
1

Lecture Notes for
Managing and Mining Multiplayer Online Games

Summer Term 2019

Lecture Notes © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter 9: Artificial Intelligence

2

Chapter Overview

• What is Artificial Intelligence?
• Environments, Agents, Actions Rewards
• Sequential Decision Making

• Classical Search
• Planning with Uncertainty
• Model-free Reinforcement Learning
• Monte-Carlo and Temporal Difference Learning
• Q-Learning

• Adversarial Search
• Minimax
• Alpha-Beta Pruning
• Monte Carlo Tree Search

3

What is Artificial Intelligence?

Game State

GAME

?
action

Player View

Environment Agent

“sensor”

4

Environment

Represents the world in which the agent is acting.
(e.g. a game, a simulation or a robot)
• provides information about the state (e.g. view of Game State)

• receives action and reacts to the them

Properties of Environments
• partially / fully observable
• with known model/ model free
• deterministic / non-deterministic
• single vs. multi-agent
• competitive vs. collaborative
• static / dynamic / semi-dynamic
• discrete / continuous (states and/or actions)

5

Agents

Autonomous entity within the environment.

types of agents:
• simple reflex agent

• condition-action-rule
(example: If car-in-front-is-braking then initiate-braking.)

• model-based reflex agents (add internal state from history)

• goal-based agents (works towards a goal)

• utility-based agents (optimizes rewards/minimizes costs)

• learning agents (learns how to optimize rewards/costs)

6

Example: „Autocamp 2000“ (simple reflex agent)

Example for a Bots: (http://www.gamespy.com/articles/489/489833p1.html)

1) If invited by any group => join group
2) If in a group => follow behind the leader
3) If sees a monster => attack
4) If someone says something ending in a question mark

=> respond by saying "Dude?"
5) If someone says something ending in an exclamation point

=> respond by saying "Dude!"
6) If someone says something ending with a period

=> respond by randomly saying one of three things: "Okie“,
"Sure“, or "Right on"

7) EXCEPTION: If someone says something directly to you by
mentioning your name, respond by saying "Lag."

7

Example
KillSwitch: [Shouting] Does anyone want to join our hunting party?
Farglik: [Powered by the Autocamp 2000] Dude?
[KillSwitch invites Farglik to join the group.]
[Farglik joins the group]
KillSwitch: We're gonna go hunt wrixes.
Farglik: Right on.
[The group of players runs out, Farglik following close behind. Farglik shoots at every little

monster they pass.]
KillSwitch: Why are you attacking the durneys?
Farglik: Dude?
KillSwitch: The durneys, the little bunny things -- why do you keep shooting at them?
Farglik: Dude?
KillSwitch: Knock it off guys, I see some wrixes up ahead. Let's do this.
Farglik: Right on.
[The group encounters a bunch of dangerous wrixes, but they gang up and shoot every one of

them.]
KillSwitch: We rock!
Farglik: Dude!
Troobacca: We so OWNED them!
Farglik: Dude!

8

Example
KillSwitch: Uh oh, hang on. Up ahead are some Sharnaff bulls. We can't handle them, so don't

shoot.
Farglik: Okie.
[Farglik shoots one of the Sharnaff bulls.]
[The bull attacks; Trobacca and several other party members are killed before they beat it.]
KillSwitch: You IDIOT! Farglik why did you shoot at them?
Farglik: Lag.
KillSwitch: Well don't do it again.
Farglik: Sure.
[Farglik shoots at another Sharnaff bull.]
[The entire party is slaughtered except for Farglik.]

[... Farglik stands there, alone, for several hours ...]

Planet Fargo- The Automated Online Role-Player
By Dave Kosak
http://www.gamespy.com/articles/489/489833p1.html

9

Sequential Decision Making

• behavior is a sequence of actions
• sometimes immediate rewards must be sacrificed to

acquire rewards in the future
example: spend gold to build a gold mine

• short-rewards might be very unlikely in a situation
example: score a goal from your own half in football

=> intelligent behavior needs to plan ahead

10

Deterministic Sequential Planning

• Set of states S = {s1,..,sn}
• Set of actions A(s) for each state s∈S
• Reward function R: R(s) (if negative = cost function)
• Transition function T: S×A => S: t(s,a) = s’

(deterministic case !!)
• this implies:

• episode = s1 ,a1,r1 ,s2,a2,r2 ,s3 ,a3 ,r3 ,s3 ...,sl ,al ,rl ,sl+1

• reward of the episode: ∑𝑖𝑖=1𝑙𝑙 𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖with 0 < 𝛾𝛾 ≤ 1
(𝛾𝛾=1: all rewards count the same, 𝛾𝛾 <1: early rewards count more)

• sometimes: process terminates when reaching a
terminal state sT (Game Over !!!) or process end after k
moves.

11

Deterministic Sequential Planning

• Static, discrete, deterministic, known and fully observable
environments:
• S, A are discrete sets and known
• t(s,a) has a deterministic state s’
• Agent knows the current state

• goal: find a sequence of actions (path) that maximize the
cumulated future rewards.

examples:
• routing from A to B on the map or find an exit
• riddles like the goat, wolf, cabbage transport problem

12

Routing in Open Environments
• open environment: 2D Space (IR2)
• agents can move freely
• obstacles block direct connections
• presenting obstacles with:

• polygons
• pixel-presentation
• any geometric form

(Circle, Ellipse, …)

solution for polygon presentation:
• deriving a graph for the map

containing the shortest routes
(visibility graph)

• integrating start and goal
• use of pathfinding algorithms like

Dijkstra or A*

A
B

13

Visibility Graph
• finding the shortest path in an

open environment is a search
over an infinite search area

• solution: restrict the search area
with the following properties of
optimal paths:
• waypoints of every shortest

path are either start, goal or
corners of obstacle-
polygons.

• paths cannot intersect
polygons.

• The shortest path in the open
environment U is also part of the
visibility graph GU(V,E).

A
B

14

Visibility Graph
Environment: U
• Set of polygons U=(P1, …,Pn) (Obstacles)
• Polygon P: planar cyclic graph: P = (VP,EP)
Visibility graph: GU(V,E)
• Nodes: Corners of polygons P = {V1, …,Vl) in U:

• Edges: All edges of polygons with all edges of nodes from different
polygons that do not intersect another polygon-edge.

Remarks:
• definition applies only to convex obstacles:
• for concave polygons: compute the convex hull of each obstacle and add

the additional edges
• The definition implies a naive O(n3) algorithm to construct a visibility graph.

Computing a visibility graph can be optimized to O(n2) (O‘Rourke 87)


UP

PU VV
∈

=

{}}),(:),({ =∩∀∀∧≠∧∈∧∈∪=
∈∈

∈

eyxjiPyPxyxEE
PEeUPji

UP
PU 

15

Example: Visibility Graph

A

Edges for the node A being tested
and discarded.

Visibility Graph: Red segments
run between polygons. Green
segments mark the polygons’
borders.

16

Expansion with Start- and Goal-Nodes
• Visibility graph can be pre-calculated for static environments
• Mobile Objects must be integrated into the graph before calculation
• Inserting start S and goal Z as Point-Polygons
• Connecting the new nodes to with all edges unless an intersection with

polygons occurs

A
B

17

Dijkstra’s Algorithm
Used Data Structures:

• priorityqueue Q (stores found paths sorted by cost in descending order)
• nodetable T (contains cost for the currently best path for all visited nodes)

Pseudo-Code:

FUNCTION Path shortestPath(Node start, Node target)
Q.insert(new Path(start,0))
WHILE(Q.notIsEmpty())

Path aktPath = Q.getFirst()
IF aktPath.last() == target THEN //target found

return aktPath
ELSE

FOR Node n in aktPath.last().successor() DO //extend current path
Path newPath = aktPath.extend(n)
IF newPath.cost()<T.get(newPath.last()) THEN //update optimal path

T.update(newPath.last,newPath.cost)
Q.insert(newPath,newPath.cost)

ENDIF
ENDDO

ENDIF
ENDWHILE
RETURN NULL //start and target not connected

ENDFUNCTION

18

A*-Search
• Dijkstra’s algorithm uses no information about

the direction to the target
=> the search expands into all directions until

the target is found
• A*-Search formalizes the direction into an

optimistic forward approximation:
h(n, target) for each node n

• h(n,target) indicates a lower bound for the
minimum cost to reach the target

• improve the search order by sorting by minimal
total cost to reach the target

• allows to prune path P if:
P.cost()+h(pfad1.last(),target) > bestPath.cost()

• basic heuristic for network distance:
Euclidian distance between current position and
target position.
(a straight line is always the shortest connection)

solution

search area

search area
solution

heuristic

19

Pseudo-Code: A*-Search
Peseudo-Code: A*-Search

FUNCTION Path shortestPath(Node start, Node target)
Q.insert(new Path(start),0)
WHILE(Q.notIsEmpty())

Path aktPath = Q.getFirst()
IF aktPath.last() == target THEN //found result

return aktPath
ELSE

FOR Node n in aktPath.last().successor() DO //expanding the current path
Path newPath = aktPath.extend(n)
IF newPath.cost()<T.get(newPath.last()) THEN //update if optimal so far

T.update(newPath.last, newPath.cost())
Q.insert(newPath, newPath.cost() +h(newPath.getLast(), target))

ENDIF
ENDDO

ENDIF
ENDWHILE
RETURN NULL //there is no path

ENDFUNCTION

20

Visibility Graph for extended objects
• agents usually have a spatial expansion:

Circle or Polygon
• visibility graph is only feasible for

point objects
• adjust the visibility graph:

expand obstacle polygons by the
spatial expansion of the agent
(Minkowski Sum)

problem with this solution:
• for circular expansion: circles have an

infinite number of edges
=> visibility graph is not derivable

• For Polygon-Environment: object rotation
should be considered
=> Every rotation requires a separate
extension

target

start

target

start

21

Visibility Graph for extended Objects
Solution Approach:
• polygons are approximated by the

body of rotation => Circle
• circles are approximated by minimal

surrounding polygons (MUP)
=> e.g. hexagon, octagon

• form Minkowski sum with the MUPs
and derive visibility graph.

Remarks:
• paths are not optimal
• passages are considered conservative
• curves are taken angular
• MMO should only have a limited

selection of agent extensions because
each requires it’s own graph

target

start

Minkowski sum of varying rotations of the same shape

double approximation by building the body of rotation
and the minimal surrounding Hexagon

22

More Pathfinding Methods
Other Methods:
• approximate polygons with polygons

having less corners
• hierarchic routing for longer routes
• precalculate and store shortest paths
• use a grid based graph, overlay the

map with a grid and route over cell
centers => decent approximation

• use sampled graphs in open
environments (cmp. task-motion
planning in robotics)

A

B

A

B

23

Markov Decision Process

Problem: We might not know the outcome of an executed action

• other players might act unpredictable

• game integrate random processes

⇒ t(s,a) is stochastic: P(s’|s,a) for all s,s’ ∈ S, a ∈ A

implications:

• we do not know what the future state after performing action a is.

• the reward R(s) gets stochastic as well

• when searching a terminal state, there is no secure path leading us to
the target

=> We need an action for each situation we might encounter and not
just the states on the path because we cannot control where we
going to end up.

24

Motivation non-deterministic Routing

What is the fastest
path through the
forest ?

25

Motivation non-deterministic Routing

What is the fastest
path through the
forest ?

26

Motivation non-deterministic Routing

What is the fastest
path through the
forest ?

What is if the
bear moves or
you don’t know
where it is?

27

Motivation non-deterministic Routing

What is the fastest
path through the
forest ?

What is if the
bear moves or
you don’t know
where it is?

28

Motivation non-deterministic Routing

What is the fastest
path through the
forest ?

What is if the
bear moves or
you don’t know
where it is?

29

Policies and Utilities

Assume a dynamic, discrete, non-deterministic, known and
fully observable environment.

• a policy 𝜋𝜋 is a mapping defining for every state 𝑠𝑠 ∈ 𝑆𝑆 an
action 𝜋𝜋 𝑠𝑠 ∈ 𝐴𝐴 𝑠𝑠 (agent knows what to do in any situation)

• Stochastic Policies: Sometimes it is beneficial to vary the
action then 𝜋𝜋 𝑠𝑠 is a distribution function over A(s).
(think of a game where strictly following a strategie makes
you predictable)

Example:

state: bear is there state: bear is absent

30

Bellman’s Equations

• What is the reward of following 𝜋𝜋?
Utility 𝑈𝑈𝜋𝜋 𝑠𝑠 : expected reward when following 𝜋𝜋 in state s

• 𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝐸𝐸[∑𝑡𝑡=0∞ 𝛾𝛾𝑡𝑡𝑅𝑅(𝑠𝑠𝑡𝑡) |𝑠𝑠0 = 𝑠𝑠,𝜋𝜋]
• 𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝛾𝛾0𝑅𝑅 𝑠𝑠 + 𝐸𝐸[∑𝑡𝑡=1∞ 𝛾𝛾𝑡𝑡𝑅𝑅(𝑠𝑠𝑡𝑡) |𝑠𝑠0 = 𝑠𝑠,𝜋𝜋]
• 𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 ∑𝑠𝑠′∈𝑆𝑆 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑈𝑈𝜋𝜋 𝑠𝑠′

(Bellmann Equation)

• What is the optimal policy 𝜋𝜋*?
Bellman Optimality Equation:

𝑈𝑈𝜋𝜋∗ 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾max
𝑎𝑎∈𝐴𝐴

�
𝑠𝑠′∈𝑆𝑆

𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈𝜋𝜋∗(𝑠𝑠′)

31

Finding optimal Policies: Policy Iteration

• We are looking for the optimal policy.
• The exact utility values are not relevant if one action is

clearly the optimal.

• Idea: Alternate between:
• Policy evaluation: given a policy, calculate the

corresponding utility values
• Policy improvement: Calculate the policy given the

utility values 𝜋𝜋 𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑎𝑎∈𝐴𝐴

∑𝑠𝑠′∈𝑆𝑆 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈∗(𝑠𝑠′)

32

Policy Evaluation

• Policy evaluation is much simpler than solving the Bellman
equation

𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 �
𝑠𝑠′∈𝑆𝑆

𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑈𝑈𝜋𝜋(𝑠𝑠′)

• Note that the non-linear function “max” is not present
• We can solve this by standard algorithms for linear

equation systems.
• For large state spaces, solving systems of linear equations

takes a long time (𝑂𝑂(𝑛𝑛3))
• In large state spaces a simplified Bellman update for k

times can be more performant

𝑈𝑈𝑖𝑖+1 𝑠𝑠 ← 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋𝑖𝑖 𝑈𝑈𝑖𝑖(𝑠𝑠′)

33

Policy Iteration

repeat
𝑈𝑈 ← PolicyEvaluation(𝜋𝜋,𝑈𝑈,𝑀𝑀𝑀𝑀𝑀𝑀)
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢?← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
for each state s in S do

if max
𝒂𝒂∈𝑨𝑨

∑𝒔𝒔′ 𝑷𝑷 𝒔𝒔′ 𝒔𝒔,𝒂𝒂 𝑼𝑼 𝒔𝒔′ > ∑𝒔𝒔′ 𝑷𝑷 𝒔𝒔′ 𝒔𝒔,𝝅𝝅 𝑼𝑼 𝒔𝒔′ then

𝝅𝝅 𝒔𝒔 ← argmax
𝑎𝑎∈𝐴𝐴

∑𝒔𝒔′ 𝑷𝑷 𝒔𝒔′ 𝒔𝒔,𝒂𝒂 𝑼𝑼[𝒔𝒔′]

𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖?← 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇
until 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢?
return 𝜋𝜋

34

Value Iteration

• if we use Bellman updates anyway, we can join both steps
• update Bellman optimality equation directly:

𝑈𝑈∗ 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾max
𝑎𝑎∈𝐴𝐴

�
𝑠𝑠′∈𝑆𝑆

𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈∗(𝑠𝑠′)

• Non-linear system of equations
• Use Dynamic Programming

• Compute utility values for each state by using the current
utility estimate

• Repeat until it converges to 𝑈𝑈∗

• convergence can be shown by contraction

35

Value Iteration

repeat
𝑈𝑈 ← 𝑈𝑈′

𝛿𝛿 ← 0
for each state s in S do

𝑈𝑈′ 𝑠𝑠 ← 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

∑𝑠𝑠′ 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈[𝑠𝑠′]

if 𝑈𝑈′ 𝑠𝑠 − 𝑈𝑈 𝑠𝑠 > 𝛿𝛿 then 𝛿𝛿 ← 𝑈𝑈′ 𝑠𝑠 − 𝑈𝑈 𝑠𝑠

until 𝛿𝛿 < 𝜖𝜖 1−𝛾𝛾
𝛾𝛾

return 𝑈𝑈

36

MDP Synopsis

• MDPs rely on a Markov model with assumptions about:
states, actions, rewards, transition probabilities, etc.

• if all the information is available, computing the optimal
policy does not require any learning samples

• Transitions probabilities are usually not defined but have
to be estimated based on observations

• usually observations ≠ states
⇒ partially observable MDP, estimate belief states (compare HMM)
⇒ set of possible states and transitions is unknown

Can we learn on observations only without
making an model assumptions ?

37

Model-Free Reinforcement Learning

If we don’t have a model, what do we have:
NOTE: s is a state description, but S does not need to be known.

1. Sample Episodes:
• episode = s1 ,a1,r1 ,s2,a2,r2 ,s3 ,a3 ,r3 ,s3 ...,sl ,al ,rl ,sl+1

• reward of the episode: ∑𝑖𝑖=1𝑙𝑙 𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖 with 0 < 𝛾𝛾 ≤ 1
• episode might end with terminal state

2. Queryable Environments:
• Agent selects an action a∈A(s) and receives on new state s’, R(s’),

A(s’) from the Environment.
• Allows to generate episodes

38

Monte-Carlo Policy Evaluation

• for a known policy π and a set of sample episodes X following π
• let X(s) be the set of (sub-)episodes starting with s
• to estimate utility Uπ(s) average over the expected reward:

U 𝑠𝑠 = �
𝑥𝑥∈𝑋𝑋(𝑠𝑠)

∑𝑖𝑖=1𝑙𝑙 𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖
𝑋𝑋 𝑠𝑠

• if X(s) gets sufficiently large for all 𝑠𝑠 ∈ 𝑆𝑆: 𝑈𝑈(𝑠𝑠) → 𝑈𝑈𝜋𝜋 𝑠𝑠
• if new episodes arrive, compute incremental mean:

𝜇𝜇𝑘𝑘 =
1
𝑘𝑘
�
𝑗𝑗=1

𝑘𝑘

𝑥𝑥𝑗𝑗 =
1
𝑘𝑘

𝑥𝑥𝑘𝑘 + �
𝑗𝑗=1

𝑘𝑘−1

𝑥𝑥𝑗𝑗 =
1
𝑘𝑘
𝑥𝑥𝑘𝑘 + 𝑘𝑘 − 1 𝜇𝜇𝑘𝑘−1

= 𝜇𝜇𝑘𝑘−1 +
1
𝑘𝑘
𝑥𝑥𝑘𝑘 − 𝜇𝜇𝑘𝑘−1

• if the environment is non-stationary, limit the weight of old episodes:
U 𝑠𝑠𝑡𝑡 ← U 𝑠𝑠𝑡𝑡 + 𝛼𝛼 𝑅𝑅 𝑥𝑥 − U 𝑠𝑠𝑡𝑡

39

Temporal Difference Learning

problem: Can we still learn if episodes are incomplete?

• the later part of ∑𝑖𝑖=1𝑙𝑙 𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖 is missing

• in the extreme case we just have 1 Step: st, a, r, st+1

=> Temporal Difference Learning

• idea similar to incremental Monte-Carlo learning:

U 𝑠𝑠𝑡𝑡 ← U 𝑠𝑠𝑡𝑡 + 𝛼𝛼 𝑅𝑅 𝑥𝑥 − U 𝑠𝑠𝑡𝑡
• Policy Evaluation with Temporal Difference (TD) Learning:

U 𝑠𝑠𝑡𝑡 ← U 𝑠𝑠𝑡𝑡 + 𝛼𝛼 𝑅𝑅 𝑠𝑠𝑡𝑡+1 + 𝛾𝛾U 𝑠𝑠𝑡𝑡+1 − U 𝑠𝑠𝑡𝑡
• TD target: 𝑅𝑅 𝑠𝑠𝑡𝑡+1 + 𝛾𝛾U 𝑠𝑠𝑡𝑡+1
• TD error: 𝑅𝑅 𝑠𝑠𝑡𝑡+1 + 𝛾𝛾U 𝑠𝑠𝑡𝑡+1 − U 𝑠𝑠𝑡𝑡
• each step estimates the mean utility incrementally

40

Policy Optimization

Idea: adapt Policy Iteration
(evaluate policy and update greedily)

• greedy policy update of U(s) requires a MDP:
𝜋𝜋′ 𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∈𝐴𝐴 𝑠𝑠 𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎 𝑈𝑈(𝑠𝑠′)

• Q-Value Q(s,a): If we choose action a in state s
what is the expected reward?
=> We do not need to know where the action will take us!

• Improving Q(s,a) is model free:
𝜋𝜋′ 𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∈𝐴𝐴 𝑠𝑠 𝑄𝑄 𝑠𝑠,𝑎𝑎

• Adapt the idea of Policy Iteration:
• Start with a default policy
• evaluate policy (previous slide)
• update policy: e.g. with greedy strategy

41

Samples and Policy Updates

Problem: After updating a policy, we need enough samples
following the policy.

• real observed episodes usually do not cover enough
policies (episodic samples are policy dependent)

s1 ,a1,r1 ,s2,a2,r2 ,s3 ,a3 ,r3 ,s3 ...,sl ,al ,rl ,sl+1

• we need to dynamically sample from an environment:
• measure reaction of physical world (e.g. robotics..)
• build simulations which mimics the physical world
• in Games: let the agent play and learn !!!

• We need a strategy for sampling these s,a pairs.

• s is often determined by the environment as result of the
last action. (The game is in state s after the last move.)

42

Learning on a Queryable Environment

• we can generate as much samples as possible

• environment might be non-deterministic:
• same state s and action a => different outcomes s’ and R(s’)
• multiple samples for the same (s,a) might be necessary

• How to sample over the state-action space?
• exploit: If we find a good action keep it and improve the estimate

of Q(s,a). Usually, it’s a waste of time to optimize Q(s,a) for
bad actions.

• explore: Select unknown or undersampled actions
- a low Q(s,a) need not mean that the option is bad, maybe it is

just underexplored.
- try out new things might lead to a even better solution

43

ε-Greedy Exploration

• makes sure that sampling considers new actions

• when sampling:
• With probability 1-ε choose greedy action
• with probability ε chose random action

• Sampling policy:

𝜋𝜋 𝑎𝑎 𝑠𝑠 =

𝜀𝜀
𝑚𝑚

+ (1 − 𝜀𝜀) 𝑖𝑖𝑖𝑖 𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∈𝐴𝐴(𝑠𝑠)𝑄𝑄(𝑠𝑠,𝑎𝑎)
𝜀𝜀
𝑚𝑚

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• achieves that Q-values improve and guarantees that all
actions are explored if optimized long enough

44

On-Policy and Off-Policy Learning

Which Q(s,a) is used for sampling an action?

on-policy learning: Sample with respect to the currently
learned policy. example: SARSA

off-policy learning: Sampling is done based on a behavioral
policy which is different from the learned policy.

example: Q-Learning

Implication:

• For off-policy learning, exploration is usually just done for
the behavioral policy.

• For on-policy methods, exploration must be part of the
learned policy.

45

Q-Learning

• standard off-policy learning method
• Given a behavioral policy 𝜋𝜋𝑏𝑏, learn the policy 𝜋𝜋𝑙𝑙 by the

following learning update:
𝑄𝑄 𝑠𝑠,𝜋𝜋𝑏𝑏(𝑠𝑠) ← 𝑄𝑄 𝑠𝑠,𝜋𝜋𝑏𝑏(𝑠𝑠) + 𝛼𝛼 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 𝑄𝑄 𝑠𝑠′,𝜋𝜋𝑙𝑙(𝑠𝑠′) − 𝑄𝑄 𝑠𝑠,𝜋𝜋𝑏𝑏(𝑠𝑠)

• Usually we want to learn the optimal policy, thus:
𝜋𝜋𝑙𝑙 𝑠𝑠 = argmax

𝑎𝑎∈𝐴𝐴
𝑄𝑄 𝑠𝑠,𝑎𝑎

• For behavioral policy, choose ε-Greedy

46

Q-Learning Algorithm

init Q(s,a)∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 ∈ 𝐴𝐴
for n episodes:
init s
repeat until episode is finished:
choose a from A(s) with 𝜋𝜋𝑏𝑏
s’,r = query_Env(s,a)

Q(s,a)← Q(s,a)+α(r+γmaxaQ(S’,a)-Q(s,a))
s ← s’

until s is terminated
//terminal state or finite horizon is reached

47

Function Approximation of State Spaces

• Q-Learning collects Q-Values for all explored state-action
pairs (s,a) => Q-Learning maintains a Q-table

• Is the state of observation the state space for making
decision?
• state spaces are often exponential in the number of variables
• similar states usually require similar actions

• basic Q-Learning does not generalize
from observations to states

Idea: Function Approximation

Treat the set of states as a (continuous) vector of factors and
learn a regression function f(s,a,θ) predicting Q*(s,a).

48

Q-value function approximation

Given: A mapping x(s) describing s in IRd.

Goal: Learn a function f(x(s),a,θ) predicting the true Q-value
Q*(s,a) for any value of x(s).

• similar to supervised learning, but not exactly:
• Where to put the action a in our prediction function?

• Samples from the same trajectory are not independent and
identical distributed (IID)

• true Q*(s,a) is not known for training
=> targets are constantly changing

x(s)

a f(s,a,θ) x(s) f(s,a1,θ)
:
f(s, al,θ)

θ θ

49

Learning using Function Approximation

• we want to learn a function f(x(s),a,θ) over the state-action
space by optimizing the function parameters θ.

𝑓𝑓 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 ≈ 𝑄𝑄 ∗ 𝑠𝑠,𝑎𝑎
• to learn f we need a loss function, e.g. MSE between
𝑓𝑓 𝑠𝑠,𝑎𝑎,𝜃𝜃 and observed values Q*(s,a).

𝐿𝐿 𝜃𝜃 = 𝐸𝐸 𝑄𝑄∗ 𝑠𝑠,𝑎𝑎 − 𝑓𝑓 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 2

• optimization using stochastic gradient descent

−
1
2
𝛻𝛻𝛻𝛻 𝜃𝜃 = 𝑄𝑄∗ 𝑠𝑠,𝑎𝑎 − 𝑓𝑓 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃

Δ𝜃𝜃 = 𝛼𝛼 𝑄𝑄∗ 𝑠𝑠, 𝑎𝑎 − 𝑓𝑓 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃

• update: 𝜃𝜃 ← 𝜃𝜃+ Δ𝜃𝜃

50

Linear Prediction Functions

A simple function approximation might be linear

• Linear Functions over s∈IRd:
𝑓𝑓 𝑥𝑥(𝑠𝑠),𝑎𝑎, W =x(s)TW=∑𝑗𝑗=1𝑛𝑛 𝑥𝑥(𝑠𝑠)𝑗𝑗 𝑤𝑤𝑗𝑗

• Loss function:
𝐿𝐿 𝑊𝑊 = 𝐸𝐸 𝑄𝑄∗ 𝑠𝑠, 𝑎𝑎 − x(s)TW 2

• Stochastic Gradient Descent on L(w):
𝛻𝛻𝛻𝛻 𝑓𝑓 𝑥𝑥(𝑠𝑠),𝑎𝑎, W = x(s)

−
1
2
𝛻𝛻𝛻𝛻 𝜃𝜃 = 𝑄𝑄∗ 𝑠𝑠,𝑎𝑎 − 𝑓𝑓 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 𝑥𝑥(s)

Δ𝜃𝜃 = 𝛼𝛼 𝑄𝑄∗ 𝑠𝑠,𝑎𝑎 − 𝑓𝑓 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 𝑥𝑥(s)

51

Further Directions

• other prediction functions:
• (deep) neural networks
• decision trees
• nearest neighbor
• ...

• DQN: uses a deep neural network and works with an
experience buffer to make the learning target more stable

• Policy Gradients: Uses function approximation for
selecting the best action (not the Q-values)

• Actor-Critic methods: Combine value function
approximation and policy gradient.

52

Why is AI important for Games?

Computer games are an optimal sand-box for developing AI
techniques:

• games are queryable environments
• rewards and actions are known
• states are parts or views on the game state

But, why is reinforcement learning interesting for managing
and mining Computer Games ?

• develop intelligent AI opponents/collaborators

• micro-management for small granularity games

• learn optimal strategies for teaching players or balancing

• mimic real behavior within a game

53

Imitation Learning

• use reinforcement learning to make an agent behave like a
teacher (e.g. a pro gamer)

• Learning from experience: teacher provides (s,a,r,s’)
samples of good behavior (reward is known)

• Learning from demonstration: teacher provides (s,a,s’)
samples.
• reward is not explicitly known
• success is expected based on the reputation of the player

Challenge:

• predicting the action for states with sufficient samples is
easy (policy follows the distribution of observed actions)

• predicting proper actions for undersampled states is hard.

=> approximation function must generalized from
observed states to unobserved ones.

54

Imitation learning in Games

possible applications:
• make a player behave like a real one

(e.g. adapt player styles for football games)
• learn policies for hard opponents to analyze their weaknesses
• when training an agent learn from human experts

(first Alpha Go version)
• learn policies for your own behavior and find out where it deviates

from the optimal policy

Note, this is an active field of research with many unsolved problems:
• policies depend on the agents/players capabilities
• capability of the imitating agent in unknown states is hard to evaluate
• reward functions might not be the same for teacher and imitating

agent

55

Techniques for Multiple Agents

Consider an MDP (S,A,T,R):
• often the uncertainty of state transitions T is completely

caused by the actions of other independent agents
(opponent or team members)

examples: chess, GO, etc.

• if you would know the policy of the other agents, optimal
game play could be achieved with deterministic search.

s0

s1 s2 s3

s4 s5 s6 s7 s8 s9

a1 a2 a3

a4 a5 a6 a7 a8 a9

windefeat defeat defeat defeatdefeat

56

Antagonistic Search

• assume that there is a policy π* which both player follows

• in antagonistic games, the reward of player p1 is the
negative reward of player p2. (zero-sum game)

=> player1 maximizes rewards
player2 minimizes the rewards

s0

4 s5 s6

s2 3

s7

s8 s9 s10 s11 s12 s13 s14 s15

L WL LW LD LW WD LD DL W

player1

player2

win lossdraw

WD

W

LL

D

D

57

Antagonistic Search

• generally it is not possible to search until the game ends
(search grows exponential with available actions)

⇒ stop searching at a certain level and user another reward
corresponding to the chance of success

Types of rewards:

• heuristics (figures, flexibility, strategic positions etc.)

• prediction functions (input game state ->win probability)

• databases (opening or end game libraries)

58

Min-Max Search in antagonistic Search Trees
• select action a that maximizes R(s) for S1 after S2’s reaction
• Search depth:

• Given Number of Turns
⇒ Time may vary and is hard to estimate
⇒ Turbulent positions make cutting of some branches unfavorable
• Iterative Deepening:

- Multiple calculations with increasing search depth
- On Time-Out: Abort and use of last complete calculation

(since expense doubles on average, double the expense can be estimated)
• turbulent positions: single branches are being expanded if leaves are turbulent.

3

552 1 6 103Min-Step (S2)

Max-Step (S1) 2 1 3

59

Alpha-Beta Pruning
Idea: If a move already exists, that can be valuated with even after a counter

reaction, all branches creating a value less than can be cut.
• : S1 reaches at least α on this sub-tree (R(s) > α)
• : S2 reaches at most β on this sub-tree (R(s) < β)

Algorithm:
• Traverse Search-Tree with deep search and fill inner nodes on the way back to

the last branching
• For calculating inner nodes:

If β < α then
• Cut off remaining sub-tree
• set β-value for the sub-tree if it’s root is a min-node
• set α -value for the sub-tree if it’s root is a max-node

Else set β-value to the minimum of min-nodes
set α-value to the maximum of max-nodes

60

Alpha-Beta Pruning
Idea: If a move already exists, that can be valuated with α even after a counter

reaction, all branches creating a value less than α can be cut.
• α: S1 reaches at least α on this sub-tree (R(s) > α)
• β: S2 reaches at most β on this sub-tree (R(s) < β)

554

4

α= 4 4

554

4

1262

4

554

4

2 65

5

α = 4

β = 2 β = 5

α = 5

β = 4

4

4

4

554

4

2 5

5

α = 4

3

1

1

α = 3

3

3

β = 1

β = 3

β < α

β < α

β < α

β < α

β = 4

61

Monte Carlo Tree Search

• for games with high branching factors MinMax does not scale

• heuristics are often hard determine and require expert knowledge

• machine learning depends on the available data sets (biased to human
play style)

Monte Carlo Tree Search:

• samples tree based on Monte Carlo Learning of simulated play outs

• uses an exploration/exploitation scheme to systematically search the
first k-layers of the search tree.

• simulation can be based on different opponent agents strategies

62

UBC1

• selects actions w.r.t. reasonable exploration and
exploitation trade-offs

• consider a situation where you had N tries and l actions

• for each action ai you know the number of wins and
number of samples (allows to calculate mean win rate)

• based on Hoeffding’s inequality, it can be shown that the

following bound for mean win rate holds: 𝑐𝑐𝑛𝑛,𝑛𝑛𝑖𝑖 = 2 ln 𝑛𝑛
𝑛𝑛𝑖𝑖

• the bounds gets narrower the more samples for ai become
available, but the bounds for all actions aj (i≠j) become
wider

• now always select action 𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖(𝜇𝜇𝑖𝑖 + 𝑐𝑐𝑛𝑛,𝑛𝑛𝑖𝑖)

63

Monte Carlo Tree Search with UCT

• use UBC1 for sampling the first k levels of the search tree

• if no samples are available apply a random search or some
light-weight policy.

• to evaluate leafs at the leaf level, simulate game until
terminal state is reached

The algorithm runs in 4 phases:

• selection: search tree based on UBC1

• expansion: randomly select an action when UBC1 does not
work

• simulation: simulate a further game trajectory

• backpropagation: backup the value along the path to the
root

64

Example

0/0

Selection

Expansion

4/7

2/3 1/3 0/1

1/1 1/2 0/1 1/2 0/1

4/7

2/3 1/3 0/1

1/1 1/2 0/1 1/2 0/1

65

Example

win

Backpropagation

Simulation
0/0

4/7

2/3 1/3 0/1

1/1 1/2 0/1 1/2 0/1

1/1

5/8

2/3 1/3 1/1

1/1 1/2 0/1 1/2 1/1

66

Monte Carlo Tree Search

• applicable to antagonistic search but not restricted to it

• can handle stochastic games and games partially
observable game states

• the 4 steps can be iterated until a given time budget is
spend: the longer the search is done the better is the
result.

• a general question is to perform simulation to determine
the possible outcomes

• Monte Carlo Tress Search is used in Alpha Go to allow
lookahead together with convoluational neural networks
and deep reinforcement learning

67

Modern Superhuman Game Agents

• superhuman = better than the best human players
• mostly showroom projects for pushing the limits of AI
• making AI to behave coordinated, goal oriented and general

Examples:
• Atari Games

(various Atari 2600 games learned by an identical network by
DeepMind)

• AlphaGO and AlphaGO Zero
(first GO-AI beating a grand Master 9th Dan & successor for chess,
Shogi and Go by DeepMind)

• OpenAI 5
(Dota2 team agent competing against E-Sports teams by OpenAI)

• AlphaStar (Starcraft2 AI for Protoss vs. Protoss by DeepMind)
• Capture the Flag: Quake III Arena by DeepMind
• …

68

Reinforcement Leaning for board games

• games are classical domain of AI because opponent
behaves not just nondeterministic but antagonistic

• progress on games like chess, backgammon, Poker.
• for a long time Go was considered the biggest

challenge due to its enormous branching factor
• In Jan 2016: Deepmind challenged Grand Maste Lee

Sedol with a program called Alpha Go and won.
• Alpha Go is a combination of reinforcement learning

and Deep learning techniques which was trained on
a huge database of Go matches.

• In 2017 the same team proposed Alpha Go Zero:
Learns any board Game based on the rules only by
playing against version of itself (evaluated on Chess,
Shogi and Go). Alpha Go Zero outperformed all
specialized top AIs without imitating human game
play.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton,
A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T. & Hassabis, D. (2017). Mastering the
game of Go without human knowledge. Nature, 550, 354--.

69

Games as Testbed for AGIs

AI is not build single purpose but
receives images and general controls
such as a human.
• DQN on Atari Games
https://deepmind.com/research/publications/playing-atari-
deep-reinforcement-learning/

• OpenAI Five (Dota2)
https://blog.openai.com/openai-five/

• RL for Starcraft II:
https://deepmind.com/blog/deepmind-and-blizzard-open-
starcraft-ii-ai-research-environment/

https://techxplore.com/news/2016-11-deepmind-boost-
ai-unreal-agent.html

ttps://deepmind.com/research/publications/playing-atari-deep-reinforcement-learning/
https://blog.openai.com/openai-five/
https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/

70

Architectures

• Complex systems being developed by expert teams

• Subtasks:
• Learning a state representation approximating a Markov state from

a sequence of agent observations
• Value function approximation to asses the win probability for a

state
• Action generation to select a suitable action or multiple actions
• Search for the next best move to include deterministic parts
• …

Many of these tasks are currently solved with Deep Neural Networks
for sequence modelling and Reinforcement learning

71

Experience Sampling

• Imitation Learning:
• use experience from human players
• reward the agent for making the same decision as humans

(play like Ronaldo and not shoot more goals !!!)
• important to learn meaningful actions
• limited to the availability of replays

• Selfplay
• Agents gathers experience by playing against itself
• Rules are sufficient
• Allows to generate new experience for new policies in short time
• Allows to adjust opponent skill

- challenging: winning requires non-trivial strategy
- not frustrating: opponent let the agent gather experience to

evolve, allows positive feedback

72

Example: AlphaStar

StarCraft2 Challenges

• game theory: there is no single strategy to win, strategic
knowledge must constantly expanded

• Imperfect information: partially observable setting, with
active choices to reduce uncertainty (scouting the map)

• Long term planning: the reward of winning has to spread
to actions which led to success

• Real time: apm rates are important

• Large action space: Amount of possible moves is
extremely high (units, builds,grouping,..)

“AlphaStar: Mastering the Real-Time Strategy Game StarCraft II“ by Vinyals, Oriol and Babuschkin, Igor and Chung, Junyoung and
Mathieu, Michael and Jaderberg, Max and Czarnecki, Wojciech M. and Dudzik, Andrew and Huang, Aja and Georgiev, Petko and Powell,
Richard and Ewalds, Timo and Horgan, Dan and Kroiss, Manuel and Danihelka, Ivo and Agapiou, John and Oh, Junhyuk and Dalibard,
Valentin and Choi, David and Sifre, Laurent and Sulsky, Yury and Vezhnevets, Sasha and Molloy, James and Cai, Trevor and Budden,
David and Paine, Tom and Gulcehre, Caglar and Wang, Ziyu and Pfaff, Tobias and Pohlen, Toby and Wu, Yuhuai and Yogatama, Dani and
Cohen, Julia and McKinney, Katrina and Smith, Oliver and Schaul, Tom and Lillicrap, Timothy and Apps, Chris and Kavukcuoglu, Koray
and Hassabis, Demis and Silver, David https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/ 2019

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

73

Architecture of AlphaStar

74

AlphaStar Training: AlphaStar League

• League of competitive agents + weaker or even trivial ones => be good
against any opponent

• the 5 agents where selected and randomly chosen as opponent as opponents
for the matches against TLO and MaNa from Team Liquid

75

Current Challenges

• Multi-Agent training: learn how to coordinate teams
• What can and should be shared between agents?
• How does the team goal reflect to the agents actions?

• Required resources:
• Currently even running one agent is extremely resource intensive
• How can these development be scaled to serve in MMOs?

• Challenges to game providers
• Where does a more clever computer opponent make sense?
• Where is selecting a human opponent easier?

76

Learning Goals

• agents and environments for sequential planning

• deterministic search

• building decision graph for routing in open environments

• Markov Decision Processes

• Policy and Value Iterations

• Model-free approaches and Q-Learning

• Function Approximation

• Antagonistic Search

• MiniMax Search and Alpha-Beta Pruning

• Monte Carlo Tree Search with UCT

77

Literature

• Nathan R. Sturtevant: Memory-Efficient Abstractions for Pathfinding
In Artificial Intelligence and Interactive Digital Entertainment,
Conference (AIIDE), 2007.

• Lecture notes D. Silver: Introduction to Reinforcement Learning
(http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)

• S. Russel, P. Norvig: Artificial Intelligence: A modern Approach,
Pearson, 3rd edition, 2016

• Levente Kocsis and Csaba Szepesvári: Bandit based monte-carlo
planning. In Proceedings of the 17th European conference on
Machine Learning (ECML'06), 282-293, 2006

• V. Mnih, K. Kavokcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, M. Riedmiller: Playing Atari with Deep Reinforcement
Learning, NIPS-DLW 2013.

	Chapter 9: Artificial Intelligence
	Foliennummer 2
	What is Artificial Intelligence?
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Policies and Utilities
	Bellman’s Equations
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	MDP Synopsis
	Model-Free Reinforcement Learning
	Monte-Carlo Policy Evaluation
	Temporal Difference Learning
	Policy Optimization
	Samples and Policy Updates
	Learning on a Queryable Environment
	-Greedy Exploration
	On-Policy and Off-Policy Learning
	Foliennummer 45
	Foliennummer 46
	Function Approximation of State Spaces
	Q-value function approximation
	Learning using Function Approximation
	Linear Prediction Functions
	Further Directions
	Why is AI important for Games?	
	Imitation Learning
	Imitation learning in Games
	Techniques for Multiple Agents
	Antagonistic Search
	Antagonistic Search
	Foliennummer 58
	Foliennummer 59
	Foliennummer 60
	Foliennummer 61
	UBC1
	Monte Carlo Tree Search with UCT
	Example
	Example
	Monte Carlo Tree Search
	Modern Superhuman Game Agents
	Reinforcement Leaning for board games
	Games as Testbed for AGIs
	Architectures
	Experience Sampling
	Example: AlphaStar
	Architecture of AlphaStar
	AlphaStar Training: AlphaStar League
	Current Challenges
	Learning Goals
	Foliennummer 77

