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Assignment 5-1 Bot Detection with Bayes

Consider an abstract game in which players regularly have to make decisions (e.g., whether to go south, north,
east or west). We assume that there are always four alternatives {a1, ..., a4} of such actions and that a BOT
selects each of these with the same probability. With the help of log data it could be estimated empirically that
human players select the alternatives with the following probabilities:

P (a1) = 10%, P (a2) = 20%, P (a3) = 30%, P (a4) = 40%.

Player p1 was observed to have the following sequence of decisions:

O = [a3, a2, a1, a4, a1, a2, a2, a3, a1]

In the following B is the event that player p1 is a BOT and B is the event that player p1 is a human player.

(a) Calculate the probability P (O | B) that a BOT produces the given sequence.

P (O|B) = 0.259 = 3.8 · 10−6

(b) Calculate the probability P (O | B) that a human player produces the given sequence.

P (O|B) = 0.13 · 0.23 · 0.32 · 0.4 = 2.88 · 10−7

Note: for the sake of simplicity, we assumed the actions to be performed independent from each other
here. Otherwise we would have to deal with conditional probabilities as follows

P (O|B) = P (action = a3) · P (action = a2|[a3]) · P (action = a1|[a3, a2]) · P (action = a4|[a3, a2, a1]) ·
· . . . · P (action = a1|[a3, a2, a1, a4, a1, a2, a2, a3])

(c) Assume that 1% of all players are BOTs. Calculate the probability P (B | O) that player p1 is a BOT.

P (B|O) =
P (O|B) · P (B)

P (O)
=

Law of total probability:
P (O|B) · P (B)

P (O|B) · P (B) + P (O|B) · P (B)
=
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3.8 · 10−6 · 10−2

3.8 · 10−6 · 0.01 + 2.88 · 10−7 · 0.99

= 0.1176

Assignment 5-2 Probabilistic Balancing

Consider another game where players can choose between several different settings (e.g. races, classes, fracti-
ons) in the beginning. Let s1, ..., sn denote such settings.

Assume that 1000 games between players with settings s1 and players with settings s2 have been recorded. 400
of those were won by the players having settings s1.

Are the settings s1 and s2 well balanced? Assume a significance level of α = 0.05 to confirm or reject the
hypothesis. Calculate the probability of this observation assuming that the game is fair, i.e., that the chances for
winning is equal for both players.

Calculate the probability of this observation assuming that the game is fair:

P (B(N, p) = i) =

(
N

i

)
· pi · (1− p)N−i

P (B(1000, 0.5) = 400) =

(
1000

400

)
· 0.5400 · (1− 0.5)1000−400

P (B(1000, 0.5) = 400) = 4.6339 · 10−11

Are the settings s1 and s2 well balanced?

Solution 1. Left-tailed testing:

null hypothesis: H0 : p = 0.5, alternative hypothesis HA : p < 0.5, i.e., we assume from our observation that
the probability for players with setting s1 to win is less than 50%.

The sample proportion is: p̂ = 400
1000 = 0.4

The test statistic, resp. the Z-value is, therefore:

Z =
p̂− p√
p·(1−p)
N

=
0.4− 0.5√

0.5·0.5
1000

= −6.32

Given that the Z-value for our significance level α = 0.05 is Zα = −1.6451, we can reject the null hypothesis.
There is enough evidence for α = 0.5 that we can say that the win probability for players with setting s1 is less
than 50%.

Another variant is to approximate the binomial distribution explicitly with the normal distribution, which is
possible due to fulfilling the Laplace theorem

√
N · p · (1− p) =

√
1000 · 0.5 · 0.5 = 15.81 > 3, is as follows:

1You can check these values in the quantile table for the normal distribution as the standard deviation fulfills the Laplace theorem,
i.e., σ > 3, resp.

√
N · p · (1− p) > 3.
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P (B(N, p) ≤ i) =
i∑

j=0

P (B(n, p) = j)

B(1000, 0.5) ≈ N(1000 · 0.5, 1000 · 0.5 · 0.5) = N(500, 250)

P (N(500, 250) ≤ 400) = P (500 +N(0, 250) ≤ 400)

= P (N(0, 250) ≤ −100)

= P (N(0, 1) ·
√

250 ≤ −100)

= P (N(0, 1) ≤ −100√
250

)

= P (N(0, 1) ≤ −6.32) = 8.5 · 10−8

Note that the last step is a read-out from the quantile table. The result is a probability less than the significance
level α = 0.05.

Solution 2. two-tailed testing:

null hypothesis: H0 : p = 0.5, alternative hypothesis HA : p 6= 0.5, i.e., the game is not fair.

Assuming H0, the expected value for the outcome should be

µ = 0.5 · 1000 = 500

with a standard deviation of

σ =
√
N · p · (1− p) =

√
1000 · 0.5 · 0.5 = 15.81.

Since we are doing a two-tailed test here, we define the bounds of our acceptance range with respect to

zα
2

= 1.96.

This value is taken from the quantiles table of the normal distribution (again possible due to fulfilling the
Laplace theorem).

Given those values we can calculate our acceptance range as

A = [µ− zα
2
· σ;µ+ zα

2
· σ]

= [470; 530],

and derive the rejection area
A = [0; 469] ∪ [530; 1000].

The value 400 falls into the rejection area and thus the null hypothesis can be rejected.

We also can compute the Error of Type 22, i.e., the probability to accept the hypothesis although it is wrong.
Note that we use the probability value from our observation, hence p = 0.4, and the amount of wins from our
null hypothesis, henceA = [470; 530]! In other words, what is the probability to end up in the acceptance range
when using the win probability from our observation?

P (a ≤ X ≤ b) ≈ Φ(
b+ 0.5−Np√
N · p · (1− p)

)− Φ(
a+ 0.5−Np√
N · p · (1− p)

)

P (470 ≤ X ≤ 530) ≈ Φ(
530 + 0.5− 400√

1000 · 0.4 · 0.6
)− Φ(

470 + 0.5− 400√
1000 · 0.4 · 0.6

)

= Φ(
130.5√

240
)− Φ(

70.5√
240

)

= Φ(8.42)− Φ(4.55)

≈ 0
2The Error of Type 1 is given by the significance value α
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With a probability very close to 0% the null hypothesis would be assumed to be true although it’s wrong.

Quantiles Table for the normal distribution:

How to read from quantiles table: The left far column are the first and second digits of the z-value, the values
in the very first row are the third digits. The values inside the body of the table are the quantiles. So if we have
some significance value of let’s say 2.5%, how can we get the corresponding z-value? The first thing we can
see is that the table only contains values 0.5 ≤ x < 1, which corresponds to everything that is on the right
side of the mean (0.5 is the mean of the standard normal distribution). If we now have a value of 2.5%, we
check the corresponding z-value for 1 − 0.025 = 0.975, which is possible since the distribution function is
symmetric. So given 0.975, we search this value in the table and see that it is in the row denoted with “1.9” and
column denoted as “0.06”. This means that the z-value for 0.975 is 1.96, and since we are actually looking for
the z-value of 1 − 0.975 we need to go “on the other side of the mean” and therefore we take -1.96 as z-value
for 0.025.

Abbildung 1: Quantiles Table for the normal distribution.
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