

Lecture Notes for Managing and Mining Multiplayer Online Games Summer Term 2019

Chapter 8: Ranking Skill

Lecture Notes © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter Overview

- calculating the skill level from win statistics
- ELO-Ranking
- True Skill
- Team Skill

Models for play level

idea: Skill level can be deduced from past victories and defeats.

model: Every player i has a skill level s_i . If $s_i > s_j$ then s_i is very likely to win in a competition.

applications:

- matchmaking: choose interesting opponents with comparable skill level
- ladders/rankings: creating public rankings as an expression of prestige (compare Tennis, SC2, WOW arena, Halo2, ...)
- organizing tournaments: assistance for draw, qualification, clearing disputes.

#	Spieler		Punkte	Win%	Leave%	Total	W-D-L (Leaves)
1. 🗖	ku5h	6	440 VS	74%	0.0%	34	25 - 0 - 9 (0)
2.	KevKev	6	367 VS	53%	0.0%	43	23 - 2 - 18 (0)
3.	GAMEBUG	6	343 VS	63%	0.0%	24	15 - 4 - 5 (0)
4.	Scasyy	6	342 VS	54%	0.0%	39	21 - 1 - 17 (0)
5. =	FATAL	6	337 VS	63%	0.0%	30	19 - 1 - 10 (0)
12.	bueli	6	278 VS	65%	0.0%	23	15 - 0 - 8 (0)
20.	powerhead	6	244 VS	56%	0.0%	34	19 - 1 - 14 (0)
12. 🗖	bueli	6	278 VS	65%	0.0%	23	15 - 0 - 8 (0)
41. 🗖	random	6	216 VS	63%	0.0%	16	10 - 1 - 5 (0)
48. 🗖	afr0		205 VS	59%	0.0%	29	17 - 0 - 12 (0)

Rang	Team		P	+/- Rang Jun 08		+/- P Jun 08
			Jul 08			
1		Spanien	1557	3	_	254
2		Italien	1404	1	_	-20
3		Deutschland	1364	2	_	90
4	•	Brasilien	1344	-2	~	-169
5		Niederlande	1299	5	_	188
6		Argentinien	1298	-5	~	-261
7		Kroatien	1282	8	_	265
8		Tschechische Republik	1146	-2	-	-100
9		Portugal	1104	2	_	10
10		Frankreich	1053	-3	-	-90

The ELO System

Introduced by Arpad Elo in 1970 and adopted by the *World Chess Federation*.

Assumption: player *i*'s performance p_i is normal distributed around his skill level with variance β^2 .

$$\Rightarrow s_i$$
: $p_i = N(s_i, \beta^2)$

 \Rightarrow $s_i > s_j$ does not necessarily mean i is losing against j but rather Pr(i wins against j) > 50%

task: compute $Pr(p_i > p_j \mid s_i, s_j)$ (probability of *i* playing better than *j*)

=> Difference of 2 normal distributed variables with the same variance β^2 is normal distributed with mean $(s_i - s_i)$ and variance β^2 .

Let Φ be the accumulated density function of a normal distribution with anticipated value of 0 and a variance of 1, then follows:

$$P(p_1 > p_2 | s_1, s_2) = \Phi\left(\frac{s_1 - s_2}{\sqrt{2}\beta}\right)$$

Updating the ELO Ranking

- positions have to be adjusted as soon as new results are available.
- changes follow the zero-sum principle. $s_1^{new} + s_2^{new} = s_1 + s_2$
- difference Δ is supposed to increase the likelihood of the observation within the model
- match result: $y \in \{0,-1,1\}$ (Win:1, Loss:-1, Draw:0) updating ELO Scores with the result y_l : $\Delta = \alpha\beta\sqrt{\pi}\left(\frac{y_l+1}{2} \Phi\left(\frac{s_1-s_2}{\sqrt{2}\beta}\right)\right)$

 α : weighing factor for a match 0< α <1 (approx. 0.07 for chess)

- ELO scores need comparatively many matches to stabilize. (ca. 20)
- properties:
 - chronological order of updates is important: good for long intervals between measurements, but bad performance for tournaments, where a players skill presumably stays constant.
 - ELO system does not allow for conclusions about individual performance in team games.
 - restricted representation of results. No differentiated treatment of events with a ranking for result (e.g. racing, ...).

True Skill

factor graphs

bi-partite graph with factor nodes and variable nodes.

- variable nodes: describe distribution functions
- factor nodes: model the interaction of variables
- edges: description of variables interacting for a factor

example: Factor Graph for ELO System

- True Skill: extension of ELO Systems used for XBOX360 Live (e.g. HALO2 ranking)
- considers:
 - skill uncertainty
 - allows conclusions for team-members in team games (additive performance t_1)
 - result presentation as order of play results $(t_1 \ge t_2 \ge ... \ge t_m)$

Factor graph for True Skill

Example: 4 Players, 3 Teams: $\{(s_1), (s_2, s_3), (s_4)\}$

Result: $t_1 > \varepsilon + t_2$, $t_1 > \varepsilon + t_3$, $\varepsilon > |t_2 - t_2|$

Factor Graph use for True Skill

- factor graph represents the distribution for Pr(s,p,t/r,A)
 - r: ranking result, A: team composition
 - **s**: player skill, **p**: player performance, **t**: team rating
- compute the distribution of player skill s conditional to the observations r and A: $\Pr(s \mid r, A) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \Pr(s, p, t \mid r, A) dp \, dt$

 s_i is normal distributed with mean value μ_i and standard deviation σ_i

- With the given factor graph and the current values of μ and σ for the participating players $\Pi(d_1 > \varepsilon)$ and $\Pi(|d_2| \le \varepsilon)$ can be estimated.
- Comparing the prediction with the actual result, one can propagate the error back to μ and σ and adapt the model accordingly.
- Propagating probabilities and parameter updates on a factor graph are also called message-passing or belief propagation.

Training scheme for True Skill

- 1. Forward propagation: estimate the results
- 2. Update of Team-performance: redistribution of results to teams
- **3.** Update of a-posteriori Distributions: propagates update-messages as far as parameters μ and σ .

Discussion True Skill

- Improves the ELO system by:
 - expansion of result representation
 - converges faster using a priori distributions for particular players
 - team assessment
- Disadvantages of True Skill:
 - chronological order is important, even though one can assume that skill does not change between two matches. (Expansion: True Skill Trough Time 2008)
 - team skill is considered as the sum of player skills
 But: In reality player synergy is much more complicated:
 "Having 5 carries in a Moba does not work!!"

Team Skill

idea: Considering not only individual play level, but also team chemistry.

- => Viewing a player's joint performance compared to his single performance.
- => Some player's performance increases when combined with specific players.

given: A Team $T=\{p_1,...,p_K\}$ with K players. Let t_k be a sub-team of T with k-elements. $(t_k \subseteq T \land / t_k/=k)$. $Skill(t_k)$ constitutes sub-team t_k 's skill level. (For example, calculated with ELO or True-Skill.)

task: Skill level of team T considering team chemistry?

approach: calculating average over computed sub-team ranking

Team Skill-k

average play level of a sub team of size k scaled to team size K.

$$TS_{k}(T) = K \cdot \frac{1}{k} \cdot \frac{1}{\binom{K}{k}} \cdot \sum_{i=1}^{\binom{K}{k}} Skill(s_{ki}) = \frac{(k-1)!(K-k)!}{(K-1)!} \cdot \sum_{i=1}^{\binom{K}{k}} Skill(s_{ki})$$

example:
k=1 and K=5
$$TS_k(T) = \frac{5}{1} \cdot \frac{1}{\binom{5}{1}} \cdot \sum_{i=1}^{\binom{5}{1}} Skill(s_{1i}) = \sum_{i=1}^{5} Skill(s_{1i})$$

k=2 and K=5
$$TS_k(T) = \frac{5}{2} \cdot \frac{1}{\binom{5}{2}} \cdot \sum_{i=1}^{\binom{5}{2}} Skill(s_{2i}) = \frac{1}{4} \sum_{i=1}^{10} Skill(s_{2i})$$

Team Skill-AllK-LS

Challenges for improving Team Skill-*k*:

- determining k is hard => take all possible sub-teams.
- we don't have sample observations for all existing sub-teams
 only consider sub-teams with a reliable skill estimation.

Idea: Consider all sub-teams with a reliable estimate and which are not a sub-team of a larger reliably estimated sub-team.

Approach: Consider all sub-teams $t_{k,i}^*$ for which $Skill(t_{k,i})$ can be reliably computed and for which no sub-team $t_{k+l,i} \supset t_{k,i}$ exists.

Calculate team performance as k times the mean of the single player performance.

$$TS_{ALL-LS}(T) = \frac{K}{\sum_{m \in \{m \mid \exists t_{m}^{*} \neq \{\}\}}} \left(\sum_{m \in \{m \mid \exists t_{m}^{*} \neq \{\}\}} E(t_{m}^{*}) \right) = \frac{K}{\sum_{m \in \{m \mid \exists t_{m}^{*} \neq \{\}\}}} \left(\sum_{m \in \{m \mid \exists t_{m}^{*} \neq \{\}\}} \left(\frac{1}{l} \cdot \sum_{i=1}^{l} Skill(t_{m,i}^{*}) \right) \right)$$

Example: Team Skill ALL-LS

red: pruned area, blue: used sub-teams, grey: pruned sub-teams.

$$TS_{ALL-LS}(T) = \frac{4}{3+2} \left(Skill(t_{BCD}) + \frac{1}{2} \left(Skill(t_{AC}) + Skill(t_{AD}) \right) \right)$$

Conclusion

- method for capturing increased success of teams with good chemistry.
- team skill depends on data of as many different team compositions as possible
- approaches for improvement:
 - roles within the team are not required explicitly
 - confidence of the underlying skill estimation is not treated
 - correlation between team skill and player skill is assumed to be uniform
- Team Skill, True Skill and ELO symmetrically value wins and losses.
 - => in many casual games a win awards more to the player skill than a loss would reduce it to keep players motivated to play.

Alternative Approach

- rating players not by success, but by skillful behavior:
 - collect and describe spatial-temporal behavior over the full spectrum of skill.
 - 2. learn a regression model.
 - 3. rate player, while playing, for his *k* last actions.
- this approach is used for dynamic play level adjustment in PVE.
- very suitable if it is known what constitutes successful behavior in the game. (e.g. accuracy in FPS Games, DPS/HPS Numbers in MMORPGS)

Learning goals

- Scope of application for player ranking and matchmaking
- ELO
- True Skill
- Team Skill

Literature

- A.E. Elo: The Rating of chess players: Past and present, Arco Publishing, New York, 1978.
- Pierre Dangauthier, Ralf Herbrich, Tom Minka, Thore Graepel
 TrueSkill Through Time: Revisiting the History of Chess,
 In Advances in Neural Information Processing Systems 20 (NIPS), 2008.
- Ralf Herbrich, Tom Minka, and Thore Graepel, TrueSkill(TM): A Bayesian Skill Rating System, in Advances in Neural Information Processing Systems 20, MIT Press, January 2007.
- Colin DeLong, Nishith Pathak, Kendrick Erickson, Eric Perrino, Kyong Shim, Jaideep Srivastava: TeamSkill: Modeling team chemistry in online multi-player games, on Proc. of the 15th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD2011), 2011.