Function Approximation of State Spaces

- Q-Learning collects Q-Values for all explored state-action pairs \((s,a) \) \(\Rightarrow \) Q-Learning maintains a Q-table
- Is the state of observation the state space for making decision?
 - state spaces are often exponential in the number of variables
 - similar states usually require similar actions
- basic Q-Learning does not generalize from observations to states

Idea: Function Approximation

Treat the set of states as a (continuous) vector of factors and learn a regression function \(f(s,a,\theta) \) predicting \(Q^*(s,a) \).
Q-value function approximation

Given: A mapping $x(s)$ describing s in IR^d.

Goal: Learn a function $f(x(s), a, \theta)$ predicting the true Q-value $Q^*(s, a)$ for any value of $x(s)$.

- similar to supervised learning, but not exactly:
 - Where to put the action a in our prediction function?
 - Samples from the same trajectory are not independent and identical distributed (IID)
 - true $Q^*(s, a)$ is not known for training
 \Rightarrow targets are constantly changing
Learning using Function Approximation

- we want to learn a function \(f(x(s), a, \theta) \) over the state-action space by optimizing the function parameters \(\theta \).
 \[
 f(x(s), a, \theta) \approx Q^*(s, a)
 \]

- to learn \(f \) we need a loss function, e.g. MSE between \(f(s, a, \theta) \) and observed values \(Q^*(s, a) \).
 \[
 L(\theta) = E \left[(Q^*(s, a) - f(x(s), a, \theta))^2 \right]
 \]

- optimization using stochastic gradient descent
 \[
 -\frac{1}{2} \nabla L(\theta) = (Q^*(s, a) - f(x(s), a, \theta)) \nabla_\theta f(x(s), a, \theta)
 \]
 \[
 \Delta \theta = \alpha (Q^*(s, a) - f(x(s), a, \theta)) \nabla_\theta f(x(s), a, \theta)
 \]

- update: \(\theta \leftarrow \theta + \Delta \theta \)
Linear Prediction Functions

A simple function approximation might be linear

- Linear Functions over $s \in \mathbb{IR}^d$:
 \[
 f(x(s), a, W) = x(s)^T W = \sum_{j=1}^{n} x(s)_j w_j
 \]

- Loss function:
 \[
 L(W) = E [(Q^*(s, a) - x(s)^T W)^2]
 \]

- Stochastic Gradient Descent on $L(w)$:
 \[
 \nabla W f(x(s), a, W) = x(s)^T
 \]
 \[
 \frac{1}{2} \nabla L(\theta) = (Q^*(s, a) - f(x(s), a, \theta)) x(s)^T
 \]
 \[
 \Delta \theta = \alpha (Q^*(s, a) - f(x(s), a, \theta)) x(s)^T
 \]
Further Directions

- other prediction functions:
 - (deep) neural networks
 - decision trees
 - nearest neighbor
 - ...

- DQN: uses a deep neural network and works with an experience buffer to make the learning target more stable

- Policy Gradients: Uses function approximation for selecting the best action (not the Q-values)

- Actor-Critic methods: Combine value function approximation and policy gradient.
Why is AI important for Games?

Computer games are an optimal sand-box for developing AI techniques:

- games are queryable environments
- rewards and actions are known
- states are parts or views on the game state

But, why is reinforcement learning interesting for managing and mining Computer Games?

- develop intelligent AI opponents/collaborators
- micro-management for small granularity games
- learn optimal strategies for teaching players or balancing
- mimic real behavior within a game
Imitation Learning

• use reinforcement learning to make an agent behave like a teacher (e.g. a pro gamer)
• Learning from experience: teacher provides (s,a,r,s’) samples of good behavior (reward is known)
• Learning from demonstration: teacher provides (s,a,s’) samples.
 • reward is not explicitly known
 • success is expected based on the reputation of the player

Challenge:
• predicting the action for states with sufficient samples is easy (policy follows the distribution of observed actions)
• predicting proper actions for undersampled states is hard.

=> approximation function must generalized from observed states to unobserved ones.
Imitation learning in Games

possible applications:
• make a player behave like a real one (e.g. adapt player styles for football games)
• learn policies for hard opponents to analyze their weaknesses
• when training an agent learn from human experts (first Alpha Go version)
• learn policies for your own behavior and find out where it deviates from the optimal policy

Note, this is an active field of research with many unsolved problems:
• policies depend on the agents/players capabilities
• capability of the imitating agent in unknown states is hard to evaluate
• reward functions might not be the same for teacher and imitating agent
Consider an MDP (S,A,T,R):

- often the uncertainty of state transitions T is completely caused by the actions of other independent agents (opponent or team members)

 examples: chess, GO, etc.

- if you would know the policy of the other agents, optimal game play could be achieved with deterministic search.
Antagonistic Search

- assume that there is a policy π^* which both player follows
- in antagonistic games, the reward of player p1 is the negative reward of player p2. (zero-sum game)

=> player1 maximizes rewards
player2 minimizes the rewards
Antagonistic Search

- generally it is not possible to search until the game ends (search grows exponential with available actions)

⇒ stop searching at a certain level and use another reward corresponding to the chance of success

Types of rewards:
- heuristics (figures, flexibility, strategic positions etc.)
- prediction functions (input game state -> win probability)
- databases (opening or end game libraries)
Min-Max Search in antagonistic Search Trees

- select action a that maximizes $R(s)$ for S1 after S2’s reaction
- Search depth:
 - Given Number of Turns
 ⇒ Time may vary and is hard to estimate
 ⇒ Turbulent positions make cutting of some branches unfavorable
 - Iterative Deepening:
 - Multiple calculations with increasing search depth
 - On Time-Out: Abort and use of last complete calculation
 (since expense doubles on average, double the expense can be estimated)
 - turbulent positions: single branches are being expanded if leaves are turbulent.
Alpha-Beta Pruning

Idea: If a move already exists, that can be valuated with even after a counter reaction, all branches creating a value less than can be cut.

- S1 reaches at least α on this sub-tree ($R(s) > \alpha$)
- S2 reaches at most β on this sub-tree ($R(s) < \beta$)

Algorithm:
- Traverse Search-Tree with deep search and fill inner nodes on the way back to the last branching
- For calculating inner nodes:
 If $\beta < \alpha$ then
 - Cut off remaining sub-tree
 - set β-value for the sub-tree if it’s root is a min-node
 - set α-value for the sub-tree if it’s root is a max-node
- Else set β-value to the minimum of min-nodes
 set α-value to the maximum of max-nodes
Alpha-Beta Pruning

Idea: If a move already exists, that can be valued with α even after a counter reaction, all branches creating a value less than α can be cut.

- α: S1 reaches at least α on this sub-tree ($R(s) > \alpha$)
- β: S2 reaches at most β on this sub-tree ($R(s) < \beta$)
Monte Carlo Tree Search

• for games with high branching factors MinMax does not scale
• heuristics are often hard determine and require expert knowledge
• machine learning depends on the available data sets (biased to human play style)

Monte Carlo Tree Search:
• samples tree based on Monte Carlo Learning of simulated play outs
• uses an exploration/exploitation scheme to systematically search the first k-layers of the search tree.
• simulation can be based on different opponent agents strategies
UCB1

• selects actions w.r.t. reasonable exploration and exploitation trade-offs
• consider a situation where you had N tries and I actions
• for each action a_i you know the number of wins and number of samples (allows to calculate mean win rate)
• based on Hoeffding’s inequality, it can be shown that the following bound for mean win rate holds: $c_{n,n_i} = \sqrt{\frac{2 \ln n}{n_i}}$

- the bounds gets narrower the more samples for a_i become available, but the bounds for all actions a_j $(i \neq j)$ become wider
• now always select action $a = argmax_i (\mu_i + c_{n,n_i})$
Monte Carlo Tree Search with UCT

- Use UBC1 for sampling the first k levels of the search tree
- If no samples are available apply a random search or some light-weight policy.
- To evaluate leaves at the leaf level, simulate game until terminal state is reached

The algorithm runs in 4 phases:
- Selection: search tree based on UBC1
- Expansion: randomly select an action when UBC1 does not work
- Simulation: simulate a further game trajectory
- Backpropagation: backup the value along the path to the root
Example

Selection

Expansion
Example

Simulation

Backpropagation
Monte Carlo Tree Search

- applicable to antagonistic search but not restricted to it
- can handle stochastic games and games partially observable game states
- the 4 steps can be iterated until a given time budget is spend: the longer the search is done the better is the result.
- a general question is to perform simulation to determine the possible outcomes
- Monte Carlo Tress Search is used in Alpha Go to allow lookahead together with convolutional neural networks and deep reinforcement learning
Learning Goals

• agents and environments for sequential planning
• deterministic search
• building decision graph for routing in open environments
• Markov Decision Processes
• Policy and Value Iterations
• Model-free approaches and Q-Learning
• Function Approximation
• Antagonistic Search
• MiniMax Search and Alpha-Beta Pruning
• Monte Carlo Tree Search with UCT
Literature

• Nathan R. Sturtevant: **Memory-Efficient Abstractions for Pathfinding**
 In Artificial Intelligence and Interactive Digital Entertainment,
 Conference (AIIDE), 2007.

• Lecture notes D. Silver: Introduction to Reinforcement Learning
 (http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)

• S. Russel, P. Norvig: Artificial Intelligence: A modern Approach,
 Pearson, 3rd edition, 2016

• Levente Kocsis and Csaba Szepesvári: Bandit based monte-carlo
 planning. In Proceedings of the 17th European conference on
 Machine Learning (ECML'06), 282-293, 2006

• V. Mnih, K. Kavokcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
 Wierstra, M. Riedmiller: Playing Atari with Deep Reinforcement
 Learning, NIPS-DLW 2013.