
Quadtree
Split each partition that contains more objects than

the page limit into four equal quadrants

Quadtree (page size 2)

Quadtree (page size 2)
1st Split

Quadtree (page size 2)
2nd Split

Quadtree (page size 2)
3rd Split

Quadtree (page size 2)
4th Split

Each partition contains at most two
objects → stopping criteria is reached

Quadtrees are unbalanced and each
node has exactly four children

kD-Tree
Split each partition that contains more objects than

the page limit into two partitions along the
corresponding axis. The splitting hyperplane is

chosen wrt the data distribution.

kD-Tree (page size 4)

kD-Tree (page size 4)
1st Split (along the x-axis)

kD-Tree (page size 4)
2nd Split (along the y-axis)

kD-Tree (page size 4)
3rd Split (along the x-axis)

Each partition contains at most four
objects → stopping criteria is reached

kD-Trees are balanced binary space
partitioning trees

R-Tree
Aggregate objects by approximating them with

minimum bounding rectangles (MBRs). Unlike the
Quadtree or the kD-Tree, the R-Tree is built

bottom-up (instead of top-down).

R-Tree (page size 2)

I omit drawing the tree structure here. Due to
having a page size of 2, this would correspond to
building a binary tree bottom up, i.e., starting with
32 objects on the leaf-node level, the next level
would contain 16 nodes (since we aggregate two
objects within one MBR), then the next level
would have 8 nodes (again, we approximate 2
MBR objects by one larger MBR) and so on.

R-Tree (page size 2)
1st Iteration: number of objects n = 32, page limit M = 2

Using the sort-tile algorithm, we first need to
determine how many partitions (resp. quantiles)
we need per dimension:

Now, that we know how many partitions we need,
we can derive the maximum number of objects
that should be in one partition (for the splits along
the x-axis):

R-Tree (page size 2)
1st Iteration: number of objects n = 32, page limit M = 2

Next we need to partition along the y-axis, and
due to the page limit being 2, we ensure that
each partition finally contains 2 elements.

Note: The last partition could possibly contain
less than two objects

R-Tree (page size 2)
1st Iteration: number of objects n = 32, page limit M = 2

Given our partitioning, we can derive the
minimum bounding rectangles that approximate
the data objects within the partitions.

Note: Here, we have the situation where two data objects have the same y-value. If the algorithm hasn’t
assigned data objects to partitions ultimately, we can do this assignment at the step where we create the
approximations (resp. MBRs). This is usually done by following certain heuristics, e.g., minimizing the empty
space covered by MBRs.

R-Tree (page size 2)
1st Iteration: number of objects n = 32, page limit M = 2

At the end of the first iteration we finally end up
with a database consisting of 16 MBR objects.

In terms of tree structure, we are one level above
the leaf node level now.

R-Tree (page size 2)
2nd Iteration: number of objects n = 16, page limit M = 2

At the beginning of iteration 2, we have to
compute the number of partitions per dimension
and the number of objects per partition again:

Having these, we again start partitioning along
the x-axis. Note that we use the upper right
corner of each MBR to determine into which
partition an MBR falls.

We only have 4 objects in this
partition, but this is fine

R-Tree (page size 2)
2nd Iteration: number of objects n = 16, page limit M = 2

Next, we split along the y-axis and make sure
that we have two objects (bc M=2) in each
partition.

In this case, we have zero objects in
the last partition

R-Tree (page size 2)
2nd Iteration: number of objects n = 16, page limit M = 2

We approximate the objects partition-wise by
MBRs...

R-Tree (page size 2)
2nd Iteration: number of objects n = 16, page limit M = 2

… and finally end up with a total number of 8
MBR objects at the end of the second iteration.

R-Tree (page size 2)
3rd Iteration: number of objects n = 8, page limit M = 2

After doing the same
steps as in the
iterations before

R-Tree (page size 2)
4th Iteration: number of objects n = 4, page limit M = 2

After doing the same
steps as in the
iterations before

If we re-evaluate the quantile value (which can either be done at the
end of each iteration or the beginning of a new iteration), we get
 . Now, q < 2 and this is the stopping criteria,

i.e., we reached the root node.

