

Lecture Notes for Managing and Mining Multiplayer Online Games Summer Term 2018

Chapter 8: Ranking Skill

Lecture Notes © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter Overview

- calculating the skill level from win statistics
- ELO-Ranking
- True Skill
- Team Skill

Models for play level

idea: Skill level can be deduced from past victories and defeats.

model: Every player *i* has a skill level s_i . If $s_i > s_j$ then s_i is very likely to win in a competition.

applications:

- matchmaking: choose interesting opponents with comparable skill level
- ladders/rankings: creating public rankings as an expression of prestige (compare Tennis, SC2, WOW arena, Halo2, ...)
- **organizing tournaments**: assistance for draw, qualification, clearing disputes.

LEAG	UES							
SEASON 2-1v1 GRANDMASTER						BONUS POOL O		
	RANK	NAME				PDIN	ra wina	LOSSE
	11.1	👂 aLtnirvAnA						
360	1 2							
New	13							
	1.4							
тор	1.5	TASanchez					11 73 36 17	
16	1.7							
1000	1.8							
	19							
	1 14							
		- Parkan				En '		
# Spi	eler		Punkte	Win%	Leave%	Total	W-D-L (Le	aves)
. 🗖 kuš	ih	🗐 🙄	440 V S	74%	0.0%	34	25 - 0 - 9	(0)
2. 📕 Kev	/Kev	👩 🙄	367 V S	53%	0.0%	43	23 - 2 - 1	8 (0)
8. 📕 GA	MEBUG	🚳 🙄	343 V S	63%	0.0%	24	15 - 4 - 5	i (0)
. 📕 Sca	isyy	🔁 😨	342 V S	54%	0.0%	39	21 - 1 - 1	7 (0)
5. 📕 FA1	AL	6	337 V S	63%	0.0%	30	19 - 1 - 1	0 (0)
. 🗖 bue	eli	👩 🐑	278 V S	65%	0.0%	23	15 - 0 - 8	(0)
				560/	0.0%	34	19 - 1 - 1	4 (0)
). 🗖 pov	verhead	1	244 V S	56%	0.070	0.	19-1-1	4 (0)
). 🗖 pov 2. 🗖 bue		6) 6) ()	244 VS 278 VS	65%	0.0%	23	15 - 0 - 8	. ,
2. 🗖 bue		-						6 (0)

Letzte /	Aktualisierung 02 Jul 2008	Nächste Veröffentlichung 06 Aug 2008				
Rang	Team	q 80 Jul	+/- Rang Jun 08	+/- P Jun 08		
1	5panien	1557	3 📥	254		
2	Italien	1404	1 📥	-20		
3	Deutschland	1364	2 📥	90		
4	Brasilien	1344	-2 🤝	-169		
5	Niederlande	1299	5 📥	188		
6	Argentinien	1298	-5 🤝	-261		
7	Kroatien	1282	8 📥	265		
8	Tschechische Republik	1146	-2 🤝	-100		
9	Portugal	1104	2 📥	10		
10	Frankreich	1053	-3 🤝	-90		

The ELO System

Introduced by Arpad Elo in 1970 and adopted by the *World Chess Federation*.

Assumption: player *i*'s performance p_i is normal distributed around his skill level with variance β^2 . s_i : $p_i = N(s_{i, \beta}\beta^2)$

=> s_i>s_i does not necessarily mean i is losing against j

rather: *Pr(i* wins against *j)* > 50%

task: compute $Pr(p_i > p_j | s_i, s_j)$ (probability of *i* playing better than *j*)

=> Difference of 2 normal distributed variables with the same variance β^2 is normal distributed with an anticipated value of $s_i - s_j$ and variance β^2

Difference distribution of p_i and p_j

Let Φ be the accumulated density function of a normal distribution with anticipated value of 0 and a variance of 1, then follows:

$$P(p_1 > p_2 \mid s_1, s_2) = \Phi\left(\frac{s_1 - s_2}{\sqrt{2\beta}}\right)$$

Updating the ELO Ranking

- positions have to be adjusted as soon as new results are available.
- changes follow the zero-sum principle. $s_1^{new} + s_2^{new} = s_1 + s_2$
- difference Δ is supposed to increase the likelihood of the observation within the model
- match result: $y \in \{0,-1,1\}$ (Win:1, Loss:-1, Draw:0) updating ELO Scores with the result y_l : $\Delta = \alpha \beta \sqrt{\pi} \left(\frac{y_l + 1}{2} \Phi \left(\frac{s_1 s_2}{\sqrt{2}\beta} \right) \right)$

 α : weighing factor for a match 0< α <1 (approx. 0.07 for chess)

- ELO scores need comparatively many matches to stabilize. (ca. 20)
- properties:
 - chronological order of updates is important: good for long intervals between measurements, but bad performance for tournaments, where a players skill presumably stays constant.
 - ELO system does not allow for conclusions about individual performance in team games.
 - restricted representation of results. No differentiated treatment of events ۲ with a ranking for result (e.g. motor racing, ...).

True Skill

factor graphs

bi-partite graph with factor nodes and variable nodes.

- variable nodes: describe distribution functions
- factor nodes: model the interaction of variables
- edges: description of variables interacting for a factor **example**: Factor Graph for ELO System

- **True Skill**: extension of ELO Systems used for XBOX360 Live (e.g. HALO2 ranking)
- considers:
 - skill uncertainty
 - allows conclusions for team-members in team games (additive performance t₁)
 - result presentation as order of play results ($t_1 \ge t_2 \ge .. \ge t_m$)

Factor graph for True Skill

Example: 4 Players, 3 Teams: { (s_1) , (s_2, s_3) , (s_4) } Result: $t_1 > \varepsilon + t_2$, $t_1 > \varepsilon + t_3$, $\varepsilon > |t_2 - t_2|$

Factor Graph use for True Skill

- factor graph represents the distribution for Pr(s,p,t/r,A)
 - **r**: ranking result, **A**: team composition
 - **s**: player skill, **p**: player performance, **t**: team rating
- compute the distribution of player skill s conditional to the observations r and A: $Pr(s \mid r, A) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} Pr(s, p, t \mid r, A) dp dt$

 s_i is normal distributed with mean value μ_i and standard deviation σ_i

- With the given factor graph and the current values of μ and σ for the participating players $\Pi(d_1 > \varepsilon)$ and $\Pi(|d_2| \le \varepsilon)$ can be estimated.
- Comparing the prediction with the actual result, one can propagate the error back to μ and σ and adapt the model accordingly.
- Propagating probabilities and parameter updates on a factor graph are also called message-passing or belief propagation.

Training scheme for True Skill

- **1.** Forward propagation: estimate the results
- 2. Update of Team-performance: redistribution of results to teams
- **3.** Update of a-posteriori Distributions: propagates update-messages as far as parameters μ and σ .

Discussion True Skill

- Improves the ELO Systems by:
 - expansion of result representation
 - converges faster using a priori distributions for particular players
 - team Assessment
- Disadvantages of True Skill:
 - chronological order is important, even though one can assume that skill does not change between two matches. (Expansion: True Skill Trough Time 2008)
 - team skill is considered as the sum of player skills

But: In reality player synergy is much more complicated: having 5 carries in a Moba will not work

Team Skill

- idea: Considering not only individual play level, but also team chemistry.
 - => Viewing a player's joint performance compared to his single performance.

=> Some player's performance increases when combined with specific players.

given: A Team $T=\{p_1,...,p_K\}$ with K players. Let t_k be a sub-team of T with k-elements. $(t_k \subseteq T \land | t_k| = k)$. $Skill(t_k)$ constitutes sub-team's t_k skill level (for example calculated with ELO or True-Skill)

task: Skill level of team *T* considering team chemistry?

approach: calculating average over determined sub-team ranking

Team Skill-k

• average play level of a sub team of k size scaled to K

$$TS_{k}(T) = K \cdot \frac{1}{k} \cdot \frac{1}{\binom{K}{k}} \cdot \sum_{i=1}^{\binom{K}{k}} Skill(s_{ki}) = \frac{(k-1)!(K-k)!}{(K-1)!} \cdot \sum_{i=1}^{\binom{K}{k}} Skill(s_{ki})$$

example:
k=1 and K=5 $TS_{k}(T) = \frac{5}{1} \cdot \frac{1}{\binom{5}{1}} \cdot \sum_{i=1}^{\binom{5}{1}} Skill(s_{1i}) = \sum_{i=1}^{5} Skill(s_{1i})$
k=2 and K=5 $TS_{k}(T) = \frac{5}{2} \cdot \frac{1}{\binom{5}{2}} \cdot \sum_{i=1}^{\binom{5}{2}} Skill(s_{2i}) = \frac{1}{4} \sum_{i=1}^{10} Skill(s_{2i})$

Team Skill-AIIK-LS

Means of improvement towards Team Skill k:

- determining *k* is hard => take all possible sub-teams.
- separate results do not exist for all sub-teams
 => only consider sub-teams with a reliable ranking.
- **Idea**: Consider all sub-team with a reliable estimate and which are not a subset o a reliably estimated sub-team.
- **Approach:** Determine all relevant sub-teams $t^*_{k,i}$ whose *Skill(t_{k,i})* can be determined and for which no sub-team $t_{k+l,i}$ $t_{k,i}$ exists.

Calculate team performance as a k-multiple of average single performance.

$$TS_{ALL-LS}(T) = \frac{K}{\sum_{m \in \{m \mid \exists t_m^* \neq \{\}\}}^{K}} \left(\sum_{m=K}^{1} E(t_m^*) \right) = \frac{K}{\sum_{m \in \{m \mid \exists t_m^* \neq \{\}\}}^{K}} \left(\sum_{m=1}^{K} \left(\frac{1}{l} \cdot \sum_{i=1}^{l} Skill(t_{m,i}^*) \right) \right)$$

Example: Team Skill ALL-LS

red: pruned area, blue: used sub-teams, grey: pruned sub-teams.

$$TS_{ALL-LS}(T) = \frac{4}{3+2} \left(Skill(t_{BCD}) + \frac{1}{2} \left(Skill(t_{AC}) + Skill(t_{AD}) \right) \right)$$

Conclusion

- method for capturing increased success of teams with good chemistry.
- team skill depends on data of as many different team compositions as possible
- approaches for improvement:
 - roles within the team are not required explicitly
 - confidence of the underlying skill estimation is not treated
 - correlation between team skill and player skill is assumed to be uniform
- Skill in Team Skill, True Skill and ELO symmetrically values win and loss.

=> in many casual games an win award more increase to player score than losses reduces the skill level (keep players motivated to play)

Alternative Approach

- rating players not by success, but by skillful behavior:
 - 1. collect and describe spatial-temporal behavior over the full spectrum of skill.
 - 2. learn a regression model.
 - 3. rate player, while playing, for his *k* last actions.
- this approach is used for dynamic play level adjustment in PVE.
- very suitable if it is known what constitutes successful behavior in the game. (e.g. accuracy in FPS Games, DPS/HPS Numbers in MMORPGS)

Learning goals

- Scope of application for player ranking and matchmaking
- ELO
- True Skill
- Team Skill

Literature

- A.E. Elo: **The Rating of chess players: Past and present,** Arco Publishing, New York, 1978.
- Pierre Dangauthier, Ralf Herbrich, Tom Minka, Thore Graepel TrueSkill Through Time: Revisiting the History of Chess, In Advances in Neural Information Processing Systems 20 (NIPS), 2008.
- Ralf Herbrich, Tom Minka, and Thore Graepel, TrueSkill(TM): A Bayesian Skill Rating System, in Advances in Neural Information Processing Systems 20, MIT Press, January 2007.
- Colin DeLong, Nishith Pathak, Kendrick Erickson, Eric Perrino, Kyong Shim, Jaideep Srivastava:**TeamSkill: Modeling team chemistry in online multi-player games,** on Proc. of the 15th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD2011), 2011.