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Chapter Overview

• calculating the skill level from win statistics
• ELO-Ranking
• True Skill 
• Team Skill
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Models for play level

idea: Skill level can be deduced from past 
victories and defeats.
model: Every player i has a skill level si.
If si > sj then si is very likely to win in a 
competition.
applications:
• matchmaking: choose interesting 

opponents with comparable skill level
• ladders/rankings: creating public 

rankings as an expression of prestige
(compare Tennis, SC2, WOW arena, 
Halo2, …)

• organizing tournaments: assistance for 
draw, qualification, clearing disputes.
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The ELO System

Introduced by  Arpad Elo in 1970 and adopted by the World Chess 
Federation.
Assumption: player i’s performance pi is normal distributed around his 
skill level with variance β 2 .  si: pi= N(si, β 2 )

=> si >sj does not necessarily mean i is losing against j 
rather:  Pr(i wins against j) > 50%

task: compute Pr(pi >pj | si,sj ) (probability of i playing better than j) 
=> Difference of 2 normal distributed variables with the same variance 

β 2 is  normal distributed with an anticipated value of si – sj and 
variance β 2

.

Let Φ be the accumulated density function of a normal distribution with 
anticipated value of 0 and a variance of 1, then follows:

Difference distribution of
pi and pj
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Updating the ELO Ranking
• positions have to be adjusted as soon as new results are available.
• changes follow the zero-sum principle.
• difference ∆ is supposed to increase the likelihood of the observation 

within the model
• match result: y ∈ {0,-1,1} (Win:1, Loss:-1, Draw:0)
• updating ELO Scores with the result yl:

α : weighing factor for a match 0< α <1 (approx. 0.07 for chess)

• ELO scores need comparatively many matches to stabilize. (ca. 20)
• properties:

• chronological order of updates is important: good for long intervals 
between measurements, but bad performance for tournaments, where a 
players skill presumably stays constant.

• ELO system does not allow for conclusions about individual performance in 
team games.

• restricted representation of results. No differentiated treatment of events 
with a ranking for result (e.g. motor racing, …).
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True Skill
factor graphs
bi-partite graph with  factor nodes and variable nodes.

• variable nodes: describe distribution functions
• factor nodes: model the interaction of variables
• edges: description of variables interacting for a factor
example: Factor Graph for ELO System

• True Skill: extension of ELO Systems used for XBOX360 Live
(e.g.  HALO2 ranking)

• considers:
• skill uncertainty 
• allows conclusions for team-members in team games

(additive performance t1 )
• result presentation as order of play results (t1 ≥ t2 ≥ .. ≥ tm ) 

X1
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Factor graph for True Skill

(t3=p4)

Example: 4 Players, 3 Teams: {(s1), (s2,s3),(s4)}
Result: t1 > ε+t2 , t1 > ε+t3,  ε > |t2 -t2 |

Apriori-Distr.

Perf. Distr.

Team Distr.

Distribution of 
score differences
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Factor Graph use for True Skill

• factor graph represents the distribution for Pr(s,p,t|r,A)
• r: ranking result, A: team composition
• s: player skill, p: player performance, t: team rating

• compute the distribution of player skill s conditional to the 
observations r and A:

si is normal distributed with mean value µi and standard deviation σi

• With the given factor graph and the current values of µ and σ for the 
participating players Π(d1>ε)  and Π(|d2| ≤ε)  can be estimated.

• Comparing the prediction with the actual result, one can propagate 
the error back to µ and σ and adapt the model accordingly.

• Propagating probabilities and parameter updates on a factor graph are 
also called message-passing or belief propagation.
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Training scheme for True Skill
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Π(d1=t1-t2)

t3

Π(d1>ε) 

d1

Π(t1=p1) Π(t2=p2+p3) Π(t3=p4)

1. Forward propagation: estimate the results
2. Update of Team-performance: redistribution of results to teams
3. Update of a-posteriori Distributions: propagates update-messages as far 

as parameters µ and σ.

A-priori-
Distr.

Perf. Distr.

Team Distr.

Distribution of 
score-differences
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Discussion True Skill

• Improves the ELO Systems by:
• expansion of result representation
• converges faster using a priori distributions for particular 

players
• team Assessment

• Disadvantages of True Skill:
• chronological order is important, even though one can assume 

that skill does not change between two matches. (Expansion: 
True Skill Trough Time 2008)

• team skill is considered as the sum of player skills

But: In reality player synergy is much more complicated:
having 5 carries in a Moba will not work
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Team Skill
idea: Considering not only individual play level, but also team 

chemistry.
=> Viewing a player’s joint performance compared to his single 
performance.
=> Some player’s performance increases when combined with 
specific players. 

given: A Team T={p1,..,pK} with K players. Let tk be a sub-team of T with
k-elements. (tk⊆ T ∧ | tk|=k ). Skill(tk) ) constitutes sub-team’s  tk skill 
level  (for example calculated with ELO or True-Skill)

task: Skill level of team T considering team chemistry?

approach: calculating average over determined sub-team ranking
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Team Skill-k

• average play level of a sub team of k size scaled to K

example:
k=1 and K=5

k=2 and K=5
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Team Skill-AIIK-LS
Means of improvement towards Team Skill k:
• determining k is hard => take all possible sub-teams.
• separate results do not exist for all sub-teams

=> only consider sub-teams with a reliable ranking.
Idea: Consider all sub-team with a reliable estimate and which are not a 

subset o a reliably estimated sub-team.
Approach: Determine all relevant sub-teams t*

k,i whose Skill(tk,i) can be 
determined and for which no sub-team tk+l,j tk,i exists.

Calculate team performance as a k-multiple of average single 
performance.
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Example: Team Skill ALL-LS

red: pruned area, blue: used sub-teams, grey: pruned sub-teams.
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Conclusion
• method for capturing increased success of teams with good chemistry.

• team skill depends on data of as many different team compositions as 
possible

• approaches for improvement:
• roles within the team are not required explicitly
• confidence of the underlying skill estimation is not treated
• correlation between team skill and player skill is assumed to be uniform

• Skill in Team Skill, True Skill and ELO symmetrically values win and 
loss.
=>  in many casual games an win award more increase to player score 
than losses reduces the skill level (keep players motivated to play)
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Alternative Approach
• rating players not by success, but by skillful behavior:

1. collect and describe spatial-temporal behavior over the full 
spectrum of skill.

2. learn a regression model.
3. rate player, while playing, for his k last actions.

• this approach is used for dynamic play level adjustment in PVE.

• very suitable if it is known what constitutes successful behavior in the 
game. (e.g. accuracy in FPS Games, DPS/HPS Numbers in MMORPGS)
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Learning goals

• Scope of application for player ranking and matchmaking
• ELO
• True Skill
• Team Skill
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