
47

Function Approximation of State Spaces

• Q-Learning collects Q-Values for all explored state-action
pairs (s,a) => Q-Learning maintains a Q-table

• Is the state of observation the state space for making
decision?
• state spaces are often exponential in the number of variables
• similar states usually require similar actions

• basic Q-Learning does not generalize
from observations to states

Idea: Function Approximation

Treat the set of states as a (continuous) vector of factors and
learn a regression function f(s,a,θ) predicting Q*(s,a).

48

Q-value function approximation

Given: A mapping x(s) describing s in IRd.

Goal: Learn a function f(x(s),a,θ) predicting the true Q-value
Q*(s,a) for any value of x(s).

• similar to supervised learning, but not exactly:
• Where to put the action a in our prediction function?

• Samples from the same trajectory are not independent and
identical distributed (IID)

• true Q*(s,a) is not known for training
=> targets are constantly changing

x(s)

a f(s,a,θ) x(s) f(s,a1,θ)
:
f(s, al,θ)

θ θ

49

Learning using Function Approximation

• we want to learn a function f(x(s),a,θ) over the state-action
space by optimizing the function parameters θ.

𝑖𝑖 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 ≈ 𝑄𝑄 ∗ 𝑠𝑠,𝑎𝑎
• to learn f we need a loss function, e.g. MSE between
𝑖𝑖 𝑠𝑠,𝑎𝑎,𝜃𝜃 and observed values Q*(s,a).

𝐿𝐿 𝜃𝜃 = 𝐸𝐸 𝑄𝑄∗ 𝑠𝑠,𝑎𝑎 − 𝑖𝑖 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 2

• optimization using stochastic gradient descent

−
1
2
𝛻𝛻𝐿𝐿 𝜃𝜃 = 𝑄𝑄∗ 𝑠𝑠,𝑎𝑎 − 𝑖𝑖 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 𝛻𝛻𝜃𝜃𝑖𝑖 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃

Δ𝜃𝜃 = 𝛼𝛼 𝑄𝑄∗ 𝑠𝑠, 𝑎𝑎 − 𝑖𝑖 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 𝛻𝛻𝜃𝜃𝑖𝑖 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃

• update: 𝜃𝜃 ← 𝜃𝜃+ Δ𝜃𝜃

50

Linear Prediction Functions

A simple function approximation might be linear

• Linear Functions over s∈IRd:
𝑖𝑖 𝑥𝑥(𝑠𝑠),𝑎𝑎, W =x(s)TW=∑𝑗𝑗=1𝑛𝑛 𝑥𝑥(𝑠𝑠)𝑗𝑗𝑇𝑇𝑜𝑜𝑗𝑗

• Loss function:
𝐿𝐿 𝑊𝑊 = 𝐸𝐸 𝑄𝑄∗ 𝑠𝑠, 𝑎𝑎 − x(s)TW 2

• Stochastic Gradient Descent on L(w):
𝛻𝛻𝑊𝑊 𝑖𝑖 𝑥𝑥(𝑠𝑠),𝑎𝑎, W = x(s)T

−
1
2
𝛻𝛻𝐿𝐿 𝜃𝜃 = 𝑄𝑄∗ 𝑠𝑠, 𝑎𝑎 − 𝑖𝑖 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 𝑥𝑥(s)T

Δ𝜃𝜃 = 𝛼𝛼 𝑄𝑄∗ 𝑠𝑠,𝑎𝑎 − 𝑖𝑖 𝑥𝑥(𝑠𝑠),𝑎𝑎,𝜃𝜃 𝑥𝑥(s)T

51

Further Directions

• other prediction functions:
• (deep) neural networks
• decision trees
• nearest neighbor
• ...

• DQN: uses a deep neural network and works with an
experience buffer to make the learning target more stable

• Policy Gradients: Uses function approximation for
selecting the best action (not the Q-values)

• Actor-Critic methods: Combine value function
approximation and policy gradient.

52

Why is AI important for Games?

Computer games are an optimal sand-box for developing AI
techniques:

• games are queryable environments
• rewards and actions are known
• states are parts or views on the game state

But, why is reinforcement learning interesting for managing
and mining Computer Games ?

• develop intelligent AI opponents/collaborators

• micro-management for small granularity games

• learn optimal strategies for teaching players or balancing

• mimic real behavior within a game

53

Imitation Learning

• use reinforcement learning to make an agent behave like a
teacher (e.g. a pro gamer)

• Learning from experience: teacher provides (s,a,r,s’)
samples of good behavior (reward is known)

• Learning from demonstration: teacher provides (s,a,s’)
samples.
• reward is not explicitly known
• success is expected based on the reputation of the player

Challenge:

• predicting the action for states with sufficient samples is
easy (policy follows the distribution of observed actions)

• predicting proper actions for undersampled states is hard.

=> approximation function must generalized from
observed states to unobserved ones.

54

Imitation learning in Games

possible applications:
• make a player behave like a real one

(e.g. adapt player styles for football games)
• learn policies for hard opponents to analyze their weaknesses
• when training an agent learn from human experts

(first Alpha Go version)
• learn policies for your own behavior and find out where it deviates

from the optimal policy

Note, this is an active field of research with many unsolved problems:
• policies depend on the agents/players capabilities
• capability of the imitating agent in unknown states is hard to evaluate
• reward functions might not be the same for teacher and imitating

agent

55

Techniques for Multiple Agents

Consider an MDP (S,A,T,R):
• often the uncertainty of state transitions T is completely

caused by the actions of other independent agents
(opponent or team members)

examples: chess, GO, etc.

• if you would know the policy of the other agents, optimal
game play could be achieved with deterministic search.

s0

s1 s2 s3

s4 s5 s6 s7 s8 s9

a1 a2 a3

a4 a5 a6 a7 a8 a9

windefeat defeat defeat defeatdefeat

56

Antagonistic Search

• assume that there is a policy π* which both player follows

• in antagonistic games, the reward of player p1 is the
negative reward of player p2. (zero-sum game)

=> player1 maximizes rewards
player2 minimizes the rewards

s0

4 s5 s6

s2 3

s7

s8 s9 s10 s11 s12 s13 s14 s15

L WL LW LD LW WD LD DL W

player1

player2

win lossdraw

WD

W

LL

D

D

57

Antagonistic Search

• generally it is not possible to search until the game ends
(search grows exponential with available actions)

⇒ stop searching at a certain level and user another reward
corresponding to the chance of success

Types of rewards:

• heuristics (figures, flexibility, strategic positions etc.)

• prediction functions (input game state ->win probability)

• databases (opening or end game libraries)

58

Min-Max Search in antagonistic Search Trees
• select action a that maximizes R(s) for S1 after S2’s reaction
• Search depth:

• Given Number of Turns
⇒ Time may vary and is hard to estimate
⇒ Turbulent positions make cutting of some branches unfavorable
• Iterative Deepening:

- Multiple calculations with increasing search depth
- On Time-Out: Abort and use of last complete calculation

(since expense doubles on average, double the expense can be estimated)
• turbulent positions: single branches are being expanded if leaves are turbulent.

3

552 1 6 103Min-Step (S2)

Max-Step (S1) 2 1 3

59

Alpha-Beta Pruning
Idea: If a move already exists, that can be valuated with even after a counter

reaction, all branches creating a value less than can be cut.
• : S1 reaches at least α on this sub-tree (R(s) > α)
• : S2 reaches at most β on this sub-tree (R(s) < β)

Algorithm:
• Traverse Search-Tree with deep search and fill inner nodes on the way back to

the last branching
• For calculating inner nodes:

If β < α then
• Cut off remaining sub-tree
• set β-value for the sub-tree if it’s root is a min-node
• set α -value for the sub-tree if it’s root is a max-node

Else set β-value to the minimum of min-nodes
set α-value to the maximum of max-nodes

60

Alpha-Beta Pruning
Idea: If a move already exists, that can be valuated with α even after a counter

reaction, all branches creating a value less than α can be cut.
• α: S1 reaches at least α on this sub-tree (R(s) > α)
• β: S2 reaches at most β on this sub-tree (R(s) < β)

554

4

α= 4 4

554

4

1262

4

554

4

2 65

5

α = 4

β = 2 β = 5

α = 5

β = 4

4

4

4

554

4

2 5

5

α = 4

3

1

1

α = 3

3

3

β = 1

β = 3

β < α

β < α

β < α

β < α

β = 4

61

Monte Carlo Tree Search

• for games with high branching factors MinMax does not scale

• heuristics are often hard determine and require expert knowledge

• machine learning depends on the available data sets (biased to human
play style)

Monte Carlo Tree Search:

• samples tree based on Monte Carlo Learning of simulated play outs

• uses an exploration/exploitation scheme to systematically search the
first k-layers of the search tree.

• simulation can be based on different opponent agents strategies

62

UBC1

• selects actions w.r.t. reasonable exploration and
exploitation trade-offs

• consider a situation where you had N tries and l actions

• for each action ai you know the number of wins and
number of samples (allows to calculate mean win rate)

• based on Hoeffding’s inequality, it can be shown that the

following bound for mean win rate holds: 𝑢𝑢𝑛𝑛,𝑛𝑛𝑖𝑖 = 2 ln 𝑛𝑛
𝑛𝑛𝑖𝑖

• the bounds gets narrower the more samples for ai become
available, but the bounds for all actions aj (i≠j) become
wider

• now always select action 𝑎𝑎 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖(𝜇𝜇𝑖𝑖 + 𝑢𝑢𝑛𝑛,𝑛𝑛𝑖𝑖)

63

Monte Carlo Tree Search with UCT

• use UBC1 for sampling the first k levels of the search tree

• if no samples are available apply a random search or some
light-weight policy.

• to evaluate leafs at the leaf level, simulate game until
terminal state is reached

The algorithm runs in 4 phases:

• selection: search tree based on UBC1

• expansion: randomly select an action when UBC1 does not
work

• simulation: simulate a further game trajectory

• backpropagation: backup the value along the path to the
root

64

Example

4/7

2/3 1/3 0/1

0/1 1/2 0/1 0/1 1/1

0/1 1/1

4/7

2/3 1/3 0/1

0/1 1/2 0/1 0/1 1/1

0/1 1/1

0/0

Selection

Expansion

65

Example

4/7

2/3 1/3 0/1

0/1 1/2 0/1 0/1 1/1

0/1 1/1

0/0

win

5/8

3/4 1/3 0/1

0/1 2/3 0/1 0/1 1/1

0/1 2/2

1/1

Backpropagation

Simulation

66

Monte Carlo Tree Search

• applicable to antagonistic search but not restricted to it

• can handle stochastic games and games partially
observable game states

• the 4 steps can be iterated until a given time budget is
spend: the longer the search is done the better is the
result.

• a general question is to perform simulation to determine
the possible outcomes

• Monte Carlo Tress Search is used in Alpha Go to allow
lookahead together with convoluational neural networks
and deep reinforcement learning

67

Learning Goals

• agents and environments for sequential planning

• deterministic search

• building decision graph for routing in open environments

• Markov Decision Processes

• Policy and Value Iterations

• Model-free approaches and Q-Learning

• Function Approximation

• Antagonistic Search

• MiniMax Search and Alpha-Beta Pruning

• Monte Carlo Tree Search with UCT

68

Literature

• Nathan R. Sturtevant: Memory-Efficient Abstractions for Pathfinding
In Artificial Intelligence and Interactive Digital Entertainment,
Conference (AIIDE), 2007.

• Lecture notes D. Silver: Introduction to Reinforcement Learning
(http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)

• S. Russel, P. Norvig: Artificial Intelligence: A modern Approach,
Pearson, 3rd edition, 2016

• Levente Kocsis and Csaba Szepesvári: Bandit based monte-carlo
planning. In Proceedings of the 17th European conference on
Machine Learning (ECML'06), 282-293, 2006

• V. Mnih, K. Kavokcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, M. Riedmiller: Playing Atari with Deep Reinforcement
Learning, NIPS-DLW 2013.

	Chapter 9: Artificial Intelligence
	Foliennummer 2
	What is Artificial Intelligence?
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Policies and Utilities
	Bellman’s Equations
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	MDP Synopsis
	Model-Free Reinforcement Learning
	Monte-Carlo Policy Evaluation
	Temporal Difference Learning
	Policy Optimization
	Samples and Policy Updates
	Learning on a Queryable Environment
	-Greedy Exploration
	On-Policy and Off-Policy Learning
	Foliennummer 45
	Foliennummer 46
	Function Approximation of State Spaces
	Q-value function approximation
	Learning using Function Approximation
	Linear Prediction Functions
	Further Directions
	Why is AI important for Games?	
	Imitation Learning
	Imitation learning in Games
	Techniques for Multiple Agents
	Antagonistic Search
	Antagonistic Search
	Foliennummer 58
	Foliennummer 59
	Foliennummer 60
	Foliennummer 61
	UBC1
	Monte Carlo Tree Search with UCT
	Example
	Example
	Monte Carlo Tree Search
	Learning Goals
	Foliennummer 68

