
Ludwig-Maximilians-Universität München Munich, May 22, 2019
Institut für Informatik
Prof. Dr. Matthias Schubert
Felix Borutta

Managing Massive Multiplayer Online Games
SS 2019

Exercise Sheet 4: Persistence
The assignments are due May 29, 2019

Assignment 4-1 Logging with simple algorithms

Consider an abstract game with its information being stored server sided. Assume the data to be stored within
the objects O1, O2 and O3. Initially, every object Oi contains the value oi. This means the initial state of the
database is as follows:

Object Value
O1 o1
O2 o2
O3 o3

Starting from time t10, the game information should be stored persistently on disk every 10 ticks to avoid data
loss in case of a system error. Assume that writing an object onto disk takes two ticks.

The server applies the following changes to the database:

Time Object New Value
t6 O1 o′1
t9 O2 o′2
t12 O3 o′3
t15 O1 o′′1
t16 O3 o′′3
t22 O2 o′′2
t22 O3 o′′′3

(a) Outline the procedure of the logging algorithm Naive Snapshot.

(b) Outline the procedure of the logging algorithm Copy-on-Update.

(c) Outline the procedure of the logging algorithm Wait-Free Zigzag.

(d) Outline the procedure of the logging algorithm Wait-Free Ping-Pong.

(e) Discuss advantages and disadvantages of these methods.

1



Naive Snapshot
The idea is to copy the entire game state into a shadow memory. From time to time (every tenth tick here)
the asynchronous write-thread writes the game state which is available in the shadow memory to disk. Note
that this write operation takes 6 ticks in total since we need to write 3 objects (recall: the assumption is that
writing a single object requires 2 ticks) to disk. So, this strategy persists the game state batch-wise as updates
are accumulated in the shadow memory.

2



Copy-on-Update
In this approach only updates are copied into the shadow memory. Once an object was updated, it is marked (by
using “dirty-bits”). However, the state of an object is only copied into the shadow memory once per period. If
an object is updated twice or even more often within a single period, subsequent changes only take effect in the
game state (cf. o′3 → o′′3 at time t16). At checkpoint time, the procedure recognizes subsequent changes on the
game state (since the state of an object differs from the state this object has in the shadow memory). Therefore,
it first writes all changes tracked in the shadow storage to disk, and resets all markers, resp. dirty-bits. Then,
the yet not written object states from the previous period are copied into the shadow memory (e.g., the state o′′3
at time t20).

3



Wait-Free Zigzag
Here, every object contains two flags, i.e., MW (Write-State) and MR (Read-State), each referring to a game
state GS[0], resp. GS[1]. Generally, the MW-flags remain unchanged during a checkpoint period. If an update
to object i appears, the new value is set in GS[MWi] and the read state flag MRi is set to MWi as GS[MWi]
is the most recent state of object i. At the end of a checkpoint period, the MWi-flags for which MWi = MRi

holds get flipped. At checkpoint time, the writer-thread then reads the element from GS[¬MWi] for object i
and writes the objects to disk.

4



Wait-Free Ping-Pong
For this strategy, one action handling game state GS is used along with two other game states, i.e., persistence-
system (read) and persistence-system (write), resp. odd and even. Updates always take place in GS and persistence-
system (write). At the end of a checkpoint period persistence-system (write) and persistence-system (read) are
swapped. At checkpoint time, the writer-thread then reads from the “new” persistence-system (read) state (as
the actual reading process is during the upcoming checkpoint period) and writes the changes which have been
tracked there (i.e., the updates from the previous checkpoint period) to disk.

5



Discussion

• Naive-Snapshot is easiest to implement for very volatile systems with several changes

• The less changes happen, the more advantageous the other methods become

• With Copy-On-Update it might last longer than with the other procedures until a game state is stored on
disk (we have seen that the final state in our example is on disk at t42, while all other methods have been
faster)

• Wait-Free Ping-Pong and Wait-Free Zigzag prevent locking the game entity by the persistence-system

• Wait-Free Ping-Pong also reduces overhead for phase-shifts, but uses a great deal of memory

• Wait-Free ZigZag requires bit comparisons, while Wait-Free Ping-Pong can just flush the bit array for
resetting a game state for persistence-system (write)

• On the other hand, Wait-Free Zigzag requires less memory than Wait-Free Ping-Pong (maintaining two
game states versus maintaining three game states)

• You may also check slides 15-20 in slide deck 4 (Persistence) for more details

6


