
MMMO- Sheet 6

6-1 a)
Determine the class of point (2,7) for k = 2 using the class of majority of its k-nearest
neighbors, i.e. the point is assigned to the class which occurs most often among its k-nearest
neighbors.

0

5

10

5 10

0

5

10

5 10

6-1a)

4

0

5

10

5 10

6-1a)

4

5

6-1a) Thus, for k=2 is classified as

0

5

10

5 10

4

5

6-1b) Determine the class of point (2,7) for k=3 using the class of majority of its k-
nearest neighbors.
=> Special case: several points have the distance 6 to the query point

0

5

10

5 10

4

5

6

6

6

0

5

10

5 10

4

5

6

Alternative 1: Nondeterministic definition of kNN: Set NN(q,k) 
DB with exactly k objects such that:

)',(),(:),('),,(oqdistoqdistkqNNDBokqNNo 

6-1b)

0

5

10

5 10

4

5

6

NN(,3)

Nondeterministic definition of kNN: Set NN(q,k)  DB with
exactly k objects such that:

)',(),(:),('),,(oqdistoqdistkqNNDBokqNNo 

6-1b)

0

5

10

5 10

4

5

6

NN(,3)

Class of the
majority:

Nondeterministic definition of kNN: Set NN(q,k)  DB with
exactly k objects such that:

)',(),(:),('),,(oqdistoqdistkqNNDBokqNNo 

6-1b)

0

5

10

5 10

4

5

6

)',(),(:),('),,(oqdistoqdistkqNNDBokqNNo 

Deterministic definition of kNN: Set NN(q,k)  DB with at least k
objects such that:

6-1b)

0

5

10

5 10

4

5

6

6

)',(),(:),('),,(oqdistoqdistkqNNDBokqNNo 

Deterministic definition of kNN: Set NN(q,k)  DB with at least k
objects such that:

6-1b)

0

5

10

5 10

4

5

6

6

6

)',(),(:),('),,(oqdistoqdistkqNNDBokqNNo 

Deterministic definition of kNN: Set NN(q,k)  DB with at least k
objects such that:

6-1b)

0

5

10

5 10

4

5

6

6

6NN(,3)

Class of the
majority:

)',(),(:),('),,(oqdistoqdistkqNNDBokqNNo 

Deterministic definition of kNN: Set NN(q,k)  DB with at least k
objects such that:

6-1b)

6-1c) Determine the class of point (2,7) for k=5 using the class of majority of its k-
nearest neighbors.

Analogously to the deterministic alternative of 6-1 b)

0

5

10

5 10

6-1d) Determine the class of point (6,1) for k=3 using the class of majority of its k-nearest
neighbors.

0

5

10

5 10

6-1d)

1

0

5

10

5 10

6-1d)

1

4

0

5

10

5 10

6-1d)

1

4
4

0

5

10

5 10

6-1d)

1

4
4

NN(,3)

Class of the
majority:

0

5

10

5 10

6-1d)

6-1e) Determine the class of point (6,1) for k=3 using the class of majority of its k-
nearest neighbors weighting the classes with inverse Manhattan distance.

0

5

10

5 10

1

4
4

0

5

10

5 10

6-1e)

1

4
4

Weighting() = ¼ + ¼ = ½ Weighting() = 1/1 = 1

0

5

10

5 10

6-1e)

1

4
4

Highest weight:

Weighting() = ¼ + ¼ = ½ Weighting() = 1/1 = 1

0

5

10

5 10

6-1e)

DBSCAN(SetOfPoints DB, Real e, Integer MinPts)

// At the beginning all objects are unclassified

// o.ClId = UNCLASSIFIED for all o  DB

ClusterId := nextId(NOISE);

for i from 1 to |DB| do

Object := DB.get(i);

if Object.ClId = UNCLASSIFIED then

if ExpandCluster(DB, Object, ClusterId, e,

MinPts)

then ClusterId:=nextId(ClusterId);

Algorithm DBSCAN

ExpandCluster(DB, StartObject, ClusterId, e, MinPts): Boolean

seeds:= RQ(StartObject, e);

if |seeds| < MinPts then // StartObject is no kernal object

StartObjekt.ClId := NOISE;

return false;

// else: StartObject is a kernal object

forall o  seeds do o.ClId := ClusterId;

remove StartObject from seeds;

while seeds  Empty do

choose an object o from the set seeds;

Neighbors := RQ(o, e);

if |Neighbors|  MinPts then // o is a kernal object

for i from 1 to |Neighbors| do

p := Neighbors.get(i);

if p.ClId in {UNCLASSIFIED, NOISE} then

if p.ClId = UNCLASSIFIED then

add p to seeds;

p.ClId := ClusterId;

remove o from seeds;

return true;

Algorithm DBSCAN

Unclassified

Cluster 1:

Cluster 2:

Cluster 3:

Start:

A IHGFEDCB

K SRQPONML

J

T

Noise

Seeds

A

A.ClId = Unclassified

ExpandCluster (DB, A, 1, 1.1, 3)

Unclassified

Cluster 1:

Cluster 2:

Cluster 3:

Start:

A IHGFEDCB

K SRQPONML

J

T

Noise

Seeds

A

Seeds := RQ (A, 1.1)

A CB

Unclassified

Cluster 1: A, B, C

Cluster 2:

Cluster 3:

Cluster:

IHGFED

K SRQPONML

J

T

Noise

Seeds

A

Forall o in Seeds: o.ClId := ClusterId
Remove starting object from Seeds

B C
B C

Unclassified

Cluster 1: A, B, C, D

Cluster 2:

Cluster 3:

Point:

IHGFE

K SRQPONML

J

T

Noise

Seeds

B

While Seeds != empty do
RQ (B, 1.1) = {A, B, D}

A.ClId = 1. finished
B.ClId = 1. finished
D.ClId = Unclassified →

Seeds += D
D.ClId = 1

Remove B from Seeds

C D

Unclassified

Cluster 1: A, B, C, D

Cluster 2:

Cluster 3:

Point:

IHGFE

K SRQPONML

J

T

Noise

Seeds

C

While Seeds != empty do
RQ (C, 1.1) = {A, C, D}

A.ClId = 1. finished
C.ClId = 1. finished
D.ClId = 1. finisehd

Remove C from Seeds

D

Unclassified

Cluster 1: A, B, C, D

Cluster 2:

Cluster 3:

Point :

IHGFE

K SRQPONML

J

T

Noise

Seeds

D

While Seeds != empty do
RQ (D, 1.1) = {B, C, D}

B.ClId = 1. finished
C.ClId = 1. finished
D.ClId = 1. finished

Remove D from Seeds

Unclassified

Cluster 1: A, B, C, D

Cluster 2:

Cluster 3:

Start:

IHGF

K SRQPONML

J

T

E
Noise

Seeds

E

E.ClId = Unclassified

ExpandCluster (DB, E, 2, 1.1, 3) = false

E.ClId := Noise

E

Unclassified

Cluster 1: A, B, C, D

Cluster 2:

Cluster 3:

Start:

IHG

F

K SRQPONML

J

T

E
Noise

Seeds

F

F.ClId = Unclassified

ExpandCluster (DB, F, 2, 1.1, 3)
RQ (F, 1.1) = {F,G} → false

F.ClId := Noise

F G

Unclassified

Cluster 1: A, B, C, D

Cluster 2:

Cluster 3:

Start:

IHG

F

K SRQPONML

J

T

E
Noise

Seeds

G

G.ClId = Unclassified

ExpandCluster (DB, G, 2, 1.1, 3)
RQ (G, 1.1) = {F,G,H}

F HG

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H

Cluster 3:

Cluster:

I

K SRQPONML

J

T

E
Noise

Seeds

Forall o in Seeds:
o.ClId := ClusterId
Remove G from Seeds

F H
HGF

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H

Cluster 3:

Point :

I

K SRQPONML

J

T

E
Noise

Seeds

F

While Seeds != empty do
RQ (F, 1.1) = {F, G}

F.ClId = 2. finished
G.ClId = 2. finished

Remove F from Seeds

H

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3:

Point :
I

K SRQPONML

J

T

E
Noise

Seeds

H
While Seeds != empty do
RQ (H, 1.1) = {G, H, I, J}

G.ClId = 2. finished
H.ClId = 2. finished
I.ClId = Unclassified → Seeds += I
J.ClId = Unclassified → Seeds += J
I.ClId := J.ClId := 2

Remove H from Seeds

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3:

Point:
J

K SRQPONML T

E
Noise

Seeds

I
While Seeds != empty do
RQ (I, 1.1) = {H, I}

H.ClId = 2. finished
I.ClId = 2. finished

Remove I from Seeds

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3:

Point:

K SRQPONML T

E
Noise

Seeds

J
While Seeds != empty do
RQ (J, 1.1) = {H, J}

H.ClId = 2. finished
J.ClId = 2. finished

Remove J from Seeds

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3:

Start:

SRQPONML T

E
Noise

Seeds

K

K.ClId = Unclassified

ExpandCluster (DB, K, 3, 1.1, 3) = false

K.ClId := Noise

K

K

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3:

Start:

SRQPONM

L

T

E
Noise

Seeds

L

L.ClId = Unclassified

ExpandCluster (DB, L, 3, 1.1, 3) = false

L.ClId := Noise

K

L

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3:

Start:

SRQPON

ML

T

E
Noise

Seeds

M

M.ClId = Unclassified

ExpandCluster (DB, M, 3, 1.1, 3)
RQ (M, 1.1) = {M, O} → false

M.ClId := Noise

K

M O

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3: N, O, Q

Start: Cluster:

SRP

ML

T

E
Noise

Seeds

N

N.ClId = Unclassified

ExpandCluster (DB, N, 3, 1.1, 3)
RQ (M, 1.1) = {N, O, Q}

Forall o in Seeds:
o.ClId := ClusterId
Remove N from Seeds

K

QO
QON

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3: M, N, O, P, Q, R

S

RQ

L

T

E
Noise

Seeds

Point: O
While Seeds != empty do
RQ (O, 1.1) = {M, N, O, P, R}

M.ClId = Noise → M.ClId := 3
N. ClId = 3. finished
O.ClId = 3. finished
P.ClId = Unclassified → Seeds += P, P.ClId := 3
R.ClId = Unclassified → Seeds += R, R.ClId := 3

Remove O from Seeds

K

P

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3: M, N, O, P, Q, R, S

SR

L

T

E
Noise

Seeds

Point: P

While Seeds != empty do
RQ (P, 1.1) = {O, P, S}

O.ClId = 3. finished
P. ClId = 3. finished
S.ClId = Unclassified → Seeds += S, S.ClId := 3

Remove P from Seeds

K

Q

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3: M, N, O, P, Q, R, S

SR

L

T

E
Noise

Seeds

Point: Q

While Seeds != empty do
RQ (Q, 1.1) = {N, Q, R}

N.ClId = 3. finished
Q.ClId = 3. finished
R.ClId = 3. finished

Remove Q from Seeds

K

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3: M, N, O, P, Q, R, S, T

TS

LE
Noise

Seeds

Point: R
While Seeds != empty do
RQ (R, 1.1) = {O, Q, R, S, T}

O.ClId = 3. finished
Q. ClId = 3. finished
R.ClId = 3. finished
S.ClId = 3. finished
T.ClId = Unclassified → Seeds += T; T.ClId := 3

Remove R from Seeds

K

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3: M, N, O, P, Q, R, S, T

T

LE
Noise

Seeds

Point: S

While Seeds != empty do
RQ (S, 1.1) = {P, R, S}

P.ClId = 3. finished
R. ClId = 3. finished
S.ClId = 3. finished

Remove S from Seeds

K

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3: M, N, O, P, Q, R, S, T

LE
Noise

Seeds

Point: T

While Seeds != empty do
RQ (T, 1.1) = {R, T}

R.ClId = 3. finished
T. ClId = 3. finished

Remove T from Seeds

K

Unclassified

Cluster 1: A, B, C, D

Cluster 2: F, G, H, I, J

Cluster 3: M, N, O, P, Q, R, S, T

LE
Noise

Seeds

K

