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Assignment 6-1 Instance-based learning: kNN-Classification

Consider the following data set consisting of 8 points. The triangles are one class and the circles are another
class.
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Determine the classes of the given data points by using the k-nearest neighbors algorithm. If not stated dif-
ferently, use the Manhattan distance (l1 norm) as distance measure:

L1(x, y) =

d∑
i=1

|xi − yi|

(a) Determine the class of point (2,7) for k = 2 using the majority class among the k-nearest neighbors, i.e.
the point is assigned to the class which occurs most frequently among its k-nearest neighbors.

(b) Determine the class of point (2,7) for k = 3 using the majority class among the k-nearest neighbors.

(c) Determine the class of point (2,7) for k = 5 using the majority class among the k-nearest neighbors.

(d) Determine the class of point (6,1) for k = 3 using the majority class among the k-nearest neighbors.

(e) Determine the class of point (6,1) for k = 3 using the majority class among the k-nearest neighbors. This
time, employ a weighted version for the class decision, i.e., weight the class occurrences with the inverse
Manhattan distance.

L1(x, y)
−1 =

1∑d
i=1 |xi − yi|
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In general, the k-nearest neighbor query retrieves those k objects of a database D that are closest to a given
query object with respect to some distance measure. Precisely the set of k-nearest neighbors can be defined in
two ways, the so-called deterministic and non-deterministic definitions:

Deterministic: The set of k-nearest neighbors is the set NN(q, k) ⊆ DB with at least k objects such that

∀o ∈ NN(q, k), ∀o′ ∈ DB\NN(q, k) : dist(q, o) < dist(q, o′).

Non-deterministic: The set of k-nearest neighbors is the set NN(q, k) ⊆ DB with exactly k objects such that

∀o ∈ NN(q, k), ∀o′ ∈ DB\NN(q, k) : dist(q, o) ≤ dist(q, o′).

(a) Determine the class of point (2,7) for k = 2 using the majority class among the k-nearest neighbors.

The green area denotes the k-distance, which is 5. Two objects fall into this area, both of class “triangle”
and hence the test object is classified as triangle.

(b) Determine the class of point (2,7) for k = 3 using the majority class among the k-nearest neighbors.
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Again, the green area denotes the k-distance, which is 6. Here we can distinguish between a deterministic
and non-deterministic kNN classification.

In case of non-deterministic (only 3 objects are considered): the target class is “triangle”. In case of
deterministic (all 6 objects that fall into the green area are considered): the target class is “circle”.

(c) Determine the class of point (2,7) for k = 5 using the majority class among the k-nearest neighbors.

The target class is “circle”.

(d) Determine the class of point (6,1) for k = 3 using the majority class among the k-nearest neighbors.

The target class is “circle”.

(e) Determine the class of point (6,1) for k = 3 using the majority class among the k-nearest neighbors. This
time, employ a weighted version for the class decision, i.e., weight the class occurrences with the inverse
Manhattan distance.

L1(x, y)
−1 =

1∑d
i=1 |xi − yi|

The two circle objects both get a weight of 0.25, the triangle object gets a weight of 1, and therefore the
classification decision is triangle since 1 > 0.25 + 0.25.
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Assignment 6-2 Unsupervised Learning: Clustering with DBSCAN

The following dataset is given:
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Cluster this dataset using DBSCAN. Use the Manhattan distance as distance function and the parameters
ε = 1.1 and minPts = 3.

The solution can be found in the extra document provided on the website.

Assignment 6-3 Supervised Learning: Naive Bayes Classifier

Given the following table of observations describing under which weather conditions person A was playing
computer games.

Outlook Temperature Humidity Play Computer Games
Sunny Moderate High No
Sunny High Low Yes
Rainy Moderate High Yes
Rainy High High No
Sunny Moderate Low No
Sunny Low Low No
Rainy Low Low Yes

Outlook, Temperature and Humidity denote the observed features and Play Computer Games is the target va-
riable.

Given the observation o = (Outlook = Sunny, Temperature = High, Humidity = High), decide whether A is
going to play computer games or not. Calculate the class probabilities by using the naive Bayes classifier.

Bayes Theorem: P (A|B) = P (B|A)·P (A)
P (B)
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Mapped to our problem: We need to calculate the probabilities for P (PlayComputerGames = yes|o) and
P (PlayComputerGames = no|o). Or somewhat more formally: P (yi|X), with yi ∈ Y = {yes, no} being
the target variable and X denoting the feature vector o.

To finally make a class decision, we want to take the class yi which maximizes the probability, i.e.,

ŷ = argmaxyi∈Y {P (yi|X)} = argmaxyi∈Y {
P (X|yi) · P (yi)

P (X)
}

As the denominator1 is constant (and it does not depend on the class) we can simply ignore this term such that
we get

ŷ = argmaxyi∈Y {P (X|yi) · P (yi)}.

As a consequence we’ll get a relative probability instead of a true probability, since the denominator was the
normalization term.

However, applying the Bayes Theorem for yi = yes:

P (PlayComputerGames = yes|O = Sunny, T = High,H = High) =

P (O = Sunny, T = High,H = High|PlayComputerGames = yes) · P (PlayComputerGames = yes)

The probability P (PlayComputerGames = yes) can be calculated from our previously observed instances.
We simply take the number of observations for which PlayComputerGames = yes and divide by the total
number of observations, i.e.,

P (PlayComputerGames = yes) =
3

7
.

The tricky part is the first term, i.e.,

P (O = Sunny, T = High,H = High|PlayComputerGames = yes),

as this is a new observation for which we have no historical observations. Also, this likelihood is particularly
hard to define as our feature vectorX , resp. o, is high-dimensional and regarding the chain rule for solving joint
probabilities, it might become expensive.

Naive Bayes overcomes this problem by making a rather strong assumption, namely the assumption that all fea-
tures are independent from each other. This way, we can bypass the problem of calculating the joint probability
and end up with

P (x|yi) ∝
d−1∏
j=0

P (xj |yi),

or in our case

P (O = Sunny, T = High,H = High|PlayComputerGames = yes) =

P (O = Sunny|PlayComputerGames = yes) · P (T = High|PlayComputerGames = yes)·
P (H = High|PlayComputerGames = yes).

The single product terms, i.e., the conditional probabilities, can be determined easily from our training data:

P (O = Sunny|PlayComputerGames = yes) =
1

3

P (T = High|PlayComputerGames = yes) =
1

3

P (H = High|PlayComputerGames = yes) =
1

3

1P (X) is the evidence, i.e., the probability that observation X occurs in nature. This is often hard or even impossible to determine.
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Putting all together for class PlayComputerGames=yes we get

P (PlayComputerGames = yes|O = Sunny, T = High,H = High) =

P (O = Sunny, T = High,H = High|PlayComputerGames = yes) · P (PlayComputerGames = yes) =

P (O = Sunny|PlayComputerGames = yes) · P (T = High|PlayComputerGames = yes)·
P (H = High|PlayComputerGames = yes) · P (PlayComputerGames = yes) =

1

3
· 1
3
· 1
3
· 3
7
=

3

189

Doing the same for class PlayComputerGames=no we get

P (PlayComputerGames = no|O = Sunny, T = High,H = High) =

P (O = Sunny, T = High,H = High|PlayComputerGames = no) · P (PlayComputerGames = no) =

P (O = Sunny|PlayComputerGames = no) · P (T = High|PlayComputerGames = no)·
P (H = High|PlayComputerGames = no) · P (PlayComputerGames = no) =

3

4
· 1
4
· 2
4
· 4
7
=

24

448

Since 24
448 > 3

189 , the classifier would decide that person A does not play computer games if the weather
conditions are sunny, high temperature and high humidity.
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