Overview

What is Knowledge Discovery and Data Mining?
KDD Process

Supervised Learning
e (lassification
e Prediction

Unsupervised Learning
e Clustering
e Outlier Detection

Frequent Pattern Mining
 Frequent [tem-sets



Definition: Knowledge Discovery in Databases

[Fayyad, Piatetsky-Shapiro & Smyth 1996]
Knowledge Discovery in Databases (KDD) is the nontrivial

process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data.

Remarks:

e valid: In a statistic sense.

* novel: not explicitly known yet,
no common sense knowledge.

e potentially useful: for a given application.

e ultimately understandable: the end user should be able to
Interpret the patterns either immediately or after some
postprocessing



Knowledge Discovery Process
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Knowledge Discovery is a process comprising several steps.

The KDD process is iteratively optimized (back arrow) until the result
Is acceptable.

It is important what's the purpose of the analysis.




Steps of a KDD-Process

» Selection: Determining a clear objective and approach.
Example: Use of a recording of TCP-Traffic to train a
prediction model, which recognizes if a player is
controlled by a bot.

* Preprocessing: Selection, integration and ensuring
consistency of data to analyze.
Example: Saving records of normal players’ and bots’
network traffic. Integration of data from several servers.
Elimination of too short or useless records
(permanently AFK).



Steps of a KDD-Process

 Transformation: Transforming data into an analyzable
form.
Example: Create a vector from average package rates,
length and burstiness key-figures.

« Data Mining: Use efficient algorithms to derive statistically
significant patterns and functions from transformed data.
Example: Training of a neural network with examples for

bots and human players, to predict a new record if it is a
bot.



Steps of a KDD-Process

« Evaluation: test the quality of the patterns and functions

gained from data mining.

« Compare expected and predicted results.
(Rate of error)
 Manual evaluation by experts (Does the result make sense?)

e Evaluation based on mathematical characteristics of patterns

Example: Testing an independent set of test-recordings on how
likely the neural network predicts a bot with more than 50%

confidence.

e Conclusion:
e |f test results are unsatisfying, the process is adapted.

 Adaption is possible in every step: more training data,
different algorithms, different parameters, ...



Unsupervised Learning

problem setting: only unlabeled objects/no classes or target values
tasks:

« find groups of similar objects. (Clustering)

« find uncommon objects. (Outlier Detection)

« find parts of objects which occur often (Pattern Mining)

pro:

* results are based on less assumptions

* no labeling required

con:

* measuring the results is often a problem (manual evaluation)
« more flexibility often implies more computational complexity

« correlating the result to the actual target is difficult without examples
(how to guide the algorithm to achieve the goal of the process)



Example Applications

« Clustering: Determine typical tactics for a particular boss
encounter.

« Qutlier Detection: Which player might cheat?

« Pattern Mining: Determine standard rotations of ability
usage.



Clustering Methods

« identify a finite set of clusters or groups

« similar objects should be part of the same cluster whereas
dissimilar objects should be part of different clusters

« clustering comprises finding the clusters and assigning
new objects to these clusters
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Clustering (formal view)

given:

« dataset DB c F (F is a feature space)

« CcIN, adiscrete target variable (cluster id)

« sometimes the number of clusters [C/ is assumed to be known

goal: find function f. F — C assigning objects to clusters.

find reasonable clusters (e.g. Minimize intra cluster distance and
maximize distance between clusters)

quality of a clustering:

« depends on the cluster model:
How is an object assigned to a cluster?
How is decided whether two objects belong to the same cluster?

e optimize:
compactness of clusters
cluster separation
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Partitioning Clustering(1)

idea:

« there are k clusters and each cluster c is represented by o,

» object 0 is assigned to ¢ by the distance dist(o_0):

cluster (o) = arg min(dist(o,,0))
ceC
« to achieve compact clusters minimize:

» distance of objects to the closest cluster representation:
compact(c) = > _dist(o,,0)

oe{oeDB|cluster (0)=c}
» squared distance to the closest cluster representation:
sqrComp(c) = > dist(o,, 0)°

oe{oeDB|cluster (0)=c}

« Quality of the clustering : TD(C) =) _compact(c)
ceC

TD*(C) = > _sqrComp(c)

ceC
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Partitionierendes Clustering (2)

» typical cluster representations:

_ 1
. id: centroid(c) = 0
centroid: (c) ‘{O e DB | cluster(o) = CH 0e{oeDB|cI§ter(0)=C}

« medoid: medoid(c)= argmin [ Zdist(o,p)J
pef

oe{oeDB|cluster (0)=c} peDBicluster (0)=c}

minimize TD or TD?:

« TD and TD?are not convex and might have multiple local minima
« TD and TD?are discontinuous (e.g. when switching clusters)
« apply greedy search to minimize TD/ TD?

1.

Step: for all o € DB cluster(o) is known
=> compute cluster representations f{o_,, ..., 0.,/

2. Step: given the cluster representation {o.,, ..., 0.,/

=> assign all objects to their closest clusters and go to step 1

3. terminate if TD/ TD? do not change (no cluster switch => local

minimum)
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Example: Partitioning Clustering
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Algorithm

ClusteringVarianceMinimization(Objectset DB, Integer k)
build initial clustering by splitting DB into k Cluster;
compute representatives C’={C,, ..., C}

C = {};
TD2 = sqgrTD(C”,DB);
repeat
TD2old = TD2;
C=2C7;
build k clusters by assigning each object to the next
centroid in C;
compute the new representatives C’={C”,;, ..., C’/};
TD2 = sqgrTD(C”,DB);
until TD2 == TD2o0ld;
return C;

14



Partitioning Clustering

variants:

« k-Means: update a single object and then re-compute affected
centroids.

« Expectation Maximization Clustering (EM)
cluster=density distribution, Bayesian model, soft-clustering
* k-Medoid Clusterings:
» cluster representations are mediods
« cluster adaption is done by switching objects and medoids

properties:

« all algorithms depend on the initialization

« centroid-based are very efficient O(i - n - k). (#lterations i)

« medoid-based are generic but slow O(i - n? - k) (#lterations i)
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Density-Based Clustering

idea: Clusters are dense regions in feature space F.

density:
Y | objects |

volume

here:

« volume: e-neighborhood for object o w.r.t. distance
measure dist(x,y)

« dense region: e-neighborhood contains MinPts objects
=> 0 Is called core point

« ,,connected” core points form clusters

« Objects outside cluster is considered noise
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Density-Based Clustering

intuition

parameters € € IR and MinPts € IN specify the density threshold

€ MinPts = 4
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Density-Based Clustering

intuition

parameters € € IR and MinPts € IN specify density threshold

€ MinPts = 4

* core points
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Density-Base Clustering

intuition

parameters € € IR and MinPts € IN specify density threshold

€ MinPts = 4

* core points

« direct density-reachability ° e
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Density-Based Clustering

intuition

parameters € € IR and MinPts € IN specify density threshold

€ MinPts = 4

* core points

« direct density-reachability
» density reachability
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Density-Based Clustering

intuition

parameters € € IR and MinPts € IN specify density threshold

€ MinPts = 4

* core points

« direct density-reachability
» density reachability

« density connectivity
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Density-Based Clustering

formal: [Ester, Kriegel, Sander & Xu 19961

Object p € DB is a core object, if: , o MinPtsea
. |IRQ(p,e)| = MinPts . @ o o
RQ(p,e) = {o € DB | dist(p,0) <= &} o Je e o

Object p € DB is direct density reachable
from g € DB wr.t. € and MinPts, if:
p € RQ(qg,e) and g is a core object in DB.

Object p is density-reachable from object g,
if there is a sequence of direct density reachable
objects from q to p.

Two objects p and g are density-connected,
if both p and q are density reachable
from a third object o.
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Density-Based Clustering

formal:

A density-based cluster C w.r.t. € and MinPts is a none-
empty subset of DB with the following properties:

Maximality: p,qg € DB: p € C and q is density-reachable
from p=>qg eC.

Connectivity: p,q € C=> p and q are density-connected.
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Density-Based Clustering

formal

« Clustering
A density-based clustering CL of DB w.r.t. ¢ and MinPts is the complete set
of all density-based clusters w.r.t. e and MinPts.

* Noise
The set Noise, is defined as the subset of objects in DB which are not
contained in any cluster.

« idea behind the DBSCAN algorithm

Let C be a density-based cluster and let p € C be a core object, then
C={o € DB | o density reachable from p w.r.t. € and MinPts}.
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Density-Based Clustering

Algorithmus DBSCAN

DBSCAN(dataset DB, Real &, Integer MinPts)
// in beginning all objects are unlabeled,
// o.Clld = UNLABELED for all o < DB

Clusterld := nextld(NOISE);
for 1 from 1 to |DB] do
Objekt := DB.get(1);
iIT Objekt.Clld = UNLABELED then

iIT ExpandCluster(DB, Objekt, Clusterld, ¢, MinPts)
then Clusterld:=nextld(Clusterld);
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Density-Based Clustering

ExpandCluster(DB, startObject, clusterld, ¢, MinPts): Boolean
seeds:= RQ(startObject, ¢);
iIT |seeds| < MinPts then // startObject i1s not a core object

startObject.ClId :-= NOISE;

return false;
// else: startObject 1s a core object
forall o € seeds do o.Clld := clusterld;
remove startObject from seeds;
while seeds = Empty do

select object o from seeds;

neighborhood := RQ(o, ¢);

1T | neighborhood | > MinPts then // o 1s a core object

for 1 from 1 to | neighborhood | do
p :-= neighborhood.get(1);
iIT p.Clld 1n {UNLABELED, NOISE} then
iIT p.Clld = UNLABELED then
add p to seeds;
p-Clld :-= Clusterld;

remove o from seeds;

return true;
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Discussion Density-Based Clustering

number of clusters is determined by the algorithm
Parameters € and MinPts generally less problematics

Time complexity is O(n?) for general data objects
Density-based methods only require a distance measure
Border points make DBSCAN dependent on processing order
No cluster model or parameter optimization

Assigning new points is done with nearest neighbor classification
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Outlier Detection

Hawkins’ Definition Hawkins 19801:

“An outlier is an observation which deviates so much from other
observations as to arouse suspicions that it was generated by a
different mechanism.”

What does ,,mechanism” mean?
 Intuition from Bayesian statistics:

“Qutliers have a small likelihood to be generated by the
assumed generative model.”

« connection to clustering:
- a clustering describes the distribution of data
- outliers describe errors/noise
= max. distance to all cluster centers (part. clustering)
= noise in density-based clustering
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Example: distance-based Outliers

Definition ,, (pct,dmin)-Outlier” iknorr, Ng 971

« An object p in data set DB is called (pct,dmin)-outlier, if at least pct -
percent of the objects from DB have a larger distance to p then dmin.

Selection of pctand dmin is left
to the user
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example: p1 € DB, pct=0.95, dmin=8
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p1is a (0.95,8)-outlier
=> 95% of objects in DB display a
distance > 8 to ps
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Tutorial Exercise

* Implement ClusteringVVarianceMinimization in Java
» Use the code from the lecture web-page

e Implement the
ClusteringVarianceMinimization.varianceMinimization

method

e Test your Implementation with ,,gradlew test* (or start the
Junit test case)
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