Ludwig-Maximilians-Universität München Institut für Informatik Prof. Dr. Matthias Schubert Felix Borutta

Managing Massive Multiplayer Online Games SS 2019

Exercise Sheet 5: Game Analytics

The assignments are due June 05, 2019

Assignment 5-1 Bot Detection with Bayes

Consider an abstract game in which players regularly have to make decisions (e.g., whether to go south, north, east or west). We assume that there are always four alternatives $\{a_1, ..., a_4\}$ of such actions and that a BOT selects each of these with the same probability. With the help of log data it could be estimated empirically that human players select the alternatives with the following probabilities:

$$P(a_1) = 10\%, P(a_2) = 20\%, P(a_3) = 30\%, P(a_4) = 40\%.$$

Player p_1 was observed to have the following sequence of decisions:

$$O = [a_3, a_2, a_1, a_4, a_1, a_2, a_2, a_3, a_1]$$

In the following B is the event that player p_1 is a BOT and \overline{B} is the event that player p_1 is a human player.

- (a) Calculate the probability $P(O \mid B)$ that a BOT produces the given sequence.
- (b) Calculate the probability $P(O \mid \overline{B})$ that a human player produces the given sequence.
- (c) Assume that 1% of all players are BOTs. Calculate the probability $P(B \mid O)$ that player p_1 is a BOT.

Assignment 5-2 Probabilistic Balancing

Consider another game where players can choose between several different settings (e.g. races, classes, fractions) in the beginning. Let $s_1, ..., s_n$ denote such settings.

Assume that 1000 games between players with settings s_1 and players with settings s_2 have been recorded. 400 of those were won by the players having settings s_1 .

Are the settings s_1 and s_2 well balanced? Assume a significance level of $\alpha = 0.05$ to confirm or reject the hypothesis. Calculate the probability of this observation assuming that the game is fair, i.e., that the chances for winning is equal for both players.