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Chapter Overview

• Behavior and Sequences
• Comparing Sequences
• Finding frequent subsequences
• Markov chains
• Hidden Markov-Chains
• Time series and feature-transformations
• Comparing time series
• Poisson-Processes
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Player Behavior
examples for player behavior

• sequence of moves in chess
• sequence of movement, action and interaction in a MMORPG
• sequence of orders to units in RTS Games

• behavior consists of a sequence of possible actions
• simplest models for behavior are strings or sequences.

Definition: Let A={A1, …, An} be a finite alphabet of n possible player 
actions, then the l-Tuple  (a1, …, al) ∈ A×…×A is a sequence of l 
length over A.

Remark:
• Model describes only observations and does not differentiate 

between possible and impossible sequences
• Model neglects the time between actions
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Example: SC II Zerg Rushes
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Subsequences and Partitioning

• Which player is observed at a given time and for how long?
• The longer a player is observed, the less likely it becomes that 

another player behaves similarly
• To find typical behavioral patterns a sequence is usually divided into 

subsequences.
• Windowing (partitions a sequence)

Slide a window of length k over the sequence and consider all 
subsequences. ( here k = 3)

A B C V B W E E E R Q A F …

C V B W E E E R Q

Q A F

A B C R Q AE E E

E E RB W E

V B W

B C V
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Subsequences and Partitioning

problem: A sequence of length l has l – (k-1) k-elemental sub-
sequences and many of those are irrelevant.

idea: Only sequences appearing with a certain frequency 
are of interest.

Frequent Subsequence Mining
Find all subsequences in a sequence database appearing 
more frequently than minsup. (cf. Frequent Itemset Mining)

⇒ length of the sequence is arbitrary.
⇒ search space is larger than the search space of itemset

mining. (several occurrences of elements and orders)
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Frequent Subsequence Mining

• frequency fr(S,G) of S in sequence G:
count occurrence of  S in G

• relative frequency of S:

• sequence description of G:

• mining sequential patterns is well explored
=> many approaches and algorithms
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Suffix Trees

Properties of a Suffix Tree ST for the alphabet A with sequence 
G where |G| = n:
• to rule out ambivalence, words are padded with a terminal 

symbol (∉ A) , commonly $.
• ST has exactly n+1 leaf nodes numbered from 0 to n, on the 

way from the root to the leaf i the suffix of length n-i is filed.
• Edges represent elements of A∪{$} (uncompressed form), 

non-empty partial-sequences of A∪{$} respectively
• Edges, emanating from the same starting node, must begin 

with different elements of A.

Creation in O(|input string|), Search in O(|query string|)
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Suffix Trees

• example: alphabet A ={eat, hunt, seek, flee, defend}
• insert:

S1 = (seek, hunt, eat, seek) 
S2 = (seek, flee,hunt)
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Suffix Trees

• example: alphabet A ={eat, hunt, seek, flee, defend}
• insert: 

S1 = (hunt, seek, eat, seek) → (hunt, seek, eat, seek, $)
S2 = (seek, flee, hunt) → (seek, flee, hunt, $)

root

4

3

2

$
seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$

1

$

$

$

uncompressed:
each edge is labeled with 
an element of A∪{$} 

compressed:
summarize sub-paths 
without branches into a 
single edge
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Suffix Trees

• example: alphabet A ={eat, hunt, seek, flee, defend}
• insert: 

S1 = (hunt, seek, eat, seek) → (hunt, seek, eat, seek, $)
S2 = (seek, flee, hunt) → (seek, flee, hunt, $)

root

4

3
2

$
seek

eat,seek,$

0

$

1

uncompressed:
Every edge is labeled with 
an element of A∪{$} 

compressed :
combine sub-paths without 
branches into one edgehunt,seek,eat,seek,$

eat,seek,$
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Suffix Trees

• example: alphabet A ={eat, hunt, seek, flee, defend}
• insert: 

S1 = (hunt, seek, eat, seek) → (hunt, seek, eat, seek, $0)
S2 = (seek, flee, hunt) → (seek, flee, hunt, $1)

root

4

3

2

$0
seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$0

1

$0

$0

$0

root
4

3

2

$0
seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$0

1

$0

$0

$00

flee

hunt

$1

2
$1

$1 1flee hunt

3
$1
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• example: alphabet A ={eat, hunt, seek, flee, defend}
• sample queries:
− Is q a Suffix? 
− Is q a Substring?
− How often occurs q?

Suffix Trees

root
4

3

2

$0
seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$0

1

$0

$0

$00

flee

hunt

$1

2
$1

$1 1flee hunt

3
$1



14

• Example: Alphabet a ={eat, hunt, seek, flee, defend}
• Sample request:
− Is q a Suffix?

=> follow path (q$) starting at root,

If a leaf is reached, then q is a Suffix

− Is q a Substring?

=> follow path(q) starting at root,

If processing possible,

then Substring

− How often does q occur?

=> follow path (q) starting at root,

#leaves below terminal nodes

= #occurences

Suffix Trees

root

3

2

$0
seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$1

1

$0

$0

$00

flee

hunt

$1

2
$1

$1 1flee hunt

3
4
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Comparing two Sequences

given: Alphabet A and a sequence database 
DB {(x1, …, xk )| k∈ IN ∧ xi∈ A for1≤i≤k}.

task: compute the similarity of S1, S2 ∈ DB.
Hamming  Distance: number of different entries over all positions.

For 2 sequences with |S1|=|S2|=k:

Remark: For sequences of different length, the shorter sequence is 
filled with the gap symbol „-“.
example: S1 = (A,B,B,A,B) und S2 = (A,A,A,A,A)

(A,B,B,A,B)
(A,A,A,A,A)

DistHam (S1,S2)=3

∑
= 

 =

=
k

i

ii
Ham else

ssif
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0
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1
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Levenshtein Distance

• Hamming Distance: Computing the minimum cost to 
transform S1 into S2. Only substitutions of single elements 
are allowed in doing so. (Turn B into A.)
(Hamming Similarity: Counts the number of similar elements.)

• Idea: Extend the allowed transformations by deletions and 
insertions.

• Levenshtein Distance: Minimum cost to transform S1 into 
S2 using 3 operations Delete, Insert and Substitute.

(A,B,B,A,B)
(A ,A,B)

(A,B,B,A,B)
(A ,- ,- ,A,B) SimLev (S1,S2)=3
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Computing Levenshtein Distance

given: Two sequences S1, S2 over the alphabet A with |S1|=n and  |S2|=m.
task:  DistLev(S1,S2)
Compute Levenshtein Distance with dynamic programming:
Let D be a n×m-Matrix over IN with:

After filling matrix D, Dn,m contains the Levenshtein-distance between the  
input sequences.
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Example Levenshtein Distance

S1 = auto, S2 = ute

a u t-

-

u

t

e

o

1 2 30 4

1

2

3

a u t-

-

u

t

e

o

1 2 30 4

1 1 21 3

2 2 12 2

3 3 23 2

a u t-

-

u

t

e

o

1 2 30 4

1 11

a u t-

-

u

t

e

o

1 2 30 4

1 1 21 3

2 2 12 2

3 3 23 2

(a,u,t,o)
(-, u,t,e)

DistLev (S1,S2)=2
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Edit Distances

• generalization of Levenshtein-Distances:
• different cost matrix: substitution costs 4, deletion 1, insertion 2..
• more operations:

• transposing order

• duplicating, …

• costs may differ for different values: 
Subst.(A,B) ≠ Subst.(A,Z)

• works for sequences based on real-valued alphabets, for 
example: For A = IR:  Subst(5,1) = |5-1|

(A,B,B,A,B)
(A,B,A,B,B) 1 transposition 

(A,B,B,B,B)
(A,B,)

3 duplicates of B
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Markov Chains and Sequences

• sequences of actions are subject to certain rules
• modeling a finite automata

(testing sequence for validity)
• Markov chains are probabilistic automatas:

• allowed state transitions
• probability distributions for state transitions.

• 1st order Markov assumption : The state at time t+1
depends solely on the state at time t.

• the order of a Markov chain is the number of predecessor 
states on which the choice of the next state might depend.
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First Order Markov-Chains
definition: A Markov chain M is defined for a state set A and a 

stochastic transition-matrix |A|×|A| = D.
explanations:
• A may contain a start- and a absorption-state

(Modeling Start and End)
• stochastic Matrix: rows add up to 1.

(row i contains the distribution of successors for state i)
example:

A B C-

-

A

B

C

0.3 0.3 0.40.0

0.25 0.5 0.150.1

0.5 0.4 0.00.1

0.1 0.7 0.10.1

1.04.07.04.015.03.0
)|()|()|()|()|()(

⋅⋅⋅⋅⋅=
−⋅⋅⋅⋅−= BPBBPCBPACPAPACBBp

A

B C
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Hidden Markov Models
Estimating transition probabilities for a Markov chain:
• split the training sequence into 2-grams and compute the 

relative frequency.
(How often is A followed by B in relation to being in A?)

problem:
• observations often do not match the intended behavior:

• action log is available, but game-play 
has to be analyzed

• incorrect execution obfuscates actual intentions
• analysis of AI state changes 

(observed actions may be employed in different states)

)(
)()|(

Afr
ABfrABP =
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Hidden Markov Models

Definition: A Hidden Markov Model M is defined by a state set A, a 
stochastic transition matrix |A|×|A| = D, an observation set B and a 
stochastic output-matrix |A|×|B| = F.

Example: A={A,B,C}, B={1,2,3}

P(122): Likelihood of observing 122. Compute the likelihood of all possible 
state triples and multiple the likelihood that they generated 122.

Here: Only BAA, BAC have a none-zero likelihood:

A

B C

A B C-

-

A

B

C

0.3 0.3 0.40.0

0.25 0.5 0.150.1

0.5 0.4 0.00.1

0.1 0.7 0.10.1

D 1 2 3

A

B

C

0.0 0.2 0.8

0.5 0.0 0.5

0.0 0.5 0.5

F
2

3

1

)|122()()|122()()122( BACPBACPBAAPBAAPP ⋅+⋅=
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Using HMMs

• Evaluation: How likely is an observation
O=(o1,.., ok) with oi∈ B for the HMM (A,B,D,F)?
(Forward Estimation)

• Recognition: Given the observation O=(o1, …, ok) and the 
HMM (A,B,D,F) which sequence (s1, …, sk) with si ∈ A 
gives the best explanation for O? (Viterbi-Algorithm)

• Training: Given the observation O=(o1, …, ok), how can we 
modify D and F to maximize P(O|(A,B,D,F))?
(Baum-Welch Estimation)
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Evaluation: Forward Variables
given: O=(o1, …, ok) and (A,B,D,F)
task: P(O|(A,B,D,F))
naive solution: calculate P(O|S) for all sequences S over A with |S|=k. 

(number grows exponentially with k)
improved solution: exploit the Markov assumption
define forward-variable αj(t) as

calculation by induction:

calculating with |A|2⋅k operations:
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Recognition: Viterbi Algorithm

given: O=(o1, …, ok), and Model (A, B,D,F).
task: Find S=(s1, …, sk) maximizing P(O|S,(A, B,D,F)).
• define δ(t) as the highest probability of a sequence over A 

of length t for the observation O.

• computation with induction

• similar to the forward algorithm, but more efficient since 
only the best solution is used.
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Backward Variables
analogously to Forward-Variable a Backward-Variable can be defined, 
used for the training the HMM.
The Backward-Variable βj(t) is defined as

Computation with induction:

))(,|...,,()( 1 ABDFasooPt jtktj == +β

||1,1)( Aiki ≤≤=β
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Training: Baum-Welch Estimation

given: O=(o1, …, ok), A and B.
task: D, F, maximizing P(O|(A,B,D,F)).
• Local optimization by Expectation Maximization (EM)
Define ξi,j (t) as the likelihood of being in state ai at the point in time t and 
being in state aj at the point in time  t+1 :

• Define γi (t) as the probability of being in state ai at the point in time t:
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Training: Baum-Welch Estimation

• equals the expected number of state transitions 
from ai to aj.

• equals the expected number of state transitions 
from ai to other states.

• recompute parameters as follows:

• training by alternating the following steps
• calculate of γi (t), ξi,,j (t) and P(O|(A,B,D,F)) (expectation steps)
• updates of D and F  (updates see above) (maximization step)

• algorithm terminates when
P(O|(A,B,D,F)) grows less than threshold ε.
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Real-Valued Sequences

• so far: Alphabet is a discrete domain
• Sequences can also be created based on real-value 

domains, for example IRd.
• Frequent Pattern Mining on real-valued domains is 

usually infeasible.
Comparing 2 real-valued sequences on domain D with a 
distance function dist: D×D→IR0 

+.
• Analogously to Hamming Distance we can compute the sum of 

distances for every position of the sequence.

• Extensions of edit distance are also possible: Substitution cost for  
v and u correlates to dist(v,u).
(c.f. Dynamic Time Warping later in this chapter)

( ) ( ) +
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Time series
• so far: sequences model the order of actions, but not the 

points in  time.
but: in real time games timing is essential.
⇒ RTS games: build order are only effective  if they can 

be realized in minimal time.
⇒ in MMORPGs the damage caused depends on the 

number of actions per time unit.
⇒ chess with chess clock: a move is also measured by 

the time needed to think.
• time series: Let T be a domain to model time and let F

be an object presentation, then:
Z=((x1,t1),.., (xl,tl))∈(F×T)×.. ×(F×T) is a time series of 
length l on F.
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Examples for Time Series
• SC2-Logs: time series on discrete actions

• Network-Traffic:
• used in bot detection
• estimating game intensity

0:00  TSLHyuN       Select Hatchery (10230)
0:00  TSLHyuN       Select Larva x3 (1027c,10280,10284), Deselect all
0:00  TSLHyuN       Train Drone
0:01  TSLHyuN       Train Drone
0:01  TSLHyuN       Select Drone x6 (10234,10238,1023c,10240,10244,10248), 
Deselect all
0:01  TSLHyuN       Right click; target: Mineral Field (10114)
0:01  TSLHyuN       Deselect 6 units
0:02  TSLHyuN       Right click; target: Mineral Field (10170)
….
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Preprocessing Time series (1)

offset translation
• similar time series with

different offsets
• shifting all time series around the 
• mean MW:

1 i |o|: oi = oi – MW(o)
0 50 100 150 200 250 3000

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300

0 50 100 150 200 250 300

q = q - MW(q)

o = o - MW (o)

dist(q,o) = ???

dist(q,o) = ???

q

o
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preprocessing time series (2)
scaling amplitudes
• time series with similar progression but different amplitudes
• shifting the time series around the mean (MW) and normalizing the 

amplitude by standard deviation (StD):
1 i |o|: oi = (oi – MW(o)) / StD(o)

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

q = (q - MW (q)) / StD(q)

o = (o - MW(o)) / StD(o)
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preprocessing time series (3)
linear trends
• similar time series with different trends

• Intuition:
• compute linear regression function
• move time series by subtracting the

regression function
0 20 40 60 80 100 120 140 160 180 200

-4

-2

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200
-3

-2

-1

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200
-3

-2

-1

0

1

2

3

4

5

offset translation + amplitudes 
scaling offset translation + Amplitudes scaling

+ linear trend-removal
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Preprocessing time series (4)
smoothing
• similar time series with a large amount of noise
• smoothing: determine for every value oi the mean over 

all values [oi-k, …, oi, …, oi+k] for a given k.

0 20 40 60 80 100 120 140
-4

-2

0

2

4

6

8

0 20 40 60 80 100 120 140
-4

-2

0

2

4

6

8
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Discrete Fourier Transformation (DFT)
idea:
• describe arbitrary periodic functions as weighted sum of periodic 

base functions with different frequencies. A time series turns into a 
vector of  constant length.

• base functions: sin and cos
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Discrete Fourier Transformation (DFT)
Fourier’s theorem: A periodic function (which is reasonable 
continuous) may be expressed as the sum of a series of sine and cosine 
terms with a specific amplitude.

properties:
• transformation does not change a function, only the presentation
• transformation is reversible => inverse DFT
• analogy: change of base in vector calculation

t
n

… ti

t
0

t
1

t
2

[xt
]

f
n
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f
0

f
1

f
2

[Xf]

DFT
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Discrete Fourier Transformation (DFT)
formal:
• given a time series of length n: x = [xt], t = 0, …, n – 1
• the DFT of x is a sequence  X = [Xf] of n complex numbers for the 

frequencies  f = 0, …, n – 1 with

where i identifies the imaginary unit, i.e. i2 = –1.
• the real part indicates the share of the cosine functions, whereas the 

imaginary part indicates the share of sine functions for frequency f.

Real part Imaginary part
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Discrete Fourier Transformation (DFT)
• the inverse DFT restores the original signal:

t = 0, …, n – 1  (t: points in time)
[xt] ↔ [Xf] describes a Fourier-Paar, 
viz. DFT([xt]) = [Xf]  and DFT–1([Xf]) = [xt].

• the DFT is a linear map, i.e., from [xt] ↔ [Xf] and [yt] ↔ [Yf] follows:
• [xt + yt] ↔ [Xf + Yf] and
• [axt] ↔ [aXf] for a Scalar a∈ IR

• energy of a sequence
• energy E(c) of c is the square of the amplitude: E(c) = |c|2.
• energy E(x) of a sequence x is the sum of all energies

of the sequence:
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Discrete Fourier Transformation (DFT)
Parseval’s theorem: Energy of a signal in time space equals the energy 

in frequency space.
Formal: Let X be the DFT of x, then the following holds:

• Form Parseval’s theorem and the linearity of DFT it follows:
The Euclidean distance of two signals x and y correspond in time 
and frequency range: || x – y ||2 = || X – Y ||2

t
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Distances of Time Series

problems: Which points in time are to be compared?
• offset at the beginning: 

S2 is shifted in time to S1.

• sample frequency might differ.

• length of time series: measuring interval
differs.

• time series with the same sample frequency and length can be 
compared as vectors. (dimension = point in time)

• for variable length, sample frequency and offsets: adaption of edit-
distance for sequences might be necessary
=> Dynamic Time Warping 
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Dynamic Time Warping Distanz
|q| = n

|o| = m
q

o

q

o

n1
1

m

w1

wk

i

j

calculation:
• given: time series q and o

of different length
• find mapping of all qi to o with minimal expense

Search 
matrix
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Dynamic Time Warping Distance

Q

C

n1
1

m

w1

w
k

i

j

Search Matrix
• All possible mappings q to o can be interpreted as a „warping“ path 

within the search matrix
• Of all these mappings, we search for the path with the lowest cost

• Dynamic Programming
=> Run-time (n . m)
(see Edit Distances)


= ∑ =

KwoqDTW K

k k1
min),(
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Approximate Dynamic Time Warping Distance
idea:
• approximate the time series

(compressed representation, Sampling, …)
• calculate DTW for the approximates
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Statistic Models for Time

problem: Modeling the time intervals between actions
⇒ statistic models for the time between two events are necessary.

⇒ time is a continuous variable => probability density function

⇒ task: compute the probability for the next event e occurring
within the time frame t+ t. 

⇒ the cumulative probability density function describes this probability
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Homogeneous Poisson Processes
• simplest process to model time

• points in time between 2 events are exponentially distributed

• probability density of the exponential distribution:
• integration yields the cumulative density function describing the 

probability of the next action happening in the time interval 
between 0 … x.

Density function of 
the exponential 
distribution

Accumulated density function of 
the exponential distribution

xexp ⋅−⋅= λ
λ λ)(

x
x

edttpxP ⋅−−== ∫ λ
λλ 1)()(

0

xexp ⋅−⋅= λ
λ λ)(

xexP ⋅−−= λ
λ 1)(
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Parameter Estimation 
given: A training set of exponentially distributed points in time

X={x1, …, xn}.
task: The most likely value for the intensity parameter.
Approximation with Maximum Likelihood
=> Search the value of λ with the highest probability of generating X. 

Likelihood function L for Sample X:

Differentiate the log-likelihood for λ and set the gradient to zero:
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Learning Goals

• Sequences and time series
• Frequent Subsequence Mining with Suffix-Trees
• Distance measuring sequences

• Hamming Distance
• Levenshtein Distance

• Markov-Chains
• Hidden Markov chains
• Time series and preprocessing steps
• Dynamic Time Warping
• Poisson processes
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