
Ludwig-Maximilians-Universität München Munich, May 16, 2019
Institut für Informatik
Prof. Dr. Matthias Schubert
Felix Borutta

Managing Massive Multiplayer Online Games
SS 2019

Exercise Sheet 3: Conflict Management and Dead Reckoning
The assignments are due May 22, 2019

Assignment 3-1 Conflicts

Consider an abstract game with three players in a two-dimensional world. Each player p has a health value
p.H ∈ N. The initial value is 50 for all players, ∀1 ≤ i ≤ 3 : pi.H = 50. A player pi can perform the following
actions:

• Heal(pj , n) increases the health points of player pj by n points up to a maximum value of 100, i.e.,
Heal(pj , n) = min(pj + n, 100).

• Attack(pj , n) reduces the health points of player pj by n points. If n > pj .H player pj is dead and
cannot perform further actions.

The game uses a client-server architecture with the server handling the processing sequence, i.e. the order of
execution is determined by the server. For the sake of simplicity you can assume that the latency is two time
steps in both directions, i.e. for the transmission of an action to the server and for the transmission of an update
from the server to the client.

Consider the following action requests:

Player Action Time(Client)
p2 Attack(p1,60) 1
p1 Attack(p2,30) 2
p1 Heal(p1, 80) 3
p2 Heal(p2, 60) 4
p2 Attack(p3,30) 5
p3 Attack(p2,50) 6
p2 Attack(p3,30) 7

How does the game proceed on the server, respectively on the clients? In case of conflicts, solve them by using
the reset local actions approach.

(a) How does the game proceed on the side of the server?
Player Action Time(Server) Result
p2 Attack(p1,60) 1+2 p1 dead
p1 Attack(p2,30) 2+2 ignored because p1 is dead
p1 Heal(p1, 80) 3+2 ignored because p1 is dead
p2 Heal(p2, 60) 4+2 p2.H = 100
p2 Attack(p3,30) 5+2 p3.H = 20
p3 Attack(p2,50) 6+2 p2.H = 50
p2 Attack(p3,30) 7+2 p3 dead

1

(b) How does the game proceed on the side of the client of player p1? What anomalies occur?

Actions from the other players arrive with a delay of time steps at player p1, while own actions are
processed immediately.

Player Action Time(p1) Result
p1 Attack(p2,30) 2 p2.H = 20
p1 Heal(p1, 80) 3 p1.H = 100
p2 Attack(p1,60) 1+4 p1.H = 40
p1 Undo: Attack(p2,30) 2+4 p2.H = 50
p1 Undo: Heal(p1, 80) 3+4 p1 dead

Anomaly: At timestamp 5 p1 receives the message that he has been attacked and survives although he
should die. Just at time 7 player p1 is dead. His attack action has to be undone.

(c) How does the game proceed on the side of the client of player p2? What anomalies occur?

Actions of other players arrive after 4 ticks at player p2, while own actions are processed immediately.

Player Action Time(p2) Result
p2 Attack(p1,60) 1 p1 dead
p2 Heal(p2, 60) 4 p2.H = 100
p2 Attack(p3,30) 5 p3.H = 20
p2 Attack(p3,30) 7 p3 dead
p3 Attack(p2,50) 6+4 p2.H = 50

Anomaly: p2 is attacked locally by the already dead player p3.

(d) How does the game proceed on the side of the client of player p3? What anomalies occur?

Player Action Time((p3)) Result
p2 Attack(p1,60) 1+4 p1 dead
p3 Attack(p2,50) 6 p2 dead
p2 Heal(p2, 60) 4+4 p2.H = 60

p2.H = 100 *
p2.H = 50 *

p2 Attack(p3,30) 5+4 p3.H = 20
p2 Attack(p3,30) 7+4 p3 dead

* Note: At timestamp 8 we also receive the game state from the server (from timestamp 6) which says
that p2.H = 100. This means we have a conflict here and need to reset local changes. Therefore, we must
set the health value of p2 to 100. However, the action p3 attacks p2 with value 50, which is overwritten
locally by resetting the local game state is not lost. The client saves locally processed actions that have not
been acknowledged by the server yet, and re-employs them on the local game state, hence p2.H = 50.1

(e) Which anomalies would be prevented locally for player p3 if the clients would communicate via peer2peer
and used a lag-mechanism with four time steps delay to solve conflicts? Assume a latency of two time
steps for the communication between two clients.

Apparently the game proceeds as calculated by the server since all latencies are lower than the lower
lag-delay-bound.

1More precise information can be found here: https://www.cs.cornell.edu/˜wmwhite/papers/
2009-ICDE-Scalability.pdf

2

https://www.cs.cornell.edu/~wmwhite/papers/2009-ICDE-Scalability.pdf
https://www.cs.cornell.edu/~wmwhite/papers/2009-ICDE-Scalability.pdf

Player Action Time(p3) Result
p2 Attack(p1,60) 1+2+2 p1 dead
p1 Attack(p2,30) 2+2+2 ignored
p1 Heal(p1, 80) 3+2+2 ignored
p2 Heal(p2, 60) 4+2+2 p2.H = 100
p2 Attack(p3,30) 5+2+2 p3.H = 20
p3 Attack(p2, 50) 6+0+4 p2.H = 50
p2 Attack(p3,30) 7+2+2 p3 dead

The anomaly which caused that player p3 was killed by a phantom is eliminated.

(f) Discuss the advantages and disadvantages of these solutions!

• Both solution can cause anomalies (if the latency of one player is higher than the latency of the
other player)

• Local-lag approach is perfect, if the local lag-interval corresponds exactly to the latency of all
players.

• Advantage of client/server model: Errors can be recognized and fixed by the server with the help of
synchronization.

• Disadvantage of client/server model: The state of the server can be unfair if players have different
latencies.

Assignment 3-2 Dead Reckoning

To save bandwidth positions of players are not transmitted every tick. Consider the client of player p1 who
perceives actions of another player p2. The client of p1 receives the following position updates of player p2
from the server:

Player x y Time
p2 100 100 0
p2 110 90 15
p2 130 90 30
p2 160 50 40

At which position is player p2 displayed at time 45? Use the following prediction models:

(a) The last known position is used as prediction.

x = 160, y = 50

(b) The position is predicted by assuming a linear movement with constant velocity.

The current velocity is calculated with help of the last two updates:

Generic formula:

p(t1 + ∆t) = p(t1) + ∆t · p(t1)− p(t0)

‖p(t1)− p(t0)‖
· ‖p(t1)− p(t0)‖

t1 − t0

3

In this case: t0 = 30, t1 = 40,∆t = 5, thus:

p(45) = p(40) + 5 · p(40)− p(30)

‖p(40)− p(30)‖
· ‖p(40)− p(30)‖

40− 30

=

(
160
50

)
+

1

2
·
(

30
−40

)
=

(
175
30

)

(c) The position is predicted by assuming a linear movement with constant acceleration.

The acceleration is calculated by using the last three updates. More precisely the last movement (between
the last two updates), the current velocity, and the change of velocity between the last three updates are
used.

Generic formulas:

p(ti + ∆t) =
1

2
a(ti)∆t2 + v(ti)∆t + p(ti)

a(ti) =
∆v

∆t
≈ v(ti)− v(ti−1)

ti − ti−1

v(ti) =
∆p

∆t
≈ p(ti)− p(ti−1)

ti − ti−1

In this case: t0 = 15, t1 = 30, t2 = 40 and ∆t = 5, thus:

p(t2 + ∆t) =
1

2
a(t2)∆t2 + v(t2)∆t + p(t2)

≈ 1

2

v(t2)− v(t1)

t2 − t1
∆t2 + v(t2)∆t + p(t2)

≈ 1

2

p(t2)−p(t1)
t2−t1

− p(t1)−p(t0)
t1−t0

t2 − t1
∆t2 +

p(t2)− p(t1)

t2 − t1
∆t + p(t2)

=
1

2

160
50

−

130
90


40−30 −

130
90

−

110
90


30−15

40− 30
52 +

(
160
50

)
−
(

130
90

)
40− 30

5 +

(
160
50

)

= 12.5 ·

1
10

(
30
−40

)
− 1

15

(
20
0

)
10

+
1

2

(
30
−40

)
+

(
160
50

)
= 1.25(

(
3
−4

)
−

(
4/3
0

)
) +

(
15
−20

)
+

(
160
50

)
=

5

4

(
5/3
−4

)
+

(
15
−20

)
+

(
160
50

)
=

(
1771/12

25

)

4

Assignment 3-3 Hermite-Interpolation

Consider the following situation: The locally assumed po-
sition of a player and his direction of movement at time t
are given by dead reckoning with position vector pDR and
movement vector dDR. At the same time the client receives
an update that consists of the actual position vector pEX and
movement vector dEX from the server.

Now, the client has to transfer position and movement
which were calculated with dead reckoning to the actual
data within a time window ∆t. For the sake of simplicity
you can assume that a player moves exactly the length of a
movement vector within time window ∆t. In other words,
at time t + ∆t the player should be at position pEX + dEX.
2

The following vectors are given:

pDR =

(
0
1

)
dDR =

(
2
3

)
pEX =

(
4
2

)
dEX =

(
−1
1

)
Illustrate the idea of position correction with linear combination of Hermite-functions as described in the script
(chapter 3, page 20). Calculate the value of the linear combination function p̂(x) (see below) for x ∈ {12 ,

7
8}.

Mark these points in the plot and sketch your idea of the corresponding connecting curve based on these.

h1(x) = 2x3 − 3x2 + 1 h2(x) = −2x3 + 3x2

h3(x) = x3 − 2x2 + x h4(x) = x3 − x2

p̂(x) = pDR · h1(x) + (pEX + dEX) · h2(x) + dDR · h3(x) + dEX · h4(x)

where x ∈ [0, 1] describes the progress of movement between time t and time t + ∆t.3

1
2 :

h1(
1

2
) =

1

4
− 3

4
+ 1 =

1

2

h2(
1

2
) = −1

4
+

3

4
=

1

2

h3(
1

2
) =

1

8
− 1

2
+

1

2
=

1

8

h4(
1

2
) =

1

8
− 1

4
= −1

8

p̂(
1

2
) =

1

2
·
(

0
1

)
+

1

2
·
(

3
3

)
+

1

8
·
(

2
3

)
− 1

8
·
(
−1
1

)
=

(
15
8
18
8

)
2Theoretically, the correction of the position could also be done by two straightforward approaches: either teleport the player from

position pDR to pEX at time t and apply the movement along vector dEX, or teleport the player from position pDR + dDR to pEX + dEX

at time t + ∆t. Both would result in undesired teleportations of the player from one position to another. To avoid this, we employ the
Hermite interpolation to get a smoothed correction of the position, i.e., we use the time window ∆t to smoothly move the player from
position pDR to position pEX + dEX (cf. the blue line in the Figure on the next page).

3For instance p̂(1
2
) gives us the position where the player should be displayed after 50% of the time window ∆t have passed (cf.

the dot in the middle of the blue line in the Figure on the next page). By using various values for x, we would get various coordinates
that correspond to a smooth interpolation (cf. the entire blue line).

5

7
8 :

(
7

8
)2 =

49

64
(
7

8
)3 =

343

512

h1(
7

8
) =

343

256
− 147

64
+ 1 =

11

256

h2(
7

8
) = −343

256
+

147

64
=

245

256

h3(
7

8
) =

343

512
− 98

64
+

7

8
=

343

512
− 784

512
+

448

512
=

7

512

h4(
7

8
) =

343

512
− 49

64
=

343

512
− 392

512
= − 49

512

p̂(
7

8
) =

11

256
·
(

0
1

)
+

245

256
·
(

3
3

)
+

7

512
·
(

2
3

)
− 49

512
·
(
−1
1

)
=

(
2, 9941
2, 8594

)

6

