Overview

- What is Knowledge Discovery and Data Mining?
- KDD Process
- Supervised Learning
 - Classification
 - Prediction
- Unsupervised Learning
 - Clustering
 - Outlier Detection
- Frequent Pattern Mining
 - Frequent Item-sets
Definition: Knowledge Discovery in Databases

[Fayyad, Piatetsky-Shapiro & Smyth 1996]

Knowledge Discovery in Databases (KDD) is the nontrivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data.

Remarks:

• **valid**: in a statistic sense.
• **novel**: not explicitly known yet, no common sense knowledge.
• **potentially useful**: for a given application.
• **ultimately understandable**: the end user should be able to interpret the patterns either immediately or after some postprocessing.
Knowledge Discovery Process

- Knowledge Discovery is a process comprising several steps.
- The KDD process is iteratively optimized (back arrow) until the result is acceptable.
- It is important what’s the purpose of the analysis.
Steps of a KDD-Process

- **Selection**: Determining a clear objective and approach. **Example**: Use of a recording of TCP-Traffic to train a prediction model, which recognizes if a player is controlled by a bot.

- **Preprocessing**: Selection, integration and ensuring consistency of data to analyze. **Example**: Saving records of normal players’ and bots’ network traffic. Integration of data from several servers. Elimination of too short or useless records (permanently AFK).
Steps of a KDD-Process

• **Transformation**: Transforming data into an analyzable form.
 Example: Create a vector from average package rates, length and burstiness key-figures.

• **Data Mining**: Use efficient algorithms to derive statistically significant patterns and functions from transformed data.
 Example: Training of a neural network with examples for bots and human players, to predict a new record if it is a bot.
Steps of a KDD-Process

• **Evaluation**: test the quality of the patterns and functions gained from data mining.
 - Compare expected and predicted results. (Rate of error)
 - Manual evaluation by experts (Does the result make sense?)
 - Evaluation based on mathematical characteristics of patterns

Example: Testing an independent set of test-recordings on how likely the neural network predicts a bot with more than 50% confidence.

• **Conclusion**:
 - If test results are unsatisfying, the process is adapted.
 - Adaptation is possible in every step: more training data, different algorithms, different parameters, …
Unsupervised Learning

problem setting: only unlabeled objects/no classes or target values

tasks:
- find groups of similar objects. (Clustering)
- find uncommon objects. (Outlier Detection)
- find parts of objects which occur often (Pattern Mining)

pro:
- results are based on less assumptions
- no labeling required

con:
- measuring the results is often a problem (manual evaluation)
- more flexibility often implies more computational complexity
- correlating the result to the actual target is difficult without examples (how to guide the algorithm to achieve the goal of the process)
Example Applications

- **Clustering**: Determine typical tactics for a particular boss encounter.

- **Outlier Detection**: Which player might cheat?

- **Pattern Mining**: Determine standard rotations of ability usage.
Clustering Methods

• identify a finite set of clusters or groups

• similar objects should be part of the same cluster whereas dissimilar objects should be part of different clusters

• clustering comprises finding the clusters and assigning new objects to these clusters
Clustering (formal view)

given:
• dataset $DB \subseteq F$ (F is a feature space)
• $C \subseteq \mathbb{IN}_0$ a discrete target variable (cluster id)
• sometimes the number of clusters $|C|$ is assumed to be known

goal: find function $f: F \rightarrow C$ assigning objects to clusters.
find reasonable clusters (e.g. Minimize intra cluster distance and maximize distance between clusters)

quality of a clustering:
• depends on the cluster model:
 • How is an object assigned to a cluster?
 • How is decided whether two objects belong to the same cluster?
• optimize:
 • compactness of clusters
 • cluster separation
Partitioning Clustering(1)

idea:

• there are k clusters and each cluster c is represented by o_c

• object o is assigned to c by the distance $dist(o_c, o)$:

 $$\text{cluster}(o) = \arg \min_{c \in C} (dist(o_c, o))$$

• to achieve compact clusters minimize:

 • distance of objects to the closest cluster representation:

 $$\text{compact}(c) = \sum_{o \in \{o \in DB | \text{cluster}(o) = c\}} dist(o_c, o)$$

 • squared distance to the closest cluster representation:

 $$\text{sqrComp}(c) = \sum_{o \in \{o \in DB | \text{cluster}(o) = c\}} dist(o_c, o)^2$$

• Quality of the clustering:

 $$TD(C) = \sum_{c \in C} \text{compact}(c)$$

 $$TD^2(C) = \sum_{c \in C} \text{sqrComp}(c)$$
Partitionierendes Clustering (2)

• typical cluster representations:
 • centroid: \(centroid(c) = \frac{1}{|\{o \in DB \mid cluster(o) = c\}|} \sum_{o \in \{o \in DB \mid cluster(o) = c\}} o \)
 • medoid: \(medoid(c) = \arg \min_{o \in \{o \in DB \mid cluster(o) = c\}} \left(\sum_{p \in \{p \in DB \mid cluster(o) = c\}} \text{dist}(o, p) \right) \)

minimize TD or TD²:
• TD and TD² are not convex and might have multiple local minima
• TD and TD² are discontinuous (e.g. when switching clusters)
• apply greedy search to minimize TD/ TD²

1. Step: for all \(o \in DB \) \(cluster(o) \) is known
 => compute cluster representations \(\{o_{c1}, ... , o_{cn}\} \)
2. Step: given the cluster representation \(\{o_{c1}, ... , o_{cn}\} \)
 => assign all objects to their closest clusters and go to step 1
3. terminate if TD/ TD² do not change (no cluster switch => local minimum)
Example: Partitioning Clustering

1. **Compute Centroids**
 - Initial data distribution

2. **Assign Data Objects**
 - Assign each data point to the nearest centroid

3. **Compute Centroids**
 - Update the position of each centroid based on the assigned data points

4. **Assign Data Objects**
 - Re-assign each data point to the nearest updated centroid

5. **Compute Centroids**
 - Final positions of centroids
Algorithm

ClusteringVarianceMinimization (Objectset DB, Integer k)

1. build initial clustering by splitting DB into k clusters;
2. compute representatives $C' = \{C_1, \ldots, C_k\}$
3. $C = \{}$
4. $TD2 = \text{sqrTD}(C', DB)$

repeat

1. $TD2\text{old} = TD2$
2. $C = C'$
3. build k clusters by assigning each object to the next centroid in C
4. compute the new representatives $C' = \{C'_1, \ldots, C'_k\}$
5. $TD2 = \text{sqrTD}(C', DB)$

until $TD2 = TD2\text{old}$

return C
Partitioning Clustering

variants:
• *k*-Means: update a single object and then re-compute affected centroids.
• Expectation Maximization Clustering (EM) cluster=density distribution, Bayesian model, soft-clustering
• *k*-Medoid Clusterings:
 • cluster representations are mediods
 • cluster adaption is done by switching objects and medoids

properties:
• all algorithms depend on the initialization
• centroid-based are very efficient $O(i \cdot n \cdot k)$. (#Iterations i)
• medoid-based are generic but slow $O(i \cdot n^2 \cdot k)$ (#Iterations i)
Density-Based Clustering

idea: Clusters are dense regions in feature space F.

density:

$$\frac{|\text{objects}|}{\text{volume}}$$

here:

- **volume:** ε-neighborhood for object o w.r.t. distance measure $dist(x,y)$
- **dense region:** ε-neighborhood contains MinPts objects
 $\Rightarrow o$ is called core point
- „connected“ core points form **clusters**
- Objects outside cluster is considered **noise**
Density-Based Clustering

intuition

parameters $\varepsilon \in IR$ and $MinPts \in IN$ specify the density threshold

ε \hspace{1cm} $MinPts = 4$
Intuition

Parameters $\varepsilon \in \mathbb{R}$ and $MinPts \in \mathbb{N}$ specify density threshold

- Core points
intuition

parameters $\varepsilon \in IR$ and $MinPts \in IN$ specify density threshold

- core points
- direct density-reachability
Density-Based Clustering

intuition

parameters $\varepsilon \in IR$ and $\text{MinPts} \in IN$ specify density threshold

$\varepsilon \quad \text{MinPts} = 4$

- core points
- direct density-reachability
- density reachability
Density-Based Clustering

intuition

parameters $\varepsilon \in IR$ and $MinPts \in IN$ specify density threshold

- core points
- direct density-reachability
- density reachability
- density connectivity
Density-Based Clustering

formal: [Ester, Kriegel, Sander & Xu 1996]

- Object $p \in DB$ is a core object, if:
 - $|RQ(p, \varepsilon)| \geq \text{MinPts}$
 - $RQ(p, \varepsilon) = \{o \in DB | \text{dist}(p,o) \leq \varepsilon\}$

- Object $p \in DB$ is direct density reachable from $q \in DB$ wr.t. ε and MinPts, if:
 - $p \in RQ(q, \varepsilon)$ and q is a core object in DB.

- Object p is *density-reachable* from object q, if there is a sequence of direct density reachable objects from q to p.

- Two objects p and q are density-connected, if both p and q are density reachable from a third object o.
Density-Based Clustering

formal:

A density-based cluster C w.r.t. ε and $MinPts$ is a none-empty subset of DB with the following properties:

Maximality: $p,q \in DB$: $p \in C$ and q is density-reachable from p \Rightarrow $q \in C$.

Connectivity: $p,q \in C$ \Rightarrow p and q are density-connected.
Density-Based Clustering

formal

- Clustering
 A density-based clustering CL of DB w.r.t. ε and $MinPts$ is the complete set of all density-based clusters w.r.t. ε and $MinPts$.

- Noise
 The set $Noise_{CL}$ is defined as the subset of objects in DB which are not contained in any cluster.

- idea behind the DBSCAN algorithm
 Let C be a density-based cluster and let $p \in C$ be a core object, then
 $C = \{ o \in DB \mid o \text{ density reachable from } p \text{ w.r.t. } \varepsilon \text{ and } MinPts \}$.
Density-Based Clustering

Algorithmus DBSCAN

\textbf{DBSCAN}(\texttt{dataset DB, Real }\varepsilon, \texttt{ Integer MinPts})
\begin{center}
 // in beginning all objects are unlabeled, \\
 // o.ClId = UNLABELED for all o \in DB
\end{center}

ClusterId := nextId(NOISE);
for \texttt{i from 1 to |DB| do}
Objekt := DB.get(i);
if Objekt.ClId = UNLABELED then
 if ExpandCluster(DB, Objekt, ClusterId, \varepsilon, MinPts) then
 ClusterId:=nextId(ClusterId);
Density-Based Clustering

```
ExpandCluster(DB, startObject, clusterId, ε, MinPts): Boolean
seeds:= RQ(startObject, ε);
if |seeds| < MinPts then // startObject is not a core object
    startObject.ClId := NOISE;
    return false;
// else: startObject is a core object
forall o ∈ seeds do o.ClId := clusterId;
remove startObject from seeds;
while seeds ≠ Empty do
    select object o from seeds;
    neighborhood := RQ(o, ε);
    if | neighborhood | ≥ MinPts then // o is a core object
        for i from 1 to | neighborhood | do
            p := neighborhood.get(i);
            if p.ClId in {UNLABELED, NOISE} then
                if p.ClId = UNLABELED then
                    add p to seeds;
                p.ClId := ClusterId;
            remove o from seeds;
    return true;
```
Discussion Density-Based Clustering

- number of clusters is determined by the algorithm
- Parameters ε and MinPts generally less problematics
- Time complexity is $O(n^2)$ for general data objects
- Density-based methods only require a distance measure
- Border points make DBSCAN dependent on processing order
- No cluster model or parameter optimization
- Assigning new points is done with nearest neighbor classification
Outlier Detection

Hawkins’ Definition [Hawkins 1980]:

“An outlier is an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism.”

What does „mechanism“ mean?

• intuition from Bayesian statistics:
 “Outliers have a small likelihood to be generated by the assumed generative model.”

• connection to clustering:
 - a clustering describes the distribution of data
 - outliers describe errors/noise
 ⇒ max. distance to all cluster centers (part. clustering)
 ⇒ noise in density-based clustering
Example: distance-based Outliers

- Definition „(pct,dmin)-Outlier” [Knorr, Ng 97]
 - An object \(p \) in data set \(DB \) is called \((pct,dmin) \)-outlier, if at least \(pct \) percent of the objects from \(DB \) have a larger distance to \(p \) than \(dmin \).

- Selection of \(pct \) and \(dmin \) is left to the user

- example: \(p_1 \in DB, \ pct=0.95, \ dmin=8 \)

- \(p_1 \) is a \((0.95,8) \)-outlier
 \(\Rightarrow \) 95% of objects in \(DB \) display a distance > 8 to \(p_1 \)
Tutorial Exercise

• Implement **ClusteringVarianceMinimization** in Java

 • Use the code from the lecture web-page

 • Implement the

 ClusteringVarianceMinimization.varianceMinimization

 method

 • Test your Implementation with „gradlew test“ (or start the
 JUnit test case)