
1

Lecture Notes
Managing and Mining Multiplayer Online Games

Summer Term 2019

Lecture Notes © 2012 Matthias Schubert 

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter 4: Persistence in 
Games



2

Overview

• requirements 
• save games and replays

• state logs
• transition logs
• action logs 

• persistence in MMOs
• check-point-recovery methods

• Naive Snapshot
• Copy-on-Update
• Wait-Free Zigzag
• Wait-Free Ping-Pong
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Why Persistence is important

1. saving a part (gs ∈GS) of the current game state
• allows resuming the game at another time (save game)
• create a consistent game state, in case of a system crash
• saving is only possible at certain locations

(e.g. Resident Evil, Diablo III, …)
• certain parts are not saved

(NPC position/Monster/Enemies, Random maps, …)

2. saving a replay of a game (gs1, …, gsend)
• allows for retracing and analyzing the course of the game
• usually saved on clients
• replays can grow quite large, depending on the format of stored data
• since the last GS is also part of the replay, replays could be used as 

save games as well
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Requirements for Persistence Layers
• saving should not slow down the game

=> tick duration must not exceed the time limit
• save games should be as up-to-date as possible

=> if possible GS should be saved every tick

• loading a save game is supposed to create a consistent state
=> all GE contained in the save game should be equally up-to-date
=> minimum requirement: game state must be consistent 
(every GE appears only once etc.)

Important Impact Factors:
• size of the game state
• requirements on recency and tick frequency
• impact of loading time on recovery 
• part of the game state/ history of the game to be saved
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Methods for Replays and Save games

Save-Game/Replay: local file containing the game state/ course of play
State-Log:
every game entity is saved every x ticks
⇒ sequential file containing a series of game states

example: demo-files of Quake/Half-life/Counterstrike
(parsed and transformed into XML) (Bachelor Thesis: J. Rummel 2011)

<replay path=" c:\data ncsdemos n dus t210 .dem“ duration=" 3379,459 " noOfRounds="39” 
mapname="dedust2 " maxCl ients="16" serverName="HLTV.org/VeryGames .net">

<rounds>
<roundnumber="1" roundBegin="0" roundEnd=" 40 ,496184 “  endingReason="Bombing" winner=" Terrorists">
<teamScore ct="2" t="1" />
<ticks>

<ticktime="1"> . . . </tick>
<ticktime="2"> . . . </tick>
<ticktime="3">
<players>
<playerid=" 765611887383 " localName="q“ 15 team="Terrorist" kills="3" deaths="7“x=“680" y=“819" z="164“
angle0="2" angle1="60" moveType=“" weaponModel="172„  modelIndex="149“  isHi t="Helmet" outOfAmmo=" 

Rifle" />
….
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State-Log Discussion
Advantages:
• documents a genuine series of game states
• random access to every point in time
• loading process is very simple and fast

Disadvantages:
• high redundancy for small change rates
• large data volumes, due to high temporal resolution

(every Tick)
• maximum writing load => possibly not feasible for large 

game states
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Transition-Log
Log all changes to the game states by:

• time-stamp
• ID of the GameEntity
• Attribute
• New value

Advantage:
• more compact than a snap-shot
• less volume means less computational effort

Disadvantage:
• reconstructing game states is more complex
• all changes have to be registered at the persistence layer
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Action-Log
• contains the sequence of all user inputs
• the game is needed to “re-play” the game based on the user input
• random events must be saved

(seeding or random numbers)

example: Starcraft II (*.sc2replays file) after parsing by sc2gears 
(http://sites.google.com/site/sc2gears/)

0:00  TSLHyuN       Select Hatchery (10230)
0:00  TSLHyuN       Select Larva x3 (1027c,10280,10284), Deselect all
0:00  TSLHyuN       Train Drone
0:01  TSLHyuN       Train Drone
0:01  roxkisSlivko  Select Hatchery (10250)
0:01  roxkisSlivko  Select Larva x3 (10270,10274,10278), Deselect all
0:01  TSLHyuN       Select Drone x6 (10234,10238,1023c,10240,10244,10248), Deselect all
0:01  roxkisSlivko  Train Drone
0:01  TSLHyuN       Right click; target: Mineral Field (10114)
0:01  roxkisSlivko  Select Egg (10270), Deselect 1 unit
0:01  roxkisSlivko  Select Drone x6 (10254,10258,1025c,10260,10264,10268), Deselect all
0:01  roxkisSlivko  Right click; target: Mineral Field (10164)
0:01  TSLHyuN       Deselect 6 units
0:01  roxkisSlivko  Right click; target: Mineral Field (10164)
0:02  TSLHyuN       Right click; target: Mineral Field (10170)
0:02  roxkisSlivko  Deselect 6 units
….
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Action-Log Discussion
Advantages:
• replays can be more compact

(actions per minute APM vs. ticks per second)
• no redundancy
• may contain more information than the game state

=> User inputs that had no influence on the game state
(e.g. mouse-movement, points of view, …)

Disadvantage:
• restoring the last state is very expensive, due to rerunning the game
• hard for large numbers of random elements
• computer controlled players/objects:

• requires deterministic behavior
(NPC behavior is part of the game and can be simulated as well)

• AI should be controlled by the same rudimentary commands as human 
players
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Save Games in MMOs
Normal games: „small“ game states with decentralized replays/save 

games
⇒ local clients write peripheral game states into files

For MMO Games:
• complete and consistent game state is only on the server

=> persistence has to be implemented centrally on the server
=> on loss of connection the state on the server counts

• game state is substantially more extensive
=> performance of write operations may slow down the game loop
=> unstructured files are impractical

(selective loading of players after login)
=> historical information about the course of play might

cause large data volumes 
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MMOGs and Relational Databases
Managing large amounts of strictly structured objects

=> Use of a relational database
Advantages of a relational database:
• databases provide certain consistency checks

(no duplicates, …)
• databases support selective requests with efficient indexes
• current game state is immediately available
• databases possess innate recovery mechanisms

(protection against system and hardware failures)

Disadvantages:
• structured saving and anomaly avoidance increases processing times 

of change operations



12

Persistence via Log-files
all changes in game state are quickly saved
⇒ logging with sequential files

Advantage:
• system has less overhead 
• writing at the end of a sequential file

⇒minimal waiting time

Disadvantages:
• no protection from hard-drive or system errors
• selective requests are not supported
• loading the last consistent game state may require extensive 

reconstructions by reapplying changes beginning with the last 
checkpoint
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Example for a Hybrid Architecture 
• writing data from a game server to a persistence layer via logging process 

=> minimum impact on tick length
• at persistence-server: insertion of log-files into a database server

• game states are saved durably and secure
- game state is consistent and redundancy-free 

- includes recovery mechanisms (possible remote storage)

• information is decoupled from the game for inquiry services
(e.g. online databases, …)

DB

Logging 
to File-
System

Game Server Database-
Server

Shared
File-System

Insertion 
of Logs

Recovery
System

Web-
Server

Game Entities
Restart/Login
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Open Issues
• Which logging method is most suitable for volatile 

systems?
• change rate for objects 

(How many objects change during a tick?)
• change complexity

(are actions more compact than resulting attribute changes?)
• burstiness of changes

(Do changes happen periodically in large numbers?)

• Which part of the game state needs to be saved?
• all moving objects
• states of all players 
• spatial positions of players and objects

• Concurrency and Lag
• How fast must different actions be saved?
• (running  vs  looting)
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Check-Point Recovery Methods for Games
• Check-Point: consistent image of the game state
• Check-Point Phase: time needed to create a check-point.
• Goal: Saving the game state with a minimal overhead in the game loop

=> minimal influence on latency
• Idea: information is not saved directly, instead all information is copied to a 

shadow copy
• data in shadow copy is not affected by actions
• game loop does not need to wait for the I/O-system

(uses an asynchronous write-thread)
• writing may take several ticks, persistence layer lags slightly behind

• Classification of strategies based on :
• bulk-copies vs. selectively copying
• locking single objects
• resetting dirty-bits
• memory usage



16

Naive-Snapshot
• If write-thread is finished with the last check-point, copy the whole game state 

into shadow memory.
• After finishing copying and at the start of the next tick, the write-thread writes 

the copied game state from shadow memory.
Advantages: 
• no overhead from locking or bit-resets
• efficient for large numbers of changes
Disadvantages:
• for limited numbers of changes large overhead for copying and writing
• might cause lags in ticks where the game state is copied
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Copy-On-Update
• on change, objects are copied to shadow memory and marked (dirty-bits)
• objects are copied only once per period
• after a check-point has been written markers are reset
Advantages:
• smaller change volume
• better distribution of copies over multiple  ticks
Disadvantages:
• requires locking to avoid simultaneous change and copy operations
• overhead for bit-reset
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Wait-Free Zigzag
• every object contains two flags referring to a game state:

MW (Write-State) and MR (Read-State) for handling actions
• entries in MW are not changed during the checkpoint period
• update: new value is set in GS[MWi] and MRi is set to MWi

• writer-thread reads the element from GS[ ¬MWi] for object i
• end of checkpoint period: if MWi equals MRi , flip MWi

Advantages:
• no locking necessary 
• changes can be written over time
Disadvantage:
• still requires bit-reset at the end of each period
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Wait-Free Ping-Pong
• uses 3 game states:

action handling (GS), persistence-system (read), persistence-system (write)
(odd or even)

• updates always take place in GS and persistence-system (write)
• writer-thread reads persistence-system (read)
• for a new period swap persistence-system (write) and persistence-system (read)
Advantage:
• neither locking nor bit-reset at the end of a period
Disadvantage:
• triple memory requirements instead of double
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Discussion
• Naive-Snapshot is easiest to implement for very volatile systems with 

several changes

• the less updates happen, the better are the other methods

• Wait-Free Ping-Pong and Wait-Free Zig-Zag prevent locking the game 
entity by the persistence-system

• Wait-Free Ping-Pong also reduces overhead for phase-shifts, but uses 
a great deal of memory
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Learning Goals
• functionality of the persistence system

• saving a game state
• saving a sequence of game states (Replay)

• types of save games and replays: 
state-log, transition-log, action-log

• persistency in MMOs:
Databases, Logging and Hybrid Architectures

• check-point recovery methods for MMOs
• Naive-Snap Shot
• Copy-on-update
• Wait-Free Zigzag
• Wait-Free Ping-Pong
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