
1

Lecture Notes
Managing and Mining Multiplayer Online Games

Summer Term 2019

Lecture Notes © 2012-2018 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter 3: Distributed
Game Architectures

2

Overview

• architectures for distributed games
• distributed action handling

• Fat-Client vs. Thin-Client
• problems of centralized and decentralized computation
• problems with local time stamps

• spatial movement and dead reckoning
• update strategies
• movement models
• error correction

• network protocols and games
• typical network load of games
• TCP and games
• UDP and games

3

MMOG Architectures

Client-Server:
• provider hosts game in a

computing center
• game client and server run

different software
• centralized solution for:

• account-management
• partitioning of the

game world
• monitoring
• persistence

Multi-Server:
• several servers
• redundant data storage
• network distance between

client and server is
generally shorter

• dynamic solutions:
• replication
• proxy-Server

Peer-to-Peer:
• no explicit Servers
• data exchange between

adjacent peers
• every peer is hosting part

of the game world
• dynamic partition of the

game world

4

Detailed Client Server Architecture
• hosted in a computing center
• several game servers share

game state
• zones shards/realms, instances
• strict division of zones
• seamless distribution

(communication between servers)

• authentication / account
management service

• action- and response-
multiplexer
(proxy) may ease the load on
game servers by taking over
particular functionalities

Account
Management

Account
Database

Internet

Game World
Game
Server

action- und
response-
multiplexer
(Proxy)

5

Distributing the Game Core

design choices:
• What kind of peers do exist?
• What are the peers exchanging?

(actions, object states, user input, …)
• Who is authorized to read which part of the game state

and who is also entitled to write?
• How is the load redistributed among existing peers?
• How is time between peers synchronized?

6

Protocol Content
• Object attributes: (Action Result Protocol)

• protocol sets the current parameter value of a game entity
(set player „ Facemelt0r“ HP to 96)

• protocol sends relative changes
(reduce player „Facemelt0r“ HP by 100)

• Actions: (Action Request Protocol)
• contains only player input without direct impact on game state
• protocol only transfers user input

=> results must be calculated on the server
(try to hit Player „Facemelt0r“ with „Uppercut“)

7

Thin Client Solution
• server holds the complete game state and is solely authorized to

change it
• clients receive a part of the game state upon login
• server transmits game state changes to clients
• client transmits actions it wants to execute to the server

(Action Requests)
• server collects all incoming action requests
• actions are handled in order of arrival and results are transmitted to

the affected clients

Game
Server

Game State

client part of game
state

client part of game
state

client part of game
state

client part of game
state

action request

8

Thin Client Solution

Advantages:
• game state is centrally managed

• consistent game state for calculating action results
• no conflicts from several contradictory game states
• persistence system is able to save consistent game states

• low potential for cheating/ action handling only on the server

Disadvantages:
• maximum server load because all action handling is done on the server
• potential for high latencies due to round trip times

(actions need to be transmitted to the server and back to take effect)
• processing power at client side is largely unused

(clients only display the game state and
transmit user inputs to the server)

9

Fat Client Solutions
• every client has its own objects which only can be edited by itself
• server manages chronological sequence with time stamps and transmits

changes to the other clients
• local game states may vary, due to transmission delay
• chronological sequence may be inconsistent because local changes may

be applied before global changes with an earlier time stamp arrive

Client Game State

Client Game State

Client Game State

Client Game State

Game
Server

Game State
action result

10

Conflicts during decentralized computing
• local changes need time to be transmitted within the network
• actions are calculated for and executed on local game states

=> changes that predate the action may not be taken into account
• simple solutions:

• client is not allowed to change local data without server acknowledgment
• using object protocols the server may send an update of the current game

entity state.

A heals S for 50 hp

C hits S for 80 hp

020/
200

050/
200

050/
200

ti
m

e
ax

is

Client

100/
200

Server

dead

dead

example for network effects on the game state:

11

Solution Approach

reset local actions
• client has 2 game states:

• optimistic GS (contains local changes)
• pessimistic GS (contains actions transmitted by the server)

• on mismatch: reset the optimistic GS to the state of the pessimistic GS

A heals S for 50 hp

C hitsS for 80 hp

020/
200

020/
200

020/
200

050/
200

050/
200

ti
m

e
ax

is

Client

050/
200

050/
200

100/
200

020/
200

020/
200

100/
200

020/
200

020/
200

dead

Server
pessimistic
game state

dead

optimistic
game state

conflict

12

Local Time
up until now: one server handles processing sequence
• impossible for P2P games and multi server architecture

=> sequence is inconclusive after arrival at server
=> organization by local time stamps on creation

• during processing both, own and foreign changes may appear in
incorrect sequence

• in case of inconsistencies game entities must be synchronized

A heals S for 50 hp

020/
200

050/
200

050/
200

ti
m

e
ax

is

Peer 2

100/
200

Peer1

dead

C hits S for 80 hpdead

13

Solutions by Local Lag Mechanism
problem is caused by the lack of knowledge about previous actions
solution: local lag mechanism
• processing updates is delayed to allow for other actions to arrive in time
• if this time frame is exceeded, conflict detection and reset are necessary

A heals S for 50
hp

100/
200

050/
200

050/
200

ti
m

e
ax

is

Peer 2Peer 1

050/
200 C hits S for 80 hp

020/
200

020/
200

020/
200

020/
200

100/
200

050/
200

14

Application in Games
Games can combine several approaches by processing actions differently.

Conclusion:
• generally speaking, there is a trade off between latency (here:

response time) and consistency of the game world. (c.f. CAP theorem)
• another issue is reducing remote updates to reduce the needed

bandwidth.

Server side processing

• accuracy is important
• response time less important
• chronological order is

important

• damage and healing
• item pick up

Client side processing

• response time is crucial
• synchronization and sequence

are less important

• object positions and movement
• animations and other display

effects

15

Movement Information
movement-updates play a special role in distributed virtual environments
• fluid movement

⇒ positions may change several times per second (24-60 FPS)
⇒ calculation should be closely tied to rendering
⇒ handling movement and other actions in the same way might disturb fluid

rendering of the gaming world

• precise positions are mostly irrelevant for game play:
⇒ due to the fast update rates, the loss of several position updates is often

negligible

Consequences:
• movement for real-time games is predominantly calculated locally on the client
• parts of objects trajectories are not transferred to other peers

to save bandwidth
• Movement is extrapolated locally and positions are synchronized

only at certain points times
=> Dead Reckoning: simulating movement between two updates to allow for fluid

movement with limited bandwidth

16

Dead Reckoning
dead reckoning components for games:
• Update-Strategy on the server side (owner of changed) game entity:

controls when is position information transmitted to other peers
and with what frequency (influences bandwidth and error rate on the client)

• Movement model on remote peer:
Comprises all methods to extrapolate fluid movement based on the transmitted
positions (influences error rate and perception of movement on the client)

• Error correction on remote peer:
Allows for converging extrapolated local position and exact positions received
from the owner of the game entity (influences perception on the client)

=> There is a trade-off between
• bandwidth and error rate
• perception quality and processing time

17

Update-Strategies for Dead Reckoning
• regular updates:

• send updates in regular intervals

• event based updates:
• send updates on changing direction

or movement type

• distance-based-updates:
• precise positions are more

important the closer an object is
• the closer an object is to a critical

range (e.g., weapon range)
• transmits regular updates, but with

different rates, depending on
distance.

every 30 ticks

every 3 ticks

every 15 ticks

every 3 ticks

18

Movement model for Dead Reckoning
Point in time: ti Position: p(ti)=(xi,yi) Average speed: v(ti) acceleration: a(ti)
Linear movement with constant speed:

Linear movement with constant acceleration:

P(t0) P(t1) ?, (t1+tΔ)

direction speed

p0,t0 p2,t2 ?, (t2+tΔ)p1,t1

19

Error Correction for Dead Reckoning

problem: prediction and update do not correspond.
• object on a remote peer is overwritten by an update

for high error rates:
• objects jump
• objects disappear and reappear elsewhere

• both positions are merged with an accelerated fluid movement:
• e.g. cubic polynomials: Bezier, B-Splines, Hermite
• must allow for a certain correction time Δt

p(t1)

d(t1)

p‘(t1)

d‘(t1)

20

Hermite graphs for polynomial smoothing

four base polynomials:
• h1(x) = 2x3−3x2 + 1
• h2(x) = −2x3 + 3x2

• h3(x) = x3 − 2x2 + x
• h4(x) = x3 − x2

connecting points p and p’ + d’ using the following linear combination
p(x) = p(t) h1(x) + p’(t+ Δt)h2(x) + d(t) h3(x) + d’(t) h4(x) (0 ≤ x ≤ 1)

• position: p(t) via Dead Reckoning
• movement direction: d(t) via Dead Reckoning
• target: p’(t) + d’(t) via server-update

where p’(t+Δt) = p’(t) + d’(t) is the position
at the point t+Δt in time

• Δt: Time for corrections
(compensation by faster speed)

p(t)

d(t)

p’(t)
d’(t)

y(t)

x(t)

21

Thoughts on Client-Server Communication

important factors influencing the communication
• Latency: time until the system reacts

• round trip time (RTT)
• package size
• system load aside from the network

• Bandwidth: How large is the transferred volume?
• Burstiness: How is the data volume distributed over time?
• Connection-oriented/package oriented protocols

• connection oriented: Routing happens once
• package oriented: Routing happens for every package

• Security: Is loss of data possible?

22

Requirements of computer games

• small package sizes
• little bandwidth is used
• latency by genres:

• RTS-games: <1000 ms
• RPG: < 500 ms
• FPS: < 100 ms
(Estimated latency for observing a serious impairment of the gaming experience.)

application/platform payload size (bytes)
avg. min max

avg. bandwidth requirement
pps bps

Anarchy Online(PC)‡ 98 8 1333 1.582 2168

World of Warcraft (PC) 26 6 1228 3.185 2046

Counter Strike (PC) 36 25 1342 8.064 19604

Halo 3 247 32 1264 27.778 60223

Gears of War (XBOX 360) 66 32 705 2.188 10264

Tony Hawk’s Project 8 (XBOX 360) 90 32 576 3.247 5812

Test Unlimited (XBOX 360) 80 34 104 25 22912

from: Harcsik, Petlund, Griwodz, Halvorsen: Latency Evaluation of Networking Mechanisms for Game Traffic, NetGames‘07, 2007

23

Protocols and Communication solutions

TCP/IP:
• safe protocol: by re-transmission
• flow control and congestion control
• optimized for bandwidth usage and data transfer

(sending big packages to reduce the transmitted TCP-Headers)

Disadvantages:
• packages may arrive with significant delay (re-transmission)

=> increased latency
=> package may not be needed anymore since newer information has

already been transmitted
• optimizing bandwidth artificially increases latency

• waiting for payload for underfilled packages
• confirmation packages confirm several packages or are embedded

within returning traffic
• optimization by tuning and turning features off.

24

Protocols and Communication solutions
UDP
• minimal datagram service
• no explicit connection to the remote station
• unsafe transmission, correct sequence is not guaranteed
• no congestion control mechanisms
Advantages:
• no retransmission of lost packages

=> outdated information will not be resend
• less header overhead
Use:
• middle ware solutions which implement missing service features in the

higher layer protocols:
• maintain update sequence
• security for certain update operations (e.g. picking up items, …)

25

Conclusion network protocols
• TCP/IP is still the most used protocol since routers and infrastructure

are usually designed for TCP/IP

• UDP offers a light weight solution for just-in-time services
(voice, movement, …)

• secure services are still mandatory for most games and must be
implemented in the application layer of the protocol

• studies on other protocols (e.g. SCTP),
show no significant increase in performance

• majority of games uses TCP for communication

26

Learning Goal

• Client-Server and P2P architecture in games
• distribution of action handling:

• global processing
• local processing with centralized chronology
• local processing with local chronology

• Dead Reckoning
• update-strategies
• movement models
• error correction

• requirements for network protocols for games
• TCP and games
• UDP, middle ware and games

27

List of references
• N. Gupta, A. Demers, J. Gehrke, P. Unterbrunner, W. White

Scalability for virtual worlds
In Data Engineering, 2009. ICDE'09. IEEE 25th International Conference on, 2009.

• Jens Müller, Andreas Gössling, Sergei Gorlatch
On correctness of scalable multi-server state replication in online games
In Network and System Support for Games (NETGAMES'06), 2006.

• Jouni Smed, Timo Kaukoranta, Harri Hakonen
A Review on Networking and Multiplayer Computer Games
In IN MULTIPLAYER COMPUTER GAMES, PROC. INT. CONF. ON APPLICATION AND
DEVELOPMENT OF COMPUTER GAMES IN THE 21ST CENTURY, 2002.

• S. Harcsik, A. Petlund, C. Griwodz, P. Halvorsen
Latency evaluation of networking mechanisms for game traffic
In Proceedings of the 6th ACM SIGCOMM workshop on Network and system support for
games, 2007.

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27

