., Ozand,P.T., BucknalllM.P. and Little,D. (1995)
feature selection. InMachine Learning: Proceedings of Diagnosis of inborn errors of metabolism from blood spots
the Ninth International Conference, Aberdeen, Scotland, by acylcarnitines and amino acids profiling using automated
pp. 249-256. electrospray tandem mass spectromefPgdiatr. Res., 38,

Kononenko,l. (1995) On biases in estimating multi-valued attributes. 324-331.

In 1JCAI' 95, Montreal, Canada, pp. 1034-1040. Rinaldo,P., Matern,D. and Bennett,M.J. (2002) Fatty acid oxidation

Liebl,B., Nennstiel-Ratzel,U., von Kries,R., Fingerhut,R., Olge- disordersAnnu. Rev. Physiol., 64, 477-502.
moller,B., Zapf,A. and Roscher,A.A. (2002a) Very high com- Salzberg,S. (1999) On comparing classifiers: a critique of current
pliance in an expanded MS-MS-based newborn screening research and method3ata Min. Knowl. Disc., 1, 1-12.
program despite written parental consefrev. Med., 34, Van Hove,J.L., Zhang,W., Kahler,S.G., Roe,C.R., Chen,Y.T.,
127-131. Terada,N., Chace,D.H., lafolla,A.K., Ding,J.H., and Mil-
Liebl,B., Nennstiel-Ratzel,U., von Kries,R., Fingerhut,R., Olge- lington,D.S. (1993) Medium-chain acyl-CoA dehydrogenase
moller,B., Zapf,A. and Roscher,A.A. (2002b) Expanded newborn (MCAD) deficiency: diagnosis by acylcarnitine analysis in blood.
screening in Bavaria: tracking to achieve requested repeat testing. Am. J. Hum. Genet., 52, 958-966.
Prev. Med., 34, 132—-137. Vapnik,V. (1998)Xatistical Learning Theory. Wiley, New York.
Liebl,B., Nennstiel-Ratzel,U., Roscher,A.A. and von Kries,R. (2003)Witten,l.H. and Frank,E. (200@pata Mining—Practical Machine
Data required for the evaluation of newborn screening pro- Learning Tools and Techniques with Java Implementations.
grammesEur. J. Pediatr., 162(Suppl. 1), 57-61. Morgan Kaufmann, San Francisco, CA.

2996


http://www3.ncbi.nlm.nih.gov/

