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ABSTRACT

Motivation: Classification is an important data mining task in bio-

medicine. In particular, classification on biomedical data often claims

the separation of pathological and healthy samples with highest dis-

criminatory performance for diagnostic issues. Even more important

than the overall accuracy is the balance of a classifier, particularly if

datasets of unbalanced class size are examined.

Results: We present a novel instance-based classification technique

which takes both information of different local density of data objects

and local cluster structures into account. Our method, which adopts

the basic ideas of density-based outlier detection, determines the

local point density in the neighborhood of an object to be classified

and of all clusters in the corresponding region. A data object is assigned

to that classwhere it fits best into the local cluster structure. The experi-

mental evaluation on biomedical data demonstrates that our approach

outperforms most popular classification methods.

Availability: The algorithm LCF is available for testing under http://

biomed.umit.at/upload/lcfx.zip

Contact: christian.baumgartner@umit.at

1 INTRODUCTION

Efficient and effective classification is a core problem in biomedical

data mining. Some of the existing classification methods produce

explicit rules, e.g. decision trees (DT), linear discriminant analysis,

logistic regression analysis (LRA) and support vector machines

(SVMs), etc. Other classification methods such as the k-nearest
neighbor (k-NN) classifier are called instance-based because no

explicit model is produced (Mitchell, 1997; Baumgartner et al.,
2004). Many biological datasets consist of a complex cluster struc-

ture. Even class-pure subsets of the data objects may be composed

of different clusters. In this case, the classes are not easily separable

by planes, polynomial functions or combinations thereof and rule-

based classifiers tend to break down in terms of accuracy. Often, the

simple instance-based k-NN classifier performs better, but only if

the point density is relatively uniform in all classes. Unbalanced

datasets exhibiting a high variation in the number of data items per

class tend to have regions of different density. Data objects situated

in boundary regions between high and low density are always clas-

sified into the class of the region of higher density. For unsupervised

data mining tasks, density-based clustering methods have become

very successful owing to their robustness and efficiency (Ester et al.,
1996; Ankerst et al., 1999). Recently, density-based methods for

outlier detection have appeared, such as local outlier factor (LOF) or

LOCI (Breuning et al., 2000; Papadimitriou et al., 2003). In contrast
to distance-based methods local and global outliers can be dis-

covered. In the density-based notion outliers are determined by

taking the density of the surrounding region into account.

The general idea of our paper is to consider the cluster structure of

the dataset and to use the information of different densities for

classification. A data object is assigned to that class where it

fits best into the local cluster structure. This idea can be formalized

by defining a local classification factor (LCF) which is similar to

the density-based outlier factors, but with an opposite intention. It

assigns a data object to that class from which it is least considered

as a local outlier. By adopting the concepts of density-based

methods to classification, we obtain a high accuracy especially

on unbalanced datasets.

2 SYSTEMS AND METHODS

2.1 Classification methods

Model-generating classification methods first learn a model from the training

set which is then used to assign class labels to the unlabeled objects. LRA

for example constructs a linear separating hyperplane between classes

(Hosmer and Lemeshow, 2000). DT are usually rooted, binary trees with

simple classifiers at each internal node recursively splitting the feature space

(Quinlan, 1986, 1993). The Naive Bayes (NB) classifier is an approximation

to an ideal Bayesian classifier which would classify an object based on the

probability of each class given the object’s feature variables. NB assumes

Gaussian distributed data (Langley et al., 1992; Gelman et al., 2004).

Inspired by the biological nervous system, artificial neural networks

(ANN) can deal with arbitrary data distributions. Consisting of several layers

of neurons, an input layer takes the input and distributes it to the hidden

layers—which do all the necessary computations—and outputs the result to

the output layer (Bishop, 1995; Mitchell, 1997). More efficient and less

sensitive to the number of training examples than ANN, the SVM is one

of the most successful learning algorithms. Using kernel functions data

objects are transformed to a higher-dimensional space where a separating

maximum margin hyperplane can efficiently be determined by solving a�To whom correspondence should be addressed.
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constrained dynamic optimization problem (Cortes and Vapnic, 1995;

Vapnic, 1998; Platt et al., 2000; Cristianini and Shawe-Taylor, 2000).

Requiring no preprocessing, instance-based classifiers can very efficiently

be applied to all types of data. The k-NN classifier simply assigns to an

object the most frequent class label among its k nearest neighbors. On

complex, high-dimensional and unbalanced datasets, the simple instance-

based k-NN classifier sometimes outperforms other more sophisticated

methods in terms of accuracy, as shown, for example, in Horton and

Nakai (1997) for predicting protein cellular localization sites. Several exten-

sions to k-NN have recently been proposed, such as using locally weighted

Euclidian distance to determine neighborhoods that better reflect the local

class distribution (Hastie and Tibshirani, 1996; Paredes and Vidal, 2000).

Xie et al. (2002) proposed an instance-based Bayesian classifier using

different distance neighborhoods for classification. In this paper, we show

that ideas from density-based outlier detection can enhance instance-based

classification.

2.2 Density-based outlier detection

Methods based on a density-based clustering notion have been successfully

applied to outlier detection since they can cope with datasets exhibiting both

sparse and dense regions. The LOF (Breuning et al., 2000) determines to

which extent an object is an outlier with respect to (w.r.t.) its neighborhood.

The neighborhood is here defined by the k-NN of an object. The density-

based outlier factor LOCI (Papadimitriou et al., 2003) specifies the local

neighborhood using range queries.

To the best of our knowledge, the classification problem has not been

addressed before from the viewpoint of density-based clustering or outlier

detection. We found our approach on the density-based clustering notion by

defining a LCF assigning an object to the class of that cluster where the point

fits best into according to the data density. The extensive experimental

evaluation shows that the aspect of local density can significantly improve

instance-based classification.

3 ALGORITHM

3.1 Using information of local density in data

For a data object q we compute a LCF w.r.t. each class ci 2 C
separately. We assign the object q to the class w.r.t. which it has the
lowest LCF. In particular, the LCF consists of two parts:

� Direct Density (DD)

� Class Local Outlier Factor (CLOF).

The LCF is a weighted sum of these two aspects. Roughly speaking

we assign an object q to class ci if there is a high density of objects

of class ci in the region surrounding q. In addition, we claim that

q is not an outlier w.r.t. the objects of class ci in this region. In the

following sections we explain these two parts in more detail. We

introduce the concept of DD and define a simple and accurate outlier

factor which is especially useful for classification. For illustration

we use a two-dimensional synthetic dataset visualized in Figure 1a.

3.2 Direct density

Taking a global look at our demonstration dataset, the first

impression probably is that class 2 is of much higher density

than class 1. But since there may be regions of extremely different

density among one class, we cannot globally specify the density of a

class. However, we can locally examine the density of each class

in the region of the object to be classified. For each class ci the
region surrounding the object q can be described by the set of the

k-NN of q of class ci.

DEFINITION 1. Class k-nearest neighbors of an object q. For any
positive integer k, the set of class k-NN of an object q w.r.t. class
ci2 C, denoted as NNci

k , contains the objects of class ci for which the
following condition holds:

If jcij < k: NNci
k ðqÞ ¼ fp 2 DB j p 2 cig otherwise NNci

k ðqÞ is a
subset of k elements in database DB for which

8ðpÞ 2 NNci
k ðqÞ‚8o 2 ci\NN

ci
k ðqÞ : distðp‚qÞ < distðo‚qÞ:

If a class contains less than k elements, the set NNci
k ðqÞ contains

all objects of this class. If there are more objects, NNci
k ðqÞ contains

the class internal nearest neighbors. To capture the density of
class ci 2 C in the region surrounding the object q, we compute
the mean value of the distances to the k-nearest neighbors of q
belonging to class ci.

DEFINITION 2. DD of class ci w.r.t. q

DDqðciÞ ¼

P
p�NN

Ci
k
ðqÞ distðp‚qÞ

jNNci
k ðqÞj

:

We can use DD alone for classification by assigning an object q
to that class where DDq(ci) is minimal. The concept of DD has
several advantages to k-NN: Objects of rare classes get the chance
to be correctly classified. We have no majority voting. Moreover, for
the decision to which class an object should be assigned to we get a
continuous value by computing the DD measure. So it is very
unlikely to have a standoff situation. The result on our demonstra-
tion dataset using DD only is depicted in Figure 1b. (As described
in section Experiments in more detail, we used k¼ 5 and 10-fold
cross validation). Many objects of the sparser class 1 are wrongly
classified. Intuitively they fit better in the cluster structure of their
own class, so it should be possible to classify them correctly.

3.3 Class local outlier factor

In addition to the DD, we now examine to which extent an object q is
an outlier considering the local cluster structure of each class

ci separately. We define a density-based CLOF, similar to LOF

(Breuning et al., 2000), but more suitable for classification. The

idea that being an outlier is not a binary property is very useful

for classification. Nevertheless, we cannot directly apply the LOF

because it is based on the reachability distances of the data objects to

reduce statistical fluctuations of the distances among objects

significantly close to each other. Owing to this, the LOF of objects

in the k-distance neighborhood of an object q is always similar to the

LOF of q. This may be useful to discover meaningful outliers.

However, for classification of an object q placed at the border

between one or more classes we want to see even minor differences

in the degree to which q is an outlier w.r.t. these classes. Instead of

the reachability distance we use the distances to the k-NN, again
computed class-wise separated. In addition to the DD as defined in

Section 3.2, we need for the CLOF a measure for the indirect density

of the class ci, i.e. for the density of the region surrounding the

object q excluding q itself.

DEFINITION 3. Indirect density of class ci w.r.t. q

IDqðciÞ ¼

P
p2NNCi

k
ðqÞ DDpðciÞ

jNNci
k ðqÞj
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Similar to the DD, the indirect density measure can be 0, if there are
at least k duplicates of class ci in DB. For simplicity, we here
assume that there are no duplicates. To deal with duplicates, we
can base Definition 1 on the k distinct class nearest neighbors of the
object in class ci, with the additional assumption that there are
at least k such objects. For the CLOF of an object q w.r.t. class
ci we consider the ratio of the direct and the indirect density of a
class ci w.r.t. q.

DEFINITION 4. Class local outlier factor of an object q

CLOFciðqÞ ¼
DDqðciÞ
IDqðciÞ

The CLOF describes the degree to which an object q is an outlier to
the local cluster structure w.r.t. class ci. It is easy to see that for
an object q located inside a cluster of objects of class ci the CLOF
is �1. If q is an outlier w.r.t. class ci it gets a significantly higher
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Fig. 1. (a) Two-dimensional demonstration dataset. (b) Result with direct density only. (c) Result with class local outlier only. (d) Result with LCF for l ¼ 6

and k ¼ 5.
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CLOF w.r.t. that class. The set of the indirect class nearest
neighbors of q, denoted by ind NNci

k ðqÞ, contains all objects used
to compute IDq(ci).

DEFINITION 5. Indirect class nearest neighbors of an object q

ind NNci
k ðqÞ ¼ fo 2 DB j 9p 2 NNci

k ðqÞ : o 2 NNci
k ðpÞg

The set of objects used to compute the CLOF of an object q,
i.e. NNci

k ðqÞ [ ind NNci
k ðqÞ can be regarded as the extended class

neighborhood of q. The more homogenously the data distribution in
this extended neighborhood is, the more CLOF(q) converges
towards 1 and the tighter are the bounds for CLOF(q). To classify
an object q using the CLOF, we compute CLOFci (q) for each class
ci 2 C and assign q with the class ci w.r.t. which its CLOF is
minimal. The result on our demonstration dataset is depicted in
Figure 1c.

Especially, at the margins of the clusters of the denser class 2

there are many wrongly classified objects. This attributes to the fact

that the CLOF of the objects in these regions is similar w.r.t. both

classes. Using DD, these objects are classified correctly.

3.4 Local classification factor

The main idea for the LCF is to combine the information of DD

with the CLOF to overcome the drawbacks of both methods

when used alone. It is not sufficient to require a high density of

objects of class ci in the region of the query point q to assign q to

class ci. The rule assigning q to the class w.r.t. which it has a smaller

outlier factor leads to different mistakes. This owes to the fact that

the CLOF completely ignores the local probability of the classes.

Especially, if the CLOF of an object o is similar w.r.t. all classes we

should assign the object to the most frequent class in its direct

neighborhood.

DEFINITION 6. LCF of an object q

LCFciðqÞ :¼ DDqðciÞ þ l · CLOFci ðqÞ

The LCF of an object q w.r.t. class ci is the sum of its DD and its
l-times weighted CLOF w.r.t. this class. We use a weighting factor
l to determine to which extent the CLOF and the DD are relevant
for classification. To classify an object q, we compute the LCF w.r.t.
each class ci for q and assign q to the class w.r.t. which its LCF
is minimal.

In Figure 1d the final result on the demonstration dataset is

depicted. Owing to the combination of both aspects, most classi-

fication errors disappear. In the following section we explain why

we combine the two aspects in this way and give hints on a proper

parameter choice.

3.5 Parameter choice for k and l

The parameter k determines the size of the region considered

for computing the LCF. If k is chosen too small the local density

cannot be appropriately characterized. k corresponds to the min-

imum cluster size, i.e. to the minimum number of objects of a class

that should be regarded as a cluster. For our experiments, we used

the training datasets to determine an appropriate value for k. In
general, we defined k according to the recommendations for the

k-NN classifier (range: k¼ 3, . . . , 15). Larger values of k consider

more neighbors, and therefore smooth over local characteristics,

smaller values lead to limited neighborhoods.

The parameter l determines to which degree the outlier factor

of an object qw.r.t. the classes ci2C is relevant for its classification.

A higher value for l leads to more correctly classified objects in

the sparser classes, at the expense of incorrectly classified objects

in the denser classes. Margin objects of the denser class often have

a higher CLOF w.r.t. their own class than w.r.t. the sparser class.

These objects are typically misclassified if the CLOF gets too much

weight. Depending on the concrete application domain, l can be

determined either to maximize the overall accuracy or to optimize

recall and precision of a certain class. Particularly in biomedical

data, high precision and recall on sparse classes are essential, since

they often represent abnormal observations. Figure 2 shows accur-

acy and recall on the synthetic dataset for k¼ 5 and l¼ 1, . . . , 15,
similar characteristics can be observed considering precision. How-

ever, it is difficult to provide a general recommendation for para-

meter l because, as aforementioned, it depends on the given local

data densities w.r.t. to the classes ci 2 C. On examined biomedical

data, higher-dimensional datasets tend to larger l-values (metabolic

data, l¼ 35, . . . , 55), whereas lower-dimensional datasets show

l-values close to 1 (e.g. synthetic l¼ 2, yeast l¼ 0.1, Escherichia
coli l¼ 0.1) to be balanced in terms of recall or precision.

4 EXPERIMENTS

4.1 Biomedical data

LCF was tested and evaluated on one synthetic (cf. Figure 1a) and

six real biomedical datasets as summarized in Table 1. Metabolic

data were provided by a project partner (see Acknowledgement).

Five datasets (yeast, E.coli, liver, iris and diabetes) come from the

UCI Machine Learning Repository (Blake and Merz, 1998, http://

www.ics.uci.edu/~mlearn/MLSummary.html). The table shows

the dimensionality of data, the number of classes and objects and

the number of objects per class. Detailed biological information and

experimental results are described and discussed for each dataset

separately throughout this section.
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4.2 Benchmark classifiers, validation and

parameter settings

We compared LCF with six popular classification methods obtained

from the publicly available WEKA data mining software (www.

cs.waikato.ac.nz/ml/weka). For validation we used 10-fold cross

validation. All classifiers were parameterized to optimize accuracy.

For SVM we used both polynomial (of degree 2) and radial kernels,

the cost factor c was appropriately chosen using the training

dataset. We used the C4.5 decision tree algorithm with reduced

error pruning. For ANN, we designed a single layer of hidden

units with (number of attributes + number of classes)/2 hidden

units, 500 epochs to train through and a learning rate of 0.3. For

LRA and NB no advanced settings can be performed. We applied

both weighted (1/distance) and unweighted k-NN with an Euclidian

distance function and an appropriate value for k determined of

the training datasets. For LCF we also used Euclidian distance

and determined k and l of the training datasets.

4.3 Synthetic data

For demonstration issues, a two-dimensional synthetic dataset with

classes of various local densities was taken into account (Fig. 1a).

Here, class 2 is split up into three partitions that are separated from

each other by objects belonging to the less dense class 1. This data

structure was generated by using a data generator developed in-

house. Table 2 summarizes classification accuracy, precision, recall

in percent (%) and the number of correctly and incorrectly classified

instances. For LCF the parameter k was set to 5, l was set to 2 and 6
respectively (cf. Fig. 2). LCF outperforms the other methods in

terms of accuracy and balance of correctly classified instances

between both classes for l¼ 2 (82.9%). LRA and SVM (polynomial,

radial kernels) drop off in accuracy (59.2–63.2%) not being able to

handle such complex data structures. DT, NB and ANN yielded

higher accuracies (65.1–67.8%), but also lacked on the balance of

correctly assigned objects within the two classes. k-NN, however,
was able to further increase accuracy, but also classifies instances of

the sparser class 1 predominantly to those of the denser class 2.

Weighting only slightly attenuates this tendency.

4.4 Metabolic data

Classification in metabolomics has great potential for the develop-

ment of automated diagnostics. After reviewing a certain population

of healthy and diseased patients, abnormal metabolic profiles that

are significantly different from a normal profile can be identified

from data and thus can become diagnostic of a given disease

(Baumgartner et al., 2004; Baumgartner and Baumgartner,

2006). The provided metabolic data, which was generated by mod-

ern tandem mass spectrometry (MS/MS) technology, contains con-

centration values of 45 metabolites [12 amino acids and 33 sugars

(saccharides)] grouped into patients suffering from a multigenic

metabolic disorder and healthy controls. Further information on

data is strictly confidential. However, an anonymized test set is

publicly available under http://biomed.umit.at/upload/lcfx.zip

(2005).

Table 3 summarizes our experiments by setting parameter k again
to 5 and parameter l to 35 for LCF. Owing to the small size of this

dataset (57 instances) it is favorable to use a small k. It can be

expected that metabolic data exhibits regions of various densities

caused by a higher variation of metabolite concentration levels at

the state of disease versus normal (Baumgartner and Baumgartner,

2006). The borders between healthy and pathological instances are

blurred in this high-dimensional dataset containing overlapping

clusters of both classes. Best accuracy was obtained for value of

l¼ 35. Of all investigated classifiers LCF showed highest classi-

fication accuracy of 73.7% and a superior recall value of 68.4%

for class 2, i.e. the abnormal metabolic profiles of diseased people.

LCF results are the highest balanced in terms of recall and precision,

and are comparable with LRA yielding correctly classified cases

>50% in both classes. However, LRA lacks on accuracy of only

56.1%. SVM and ANN constitute similar accuracy values like LRA,

but assign up to 80% of pathological cases to healthy subjects (false

negative cases). The k-NN classifier demonstrates the best accuracy

values within all benchmark classifiers, but breaks down in recall

dramatically. The use of weighted k-NN does not help here. For

diagnostic issues it is of highest importance to classify instances

of smaller and sparser classes correctly, particularly if this class

is represented by pathological cases. Thus, balance of correctly

Table 2. Classification results on synthetic data

Classifier Class Corr. Incorr. Recall Precision Accuracy

LRA 1 37 34 52.1 56.9 59.2

2 53 28 65.4 60.9

SVM (poly) 1 32 39 45.1 65.3 63.2

2 64 17 79.0 62.1

SVM (radial) 1 36 35 50.7 60.0 61.2

2 57 24 70.4 60.2

5-NN 1 37 34 52.2 66.1 75.0

2 77 4 95.1 80.2

5-NN (weighted) 1 39 32 54.9 90.7 76.3

2 77 4 95.1 70.6

DT 1 32 39 45.1 76.2 67.8

2 71 10 87.7 64.5

NB 1 40 31 56.3 64.5 65.1

2 59 22 72.8 65.6

ANN 1 37 34 52.1 71.2 67.8

2 66 15 81.5 66.0

LCF (l¼ 2) 1 59 12 83.1 80.8 82.9

2 67 14 82.7 84.8

LCF (l¼ 6) 1 65 6 91.5 77.4 83.6

2 62 19 76.5 91.2 83.6

Corr. ¼ correctly classified, Incorr. ¼ incorrectly classified instances.

Table 1. Synthetic and biomedical datasets

Name Classes Dimensionality Objects Objects/class

Synthetic 2 2 152 71:81

Metabolic 2 45 57 38:19

Yeast� 10 8 1448 463:429:244:163:

51:44:35:30:20:5

E.coli� 8 7 336 143:2:35:77:5:20:20:5

Liver� 2 5 345 145:200

Iris plant� 3 4 150 50:50:50

Diabetes� 2 8 768 500:268

Biological datasets marked by � come from the UCI Machine Learning Repository.
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classified objects between classes and high accuracy is essential for

classifying diseased versus normal metabolite profiles so that LCF is

an interesting tool to be used for diagnostics.

Figure 3 demonstrates classification accuracy of LCF as a 3D

plot by setting parameter k¼ 1, 3, 5, 7, 10 and l¼ 5, 15, 25, 35, 45,

55. Best accuracy was achieved for k¼ 5 and l-values between 35

and 55.

4.5 Yeast data

The yeast dataset contains 1484 protein sequences labeled accord-

ing to 10 classes (Horton and Nakai, 1996, 1997). Table 4 depicts

classification results w.r.t. the three largest classes (1. cytoplasm,

2. nucleus and 3. mitochondria). The classes membrane protein (no

N-terminal signal, uncleaved and cleaved signal, classes 4–6),

extracellular, vacuole, peroxisome and endoplasmic reticulum

(classes 7–10) consist of 5–163 instances and are not shown in

detail. Parameter settings for LCF were k¼ 12 and l¼ 0.1. Com-

paring all classifiers, most of the errors are due to confusing cyto-

plasmic proteins with nuclear proteins and vice versa. This reflects

a fundamental difficulty in identifying nuclear proteins. One reason

is the fact that unlike other localization signals the nuclear local-

ization signal does not appear to be limited to one portion of a

protein’s primary sequence. In some cases a protein without a

nuclear localization signal may be transported to the nucleus as

part of a protein complex if another subunit of the complex contains

a nuclear localization signal (Zhao and Padmanabhan, 1988;

Garcia-Bustos et al., 1991). In spite of this, LCF demonstrates

the best balanced result for the first three classes w.r.t. recall

(62.2, 59.7 and 60%) and precision (56.4, 57.4 and 63.8%), and

an overall accuracy of 60.3%. LCF seems to be the best choice to

identify nuclear proteins, however it is accompanied by a slight

decrease of recall in class 1. In Table 5 the confusion matrix of

LCF is shown in more detail. For the other classes not considered

in Table 4 classification accuracy corresponds well to the results

reported in Horton and Nakai (1997).

With the exception of the ANN, DT and the weighted 21-NN

classifier all other paradigms constitute a recall rate below 50% for

nuclear proteins classification. For the k-NN classifier we used an

optimized k value for this special dataset (Horton and Nakai, 1997).

Table 4. Classification results on yeast data

Classifier Class Corr. Incorr. Recall Precision Accuracy

LRA 1 324 139 70.0 51.3 58.6

2 198 231 46.2 61.7

3 139 105 57 62.1

SVM (poly) 1 320 141 69.1 51.7 59.3

2 217 212 50.6 60.4

3 128 116 52.5 66.0

SVM (radial) 1 362 101 37.1 49.5 58.9

2 162 267 37.8 64.8

3 139 105 57.0 67.1

21-NN 1 327 136 70.6 52.7 59.2

2 210 219 49.0 59.0

3 139 105 57.0 65.6

21-NN (weighted) 1 331 132 71.5 55.8 61.9

2 235 194 54.8 62.0

3 141 103 57.8 66.5

DT 1 294 169 63.5 52.1 57.8

2 223 206 52.0 57.8

3 116 128 47.5 64.1

NB 1 324 139 70.0 51.5 57.6

2 171 258 39.9 63.3

3 148 96 60.7 62.2

ANN 1 301 162 65.0 54.1 59.4

2 230 199 53.6 58.4

3 135 109 55.3 65.2

LCF (l¼ 0.1) 1 288 175 62.2 56.4 60.3

2 256 173 59.7 57.4

3 139 105 60.0 63.8

Table 3. Classification results on metabolic data

Classifier Class Corr. Incorr. Recall Precision Accuracy

LRA 1 22 16 57.9 71.0 56.1

2 10 9 52.6 38.5

SVM (poly) 1 28 10 73.7 62.2 57.9

2 5 14 26.3 31.3

SVM (radial) 1 27 11 71.1 65.9 56.1

2 5 14 26.3 31.3

5-NN 1 37 1 97.4 68.5 68.4

2 2 17 10.5 50

5-NN (weighted) 1 36 2 94.7 67.9 66.6

2 2 17 10.5 50

DT 1 35 3 92.1 67.3 64.9

2 2 17 10.5 40

NB 1 31 7 81.6 77.5 68.4

2 8 11 42.1 47.1 68.4

ANN 1 26 12 63.2 64.8 57.9

2 7 12 31.6 36.8 57.9

LCF (l¼ 35) 1 29 9 76.3 82.9 73.7

2 13 6 68.4 59.1
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Fig. 3. Parameterization of LCFonunbalancedmetabolic data. Classification

accuracy depending on different k- and l-values is displayed.
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Here, weighting leads to an increase of overall accuracy (61.9%)

and also of recall of class 2 (54.8%). However, the recall value of

LCF is not reached. With l optimized for correctly identifying

nuclear proteins (l¼ 0.5) we even obtain 66.0 % recall in class

2, but overall accuracy decreases to 56.8 % mainly because of

incorrectly classified instances of the biggest class 1.

4.6 E.coli dataset

Similar to the yeast dataset, E.coli data describe seven protein

location sites distributed to eight classes, i.e. cytoplasm (143),

inner membrane without signal sequence (77), periplasm (52),

inner membrane, uncleavable signal sequence (35), outer membrane

(20), outer membrane lipoprotein (5), inner membrane lipoprotein

(2) and inner membrane, cleavable signal sequence (2) (Horton and

Nakai, 1996, 1997). Table 6 shows the confusion matrix for the

E.coli dataset. Parameters for LCF were set to k¼ 10 and l¼ 0.1

Table 7 depicts precision and recall for the classes 2 and 4, the

accuracy on these classes and the overall accuracy.

All examined classifiers show most classification errors due to

mixing up of inner membrane proteins without a signal sequence

(class 2) and inner membrane proteins with an uncleavable signal

sequence (class 4). The accuracy on these classes (denoted by C) is

�10% less than the overall accuracy (denoted by O). Classes 2 and 4

which are unbalanced (c.f. 77 versus 35 data) are very similar, both

representing inner membrane proteins. Horton and Nakai (1997)

explained the difficulty to separate both classes with the fact that the

labelling of some of the training examples includes some uncer-

tainty; that means some training instances are probably wrongly

labeled. However, LCF performs best w.r.t. balancedness in these

classes and is slightly better in terms of overall accuracy. Perform-

ance on the other classes corresponds well to the results described in

Horton and Nakai (1997). This example shows that local density of

data is useful for instance-based classification, especially if there are

wrongly labeled instances. Here, the CLOF is not as sensitive as the

ordinary or weighted k-NN classifier to capture wrongly labeled

instances that are considered as outliers w.r.t. their own class. Test

objects in their neighborhood also get a high CLOF so that they are

not so likely to adopt the wrong class label.

Among the other classification methods, LRA shows best preci-

sion and recall on class 2, but performs not so well on the smaller

sparser class 4. For k-NN we used k¼ 7 as described in Horton and

Nakai (1997). Similar to the yeast dataset, weighting improves the

result, but does not reach the results of LCF. NB tends to classify

objects of classes 2–4, whereas highest recall in class 4 is achieved

at the expense of recall in class 2.

4.7 Iris, liver and diabetes dataset

Table 8 summarizes experimental results of all seven datasets

including findings on three further UCI biomedical datasets

(www.ics.uci.edu/~mlearn/MLSummary.html). There are only

minor differences between most of the compared classifiers. The

Table 7. Classification results on E.coli data

Classifier Class Corr. Incorr. Recall Precision Accuracy

LRA 2 65 12 84.4 83.3 C: 77.7

4 22 13 62..9 66.7 O: 87.2

SVM (poly) 2 64 13 83.1 84.2 C: 77.7

4 23 12 65.7 69.7 O: 87.8

SVM (radial) 2 18 59 23.4 64.3 C: 16.7

4 0 35 0 0 O: 47.9

7-NN 2 58 19 75.3 81.7 C: 72.3

4 23 12 65.7 69.5 O: 86.0

7-NN (weighted) 2 63 14 81.8 84.0 C: 75.9

4 22 13 62.9 71.0 O: 87.2

DT 2 60 17 77.9 75.0 C: 70.5

4 19 16 54.3 55.9 O: 82.1

NB 2 56 21 72.7 87.5 C: 75.9

4 29 6 82.9 61.7 O: 85.4

ANN 2 64 13 83.1 80.0 C: 76.8

4 22 13 62.9 66.7 O: 86.1

LCF (l ¼ 0.1) 2 63 14 81.8 82.9 C: 78.6

4 25 9 71.4 73.5 O: 88.1

Table 5. Confusion matrix for yeast data with LCF

Class 1 2 3 4 5 6 7 8 9 10

1 288 132 33 6 1 0 2 0 1 0

2 131 256 27 11 3 0 1 0 0 0

3 57 24 139 10 6 2 3 0 3 0

4 13 17 7 125 1 0 0 0 0 0

5 5 6 4 3 19 8 6 0 0 0

6 0 0 1 0 3 34 6 0 0 0

7 5 0 3 0 2 5 20 0 0 0

8 10 7 2 6 2 0 3 0 0 0

9 2 4 2 0 0 0 2 0 10 0

10 0 0 0 0 1 0 0 0 0 4

Table 6. Confusion matrix for E.coli data with LCF

Class 1 2 3 4 5 6 7 8

1 140 0 3 0 0 0 0 0

2 3 63 2 9 0 0 0 0

3 4 1 47 0 0 0 0 0

4 1 9 0 25 0 0 0 0

5 0 0 3 0 16 1 0 0

6 0 0 1 0 3 5 0 0

7 0 1 0 0 0 1 0 0

8 0 1 1 0 0 0 0 0

Table 8. Classification accuracy on all seven datasets in percent

Dataset LRA SVM k-NN DT NB ANN LCF

Synthetic 59.2 63.2 76.3 67.8 65.1 67.8 82.9

Metabolic 56.1 57.9 68.4 64.9 68.4 57.9 73.7

Yeast 58.6 59.3 61.9 57.8 57.6 59.4 60.3

E.coli 87.2 87.8 87.2 82.1 85.4 86.1 88.1

Liver 68.1 72.2 59.1 68.1 55.4 71.8 70.4

Iris 94.0 97.3 96.0 94.0 96.0 97.3 97.3

Diabetes 77.5 77.3 73.2 73.8 76.3 75.3 75.1

Bold numbers indicate highest classification accuracy.
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liver data (provided by BUPA Medical Research Ltd., UK, www.

bupa.co.uk) and iris dataset are rather balanced. The diabetes dataset

(provided by the Washington University, St Louis, MO for the

AAAI Spring Symposium on Artificial Intelligence in Medicine,

1994) has categorical and discrete valued attributes. Here, it is not

likely to contain a complex data structure with areas of various

densities. Nevertheless, the performance of LCF is among the

best methods on these three datasets. However, model-based

paradigms perform slightly better. As an efficient instance-based

method, LCF performs in six of the seven datasets better than k-NN.

5 CONCLUSION

In this paper we focused on the problem of classification of objects

using the density-based notion of clustering and outlier detection.

We showed that these concepts can be successfully applied for

classification in biomedicine. In particular, we proposed a local

density-based classification factor combining the aspects of DD

and a CLOF. A broad experimental evaluation demonstrates that

our method is applicable on very different biological datasets. Our

main focus here was on using multimodal unbalanced datasets. We

demonstrated that our density-based classification method out-

performed traditional classifiers especially on datasets represent-

ing a local cluster structure with varying density regions, which

is of high practical relevance in various biomedical applications as

demonstrated.

Nevertheless, there are several possible directions for future

work. It would be interesting to investigate if a local adoption of

the parameter l would yield to further improvement. Since many

biological datasets are very high-dimensional, a dimensionality

reduction before classification is required. It is also an interesting

issue if and how the techniques of density-based clustering and

subspace clustering can be used for selecting relevant attributes

and especially combinations of attributes for classification, a field

of our ongoing research.
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