
1

Lecture Notes for
Managing and Mining Multiplayer Online Games

Summer Term 2018

Lecture Notes © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter 9: Artificial Intelligence

2

Chapter Overview

• What is Artificial Intelligence?
• Environments, Agents, Actions Rewards
• Sequential Decision Making

• Classical Search
• Planning with Uncertainty
• Model-free Reinforcement Learning
• Monte-Carlo and Temporal Difference Learning
• Q-Learning

• Adversarial Search
• Minimax
• Alpha-Beta Pruning
• Monte Carlo Tree Search

3

What is Artificial Intelligence?

Game State

GAME

?
action

Player View

Environment Agent

“sensor”

4

Environment

Represents the world in which the agent is acting.
(e.g. a game, a simulation or a robot)
• provides information about the state (e.g. view of Game State)

• receives action and reacts to the them

Properties of Environments
• partially / fully observable
• with known model/ model free
• deterministic / non-deterministic
• single vs. multi-agent
• competitive vs. collaborative
• static / dynamic / semi-dynamic
• discrete / continuous (states and/or actions)

5

Agents

Autonomous entity within the environment.

types of agents:
• simple reflex agent

• condition-action-rule
(example: If car-in-front-is-braking then initiate-braking.)

• model-based reflex agents (add internal state from history)

• goal-based agents (works towards a goal)

• utility-based agents (optimizes rewards/minimizes costs)

• learning agents (learns how to optimize rewards/costs)

6

Example: „Autocamp 2000“ (simple reflex agent)

Example for a Bots: (http://www.gamespy.com/articles/489/489833p1.html)

1) If invited by any group => join group
2) If in a group => follow behind the leader
3) If sees a monster => attack
4) If someone says something ending in a question mark

=> respond by saying "Dude?"
5) If someone says something ending in an exclamation point

=> respond by saying "Dude!"
6) If someone says something ending with a period

=> respond by randomly saying one of three things: "Okie“,
"Sure“, or "Right on"

7) EXCEPTION: If someone says something directly to you by
mentioning your name, respond by saying "Lag."

7

Example
KillSwitch: [Shouting] Does anyone want to join our hunting party?
Farglik: [Powered by the Autocamp 2000] Dude?
[KillSwitch invites Farglik to join the group.]
[Farglik joins the group]
KillSwitch: We're gonna go hunt wrixes.
Farglik: Right on.
[The group of players runs out, Farglik following close behind. Farglik shoots at every little

monster they pass.]
KillSwitch: Why are you attacking the durneys?
Farglik: Dude?
KillSwitch: The durneys, the little bunny things -- why do you keep shooting at them?
Farglik: Dude?
KillSwitch: Knock it off guys, I see some wrixes up ahead. Let's do this.
Farglik: Right on.
[The group encounters a bunch of dangerous wrixes, but they gang up and shoot every one of

them.]
KillSwitch: We rock!
Farglik: Dude!
Troobacca: We so OWNED them!
Farglik: Dude!

8

Example
KillSwitch: Uh oh, hang on. Up ahead are some Sharnaff bulls. We can't handle them, so don't

shoot.
Farglik: Okie.
[Farglik shoots one of the Sharnaff bulls.]
[The bull attacks; Trobacca and several other party members are killed before they beat it.]
KillSwitch: You IDIOT! Farglik why did you shoot at them?
Farglik: Lag.
KillSwitch: Well don't do it again.
Farglik: Sure.
[Farglik shoots at another Sharnaff bull.]
[The entire party is slaughtered except for Farglik.]

[... Farglik stands there, alone, for several hours ...]

Planet Fargo- The Automated Online Role-Player
By Dave Kosak
http://www.gamespy.com/articles/489/489833p1.html

9

Sequential Decision Making

• behavior is a sequence of actions
• sometimes immediate rewards must be sacrificed to

acquire rewards in the future
example: spend gold to build a gold mine

• short-rewards might be very unlikely in a situation
example: score a goal from your own half in football

=> intelligent behavior needs to plan ahead

10

Deterministic Sequential Planning

• Set of states S = {s1,..,sn}
• Set of actions A(s) for each state s∈S
• Reward function R: R(s) (if negative = cost function)
• Transition function T: S×A => S: t(s,a) = s’

(deterministic case !!)
• this implies:

• episode = s1 ,a1,r1 ,s2,a2,r2 ,s3 ,a3 ,r3 ,s3 ...,sl ,al ,rl ,sl+1

• reward of the episode: ∑𝑖𝑖=1𝑙𝑙 𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖with 0 < 𝛾𝛾 ≤ 1
(𝛾𝛾=1: all rewards count the same, 𝛾𝛾 <1: early rewards count more)

• sometimes: process terminates when reaching a
terminal state sT (Game Over !!!) or process end after k
moves.

11

Deterministic Sequential Planning

• Static, discrete, deterministic, known and fully observable
environments:
• S, A are discrete sets and known
• t(s,a) has a deterministic state s’
• Agent knows the current state

• goal: find a sequence of actions (path) that maximize the
cumulated future rewards.

examples:
• routing from A to B on the map or find an exit
• riddles like the goat, wolf, cabbage transport problem

12

Routing in Open Environments
• open environment: 2D Space (IR2)
• agents can move freely
• obstacles block direct connections
• presenting obstacles with:

• polygons
• pixel-presentation
• any geometric form

(Circle, Ellipse, …)

solution for polygon presentation:
• deriving a graph for the map

containing the shortest routes
(visibility graph)

• integrating start and goal
• use of pathfinding algorithms like

Dijkstra or A*

A
B

13

Visibility Graph
• finding the shortest path in an

open environment is a search
over an infinite search area

• solution: restrict the search area
with the following properties of
optimal paths:
• waypoints of every shortest

path are either start, goal or
corners of obstacle-
polygons.

• paths cannot intersect
polygons.

• The shortest path in the open
environment U is also part of the
visibility graph GU(V,E).

A
B

14

Visibility Graph
Environment: U
• Set of polygons U=(P1, …,Pn) (Obstacles)
• Polygon P: planar cyclic graph: P = (VP,EP)
Visibility graph: GU(V,E)
• Nodes: Corners of polygons P = {V1, …,Vl) in U:

• Edges: All edges of polygons with all edges of nodes from different
polygons that do not intersect another polygon-edge.

Remarks:
• definition applies only to convex obstacles:
• for concave polygons: compute the convex hull of each obstacle and the

additional edges
• The definition implies a naive O(n3) algorithm to construct a visibility graph.

Computing a visibility graph can be optimized to O(n2) (O‘Rourke 87)


UP

PU VV
∈

=

{}}),(:),({ =∩∀∀∧≠∧∈∧∈∪=
∈∈

∈

eyxjiPyPxyxEE
PEeUPji

UP
PU 

15

Example: Visibility Graph

A

Edges for the node A being tested
and discarded.

Visibility Graph: Red segments
run between polygons. Green
segments mark the polygons’
borders.

16

Expansion with Start- and Goal-Nodes
• Visibility graph can be pre-calculated for static environments
• Mobile Objects must be integrated into the graph before calculation
• Inserting start S and goal Z as Point-Polygons
• Connecting the new nodes to with all edges unless an intersection with

polygons occurs

A
B

17

Dijkstra’s Algorithm
Used Data Structures:

• priorityqueue Q (stores found paths sorted by cost in descending order)
• nodetable T (contains cost for the currently best path for all visited nodes)

Pseudo-Code:

FUNCTION Path shortestPath(Node start, Node target)
Q.insert(new Path(start,0))
WHILE(Q.notIsEmpty())

Path aktPath = Q.getFirst()
IF aktPath.last() == target THEN //target found

return aktPath
ELSE

FOR Node n in aktPath.last().successor() DO //extend current path
Path newPath = aktPath.extend(n)
IF newPath.cost()<T.get(newPath.last()) THEN //update optimal path

T.update(newPath.last,newPath.cost)
Q.insert(newPath,newPath.cost)

ENDIF
ENDDO

ENDIF
ENDWHILE
RETURN NULL //start and target not connected

ENDFUNCTION

18

A*-Search
• Dijkstra’s algorithm uses no information about

the direction to the target
=> the search expands into all directions until

the target is found
• A*-Search formalizes the direction into an

optimistic forward approximation:
h(n, target) for each node n

• h(n,target) indicates a lower bound for the
minimum cost to reach the target

• improve the search order by sorting by minimal
total cost to reach the target

• allows to prune path P if:
P.cost()+h(pfad1.last(),target) > bestPath.cost()

• basic heuristic for network distance:
Euclidian distance between current position and
target position.
(a straight line is always the shortest connection)

solution

search area

search area
solution

heuristic

19

Pseudo-Code: A*-Search
Peseudo-Code: A*-Search

FUNCTION Path shortestPath(Node start, Node target)
Q.insert(new Path(start),0)
WHILE(Q.notIsEmpty())

Path aktPath = Q.getFirst()
IF aktPath.last() == target THEN //found result

return aktPath
ELSE

FOR Node n in aktPath.last().successor() DO //expanding the current path
Path newPath = aktPath.extend(n)
IF newPath.cost()<T.get(newPath.last()) THEN //update if optimal so far

T.update(newPath.last, newPath.cost())
Q.insert(newPath, newPath.cost() +h(newPath.getLast(), target))

ENDIF
ENDDO

ENDIF
ENDWHILE
RETURN NULL //there is no path

ENDFUNCTION

20

Visibility Graph for extended objects
• agents usually have a spatial expansion:

Circle or Polygon
• visibility graph is only feasible for

point objects
• adjust the visibility graph:

expand obstacle polygons by the
spatial expansion of the agent
(Minkowski Sum)

problem with this solution:
• for circular expansion: circles have an

infinite number of edges
=> visibility graph is not derivable

• For Polygon-Environment: object rotation
should be considered
=> Every rotation requires a separate
extension

target

start

target

start

21

Visibility Graph for extended Objects
Solution Approach:
• polygons are approximated by the

body of rotation => Circle
• circles are approximated by minimal

surrounding polygons (MUP)
=> e.g. hexagon, octagon

• form Minkowski sum with the MUPs
and derive visibility graph.

Remarks:
• paths are not optimal
• passages are considered conservative
• curves are taken angular
• MMO should only have a limited

selection of agent extensions because
each requires it’s own graph

target

start

Minkowski sum of varying rotations of the same shape

double approximation by building the body of rotation
and the minimal surrounding Hexagon

22

More Pathfinding Methods
Other Methods:
• approximate polygons with polygons

having less corners
• hierarchic routing for longer routes
• precalculate and store shortest paths
• use a grid based graph, overlay the

map with a grid and route over cell
centers => decent approximation

• use sampled graphs in open
environments (cmp. task-motion
planning in robotics)

A

B

A

B

23

Markov Decision Process

Problem: We might not know the outcome of an executed action

• other players might act unpredictable

• game integrate random processes

⇒ t(s,a) is stochastic T: P(s’|s,a) for all s,s’ ∈ S, a ∈ A

implications:

• we do not know what the future state after performing action a is.

• the reward R(s) gets stochastic as well

• when searching a terminal state, there is no secure path leading us to
the target

=> We need an action for each situation we might encounter and not
just the one on the path

24

Motivation non-deterministic Routing

What is the fastest
path through the
forest ?

25

Motivation non-deterministic Routing

What is the fastest
path through the
forest ?

26

Motivation non-deterministic Routing

What is the fastest
path through the
forest ?

What is if the
bear moves or
you don’t know
where it is?

27

Motivation non-deterministic Routing

What is the fastest
path through the
forest ?

What is if the
bear moves or
you don’t know
where it is?

28

Motivation non-deterministic Routing

What is the fastest
path through the
forest ?

What is if the
bear moves or
you don’t know
where it is?

29

Policies and Utilities

• in dynamic, discrete, non-deterministic, known and fully
observable environments

• a policy 𝜋𝜋 is a mapping defining for every state 𝑠𝑠 ∈ 𝑆𝑆 an
action 𝜋𝜋 𝑠𝑠 ∈ 𝐴𝐴 𝑠𝑠 (agent knows what to do in any situation)

• Stochastic Policies: Sometimes it is beneficial to vary the
action then 𝜋𝜋 𝑠𝑠 is a distribution function over A(s).
(think of a game where strictly following a strategie makes
you predictable)

Example:

state: bear is there state: bear is absent

30

Bellman’s Equations

• What is the reward of following 𝜋𝜋?
Utility 𝑈𝑈𝜋𝜋 𝑠𝑠 : expected reward when following 𝜋𝜋 in state s

• 𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝐸𝐸[∑𝑡𝑡=0∞ 𝛾𝛾𝑡𝑡𝑅𝑅(𝑠𝑠𝑡𝑡) |𝑠𝑠0 = 𝑠𝑠,𝜋𝜋]
• 𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝛾𝛾0𝑅𝑅 𝑠𝑠 + 𝐸𝐸[∑𝑡𝑡=1∞ 𝛾𝛾𝑡𝑡𝑅𝑅(𝑠𝑠𝑡𝑡) |𝑠𝑠0 = 𝑠𝑠,𝜋𝜋]
• 𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 ∑𝑠𝑠′∈𝑆𝑆 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑈𝑈𝜋𝜋 𝑠𝑠′

(Bellmann Equation)

• What is the optimal policy 𝜋𝜋*?
Bellman Optimality Equation:

𝑈𝑈𝜋𝜋∗ 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 𝑎𝑎𝑟𝑟𝑎𝑎max
𝑎𝑎∈𝐴𝐴

�
𝑠𝑠′∈𝑆𝑆

𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈𝜋𝜋∗(𝑠𝑠′)

31

Finding optimal Policies: Policy Iteration

• We are looking for the optimal policy.
• The exact utility values are not relevant if one action is

clearly the optimal.

• Idea: Alternate between:
• Policy evaluation: given a policy, calculate the

corresponding utility values
• Policy improvement: Calculate the policy given the

utility values 𝜋𝜋 𝑠𝑠 = 𝑎𝑎𝑟𝑟𝑎𝑎max
𝑎𝑎∈𝐴𝐴

∑𝑠𝑠′∈𝑆𝑆 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈∗(𝑠𝑠′)

32

Policy Evaluation

• Policy evaluation is much simpler than solving the bellman
equation

𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 �
𝑠𝑠′∈𝑆𝑆

𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑈𝑈𝜋𝜋(𝑠𝑠′)

• Note that the non-linear function “max” is not present
• We can solve this by standard algorithms for system of

linear equations
• For large state spaces solving systems of linear equations

takes a long time (𝑂𝑂(𝑛𝑛3))
• In large state spaces a simplified Bellman update for k

times can be more performant

𝑈𝑈𝑖𝑖+1 𝑠𝑠 ← 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋𝑖𝑖 𝑈𝑈𝑖𝑖(𝑠𝑠′)

33

Policy Iteration

repeat
𝑈𝑈 ← PolicyEvaluation(𝜋𝜋,𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚)
𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑎𝑎𝑛𝑛𝑎𝑎𝑢𝑢𝑚𝑚?← 𝑡𝑡𝑟𝑟𝑢𝑢𝑢𝑢
for each state s in S do

if max
𝒂𝒂∈𝑨𝑨

∑𝒔𝒔′ 𝑷𝑷 𝒔𝒔′ 𝒔𝒔,𝒂𝒂 𝑼𝑼 𝒔𝒔′ > ∑𝒔𝒔′ 𝑷𝑷 𝒔𝒔′ 𝒔𝒔,𝝅𝝅 𝑼𝑼 𝒔𝒔′ then

𝝅𝝅 𝒔𝒔 ← argmax
𝑎𝑎∈𝐴𝐴

∑𝒔𝒔′ 𝑷𝑷 𝒔𝒔′ 𝒔𝒔,𝒂𝒂 𝑼𝑼[𝒔𝒔′]

𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒂𝒂𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖?← 𝒇𝒇𝒂𝒂𝒇𝒇𝒔𝒔𝒖𝒖
until 𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑎𝑎𝑛𝑛𝑎𝑎𝑢𝑢𝑚𝑚?
return 𝜋𝜋

34

Value Iteration

• if we use Bellman updates anyway, we can join both steps
• update Bellman optimality equation directly:

𝑈𝑈∗ 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 𝑎𝑎𝑟𝑟𝑎𝑎max
𝑎𝑎∈𝐴𝐴

�
𝑠𝑠′∈𝑆𝑆

𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈∗(𝑠𝑠′)

• Non-linear system of equations
• Use Dynamic Programming

• Compute utility values for each state by using the current
utility estimate

• Repeat until it converges to 𝑈𝑈∗

• convergence can be shown by contraction

35

Value Iteration

repeat
𝑈𝑈 ← 𝑈𝑈′

𝛿𝛿 ← 0
for each state s in S do

𝑈𝑈′ 𝑠𝑠 ← 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

∑𝑠𝑠′ 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈[𝑠𝑠′]

if 𝑈𝑈′ 𝑠𝑠 − 𝑈𝑈 𝑠𝑠 > 𝛿𝛿 then 𝛿𝛿 ← 𝑈𝑈′ 𝑠𝑠 − 𝑈𝑈 𝑠𝑠

until 𝛿𝛿 < 𝜖𝜖 1−𝛾𝛾
𝛾𝛾

return 𝑈𝑈

36

MDP Synopsis

• MDPs rely on a Markov model with assumptions about:
states, actions, rewards, transition probabilities, etc.

• if all the information is available, computing the optimal
policy does not require any learning samples

• Transitions probabilities are usually not defined but have
to be estimated based on observations

• usually observations ≠ states
⇒partially observable MDP, estimate belief states (compare HMM)
⇒ set of possible states and transitions is unknown

Can we learn on observations only without
making an model assumptions ?

37

Model-Free Reinforcement Learning

If we don’t have a model, what do we have:
NOTE: s is a state description, but S does not need to be known.

1. Sample Episodes:
• episode = s1 ,a1,r1 ,s2,a2,r2 ,s3 ,a3 ,r3 ,s3 ...,sl ,al ,rl ,sl+1

• reward of the episode: ∑𝑖𝑖=1𝑙𝑙 𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖with 0 < 𝛾𝛾 ≤ 1
• episode might end with terminal state

2. Queryable Environments:
• Agent selects an action a∈A(s) and receives on new state s’, R(s’),

A(s’) from the Environment.
• Allows to generate episodes

38

Monte-Carlo Policy Evaluation

• for a know policy π and a set of complete sample episode X following π
• let X(s) be the set of (sub-)episodes starting with s
• to estimate utility Uπ(s) average over the expected reward:

U 𝑠𝑠 = �
𝑥𝑥∈𝑋𝑋(𝑠𝑠)

∑𝑖𝑖=1𝑙𝑙 𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖
𝑋𝑋 𝑠𝑠

• if X(s) gets sufficiently large for all 𝑠𝑠 ∈ 𝑆𝑆: 𝑈𝑈(𝑠𝑠) → 𝑈𝑈𝜋𝜋 𝑠𝑠
• if new episodes, compute incremental mean:

𝜇𝜇𝑘𝑘 =
1
𝑘𝑘
�
𝑗𝑗=1

𝑘𝑘

𝑥𝑥𝑗𝑗 =
1
𝑘𝑘

𝑥𝑥𝑘𝑘 + �
𝑗𝑗=1

𝑘𝑘−1

𝑥𝑥𝑗𝑗 =
1
𝑘𝑘
𝑥𝑥𝑘𝑘 + 𝑘𝑘 − 1 𝜇𝜇𝑘𝑘−1

= 𝜇𝜇𝑘𝑘−1 +
1
𝑘𝑘
𝑥𝑥𝑘𝑘 − 𝜇𝜇𝑘𝑘−1

• if environments is non-stationary, limit weight of old episodes:
U 𝑠𝑠𝑡𝑡 ← U 𝑠𝑠𝑡𝑡 + 𝛼𝛼 𝑅𝑅 𝑥𝑥 − U 𝑠𝑠𝑡𝑡

39

Temporal Difference Learning

problem: Can we still learn if episodes are incomplete?

• the later part of ∑𝑖𝑖=1𝑙𝑙 𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖 is missing

• in the extreme case we just have 1 Step: st, a, r, st+1

=> Temporal Difference Learning

• idea similar to incremental Monte-Carlo learning:

U 𝑠𝑠𝑡𝑡 ← U 𝑠𝑠𝑡𝑡 + 𝛼𝛼 𝑅𝑅 𝑥𝑥 − U 𝑠𝑠𝑡𝑡
• Policy Evaluation with Temporal Difference (TD) Learning:

U 𝑠𝑠𝑡𝑡 ← U 𝑠𝑠𝑡𝑡 + 𝛼𝛼 𝑅𝑅 𝑠𝑠𝑡𝑡+1 − 𝛾𝛾U 𝑠𝑠𝑡𝑡+1 − U 𝑠𝑠𝑡𝑡
• TD target: 𝑅𝑅 𝑠𝑠𝑡𝑡+1 − 𝛾𝛾U 𝑠𝑠𝑡𝑡+1
• TD error: 𝑅𝑅 𝑠𝑠𝑡𝑡+1 − 𝛾𝛾U 𝑠𝑠𝑡𝑡+1 − U 𝑠𝑠𝑡𝑡
• each step estimates the mean utility incrementally

40

Policy Optimization

Idea: adapt Policy Iteration
(evaluate policy and update greedily)

• greedy policy update of U(s) requires MDP:
𝜋𝜋′ 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎∈𝐴𝐴 𝑠𝑠 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈(𝑠𝑠′)

• Q-Value Q(s,a): If we choose action a in state s
what is the expected reward?
=> We do not need to know where action a will take us!

• Improving Q(s,a) is model free:
𝜋𝜋′ 𝑠𝑠 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎∈𝐴𝐴 𝑠𝑠 𝑄𝑄 𝑠𝑠,𝑎𝑎

• Adapt the idea of Policy Iteration:
• Start with a default policy
• evaluate policy (previous slide)
• update policy: e.g. with greedy strategy

41

Samples and Policy Updates

Problem: After updating a policy, we need enough samples
following the policy.

• real observed episodes usually do not cover enough
policies (episodic samples are policy dependend)

s1 ,a1,r1 ,s2,a2,r2 ,s3 ,a3 ,r3 ,s3 ...,sl ,al ,rl ,sl+1

• we need to dynamically sample from an environment:
• measure reaction of physical world (e.g. robotics..)
• build simulations which mimic the physical world
• in Games: let the agent play and learn !!!

• We need a strategy for sampling these s,a pairs.

• s is often determined by the environment as result of the
last action. (The game is in state after the last move.)

42

Learning on a Queryable Environment

• we can generate as much samples as possible

• environment might be non-deterministic:
• same state s and action a => different outcomes s’ and R(s’)
• multiple samples for the same (s,a) might be necessary

• How to sample over the state-action space?
• exploit: If we find a good action keep it and improve the estimate

of Q(s,a). Usually, it’s a waste of time to optimize Q(s,a) for
bad actions.

• explore: Select unknown or undersampled actions
- a low Q(s,a) need not mean that the option is bad, maybe it is

just underexplored.
- try out new things might lead to a even better solution

43

ε-Greedy Exploration

• makes sure that sampling considers new actions

• when sampling:
• With probability 1-ε choose greedy action
• with probability ε chose random action

• Sampling policy:

𝜋𝜋 𝑎𝑎 𝑠𝑠 =

𝜀𝜀
𝑚𝑚

+ (1 − 𝜀𝜀) 𝑖𝑖𝑖𝑖 𝑎𝑎 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎∈𝐴𝐴(𝑠𝑠)𝑄𝑄(𝑠𝑠,𝑎𝑎)
𝜀𝜀
𝑚𝑚

𝑜𝑜𝑡𝑡𝑢𝑢𝑢𝑟𝑟𝑜𝑜𝑖𝑖𝑠𝑠𝑢𝑢

• achieves that Q-values improve and guarantees that all
actions are explored if optimized long enough

44

On-Policy and Off-Policy Learning

Which Q(s,a) is used for sampling an action?

on-policy learning: Sample with respect to the currently
learned policy. example: SARSA

off-policy learning: Sampling is done based on a behavioral
policy which is different from the learned policy.

example: Q-Learning

Implication:

• For off-policy learning, exploration is usually just done for
the behavioral policy.

• For on-policy methods, exploration must be part of the
learned policy.

45

Q-Learning

• standard off-policy learning method
• Given a behavioral policy 𝜋𝜋𝑏𝑏, learn the policy 𝜋𝜋𝑙𝑙 by the

following learning update:
𝑄𝑄 𝑠𝑠,𝜋𝜋𝑏𝑏(𝑠𝑠) ← 𝑄𝑄 𝑠𝑠,𝜋𝜋𝑏𝑏(𝑠𝑠) + 𝛼𝛼 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 𝑄𝑄 𝑠𝑠′,𝜋𝜋𝑙𝑙(𝑠𝑠′) − 𝑄𝑄 𝑠𝑠,𝜋𝜋𝑏𝑏(𝑠𝑠)

• Usually we want to learn the optimal policy, thus:
𝜋𝜋𝑙𝑙 𝑠𝑠 = argmax

𝑎𝑎∈𝐴𝐴
𝑄𝑄 𝑠𝑠,𝑎𝑎

• For behavioral policy, choose ε-Greedy

46

Q-Learning Algorithm

init Q(s,a)∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 ∈ 𝐴𝐴
for n episodes:
init s
repeat until episode is finished:
choose a from A(s) with 𝜋𝜋𝑏𝑏
s’,r = query_Env(s,a)

Q(s,a)← Q(s,a)+α(r+γmaxaQ(S’,a)-Q(s,a))
s ← s’

until s is terminated
//terminal state or finite horizon is reached

	Chapter 9: Artificial Intelligence
	Foliennummer 2
	What is Artificial Intelligence?
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Motivation non-deterministic Routing
	Policies and Utilities
	Bellman’s Equations
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	MDP Synopsis
	Model-Free Reinforcement Learning
	Monte-Carlo Policy Evaluation
	Temporal Difference Learning
	Policy Optimization
	Samples and Policy Updates
	Learning on a Queryable Environment
	-Greedy Exploration
	On-Policy and Off-Policy Learning
	Foliennummer 45
	Foliennummer 46
	Function Approximation of State Spaces
	Foliennummer 48
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Foliennummer 52
	Foliennummer 53
	Foliennummer 54
	Foliennummer 55
	Foliennummer 56
	Foliennummer 57
	Formal Decision Processing
	Foliennummer 59
	Foliennummer 60
	Foliennummer 61
	Foliennummer 62
	Foliennummer 63
	Foliennummer 64
	Foliennummer 65
	Foliennummer 66
	Foliennummer 67
	Foliennummer 68
	Foliennummer 69
	Foliennummer 70
	Foliennummer 71
	Foliennummer 72
	Foliennummer 73
	Foliennummer 74
	Foliennummer 75
	Foliennummer 76
	Foliennummer 77
	Foliennummer 78
	Foliennummer 79
	Foliennummer 80
	Foliennummer 81
	Foliennummer 82
	Foliennummer 83
	Foliennummer 84
	Foliennummer 85
	Foliennummer 86
	Foliennummer 87
	Foliennummer 88
	Foliennummer 89
	Foliennummer 90
	Foliennummer 91

